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THE RADICALS OF HOPF MODULE ALGEBRAS

ZHANG SHOUCHUANY*
Abstract

The characterization of H-prime radical is given in many ways. Meantime, the relations
between the radical of smash product A#H and the H-radical of Hopf module algebra A are
obtained.
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§0. Introduction

Let k be a commutative associative ring with unit, H be an algebra with unit and comul-
tiplication A : H — H ® H, A be an algebra over k (A can be without unit). A is called an
H-module algebra if the following conditions hold:

(i) A is a unital left H-module (i.e., 1y - a = a for any a € A);

(ii) h-ab=>"(h1-a)(hg - b) for any a,b € A, h € H, where Ah =3 h1 ® ha.

An H-module algebra A is called a unital H-module algebra if A has an identity element
14 such that h-14 = e(h)14 for any h € H.

For any ideal I of A, set (I : H) :={zx € A|h-ax €I forall he€ H }. Iis called an
H-ideal, if h- I C I for any h € H. Let Iy denote the maximal H-ideal of A in I. A is
called H-semiprime, if there are no non-zero nilpotent H-ideals in A. A is called H-prime
if IJ = 0 implies I = 0 or J = 0 for any H-ideals I and J of A. An H-ideal I is called
an H-(semi)prime ideal of A if A/I is H-(semi)prime. A left A-module M is called an
A-H-module if M is also a left unital H-module with h - (am) = > (hy - a)(ham) for all
he HaecAme M. An A-H-module M is called an irreducible A-H-module if there are
no non-trivial A-H-submodules in M. An algebra homomorphism ¢ : A — B is called an
H-homomorphism if ¢(h-a) = h-¢(a) for any h € H,a € A. Let , and r; denote the Baer
radical and the Jacobson radical of algebras, respectively.

J. R. Fisher!”) built up the general theory of H-radicals for H-module algebras, studied H-
Jacobson radical rg;(A) :==N{(0: M)4 | M is an irreducible A-H-module}, and obtained

ri(A#H)NA=1ry;(A) (0.1)
for any irreducible Hopf algebra H (see [7, Theorem 4]). J. R. Fisherl” asked when is
ri(A#H) = i (A)#H 0.2)
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and asked if

If H = (kG)*, then relation (0.2) holds (see [6, Theorem 4.1]).

In this paper, we show that the H-Baer radical rg,(A) of A consists of H-m-nilpotent
elements in A, and give some sufficient conditions for (0.2) and (0.3), respectively. We also
show that (0.1) holds for any Hopf algebra H and give the formulae similar to (0.1), (0.2)
and (0.3) for H-prime radical.

We denote the H-ideal I of A by I <y A. The smash product is the same as in [7] and
the other notations are the same as in [11] and [12].

§1. The H-Special Radicals for H-Module Algebras

J. R. Fishertel” built up the general theory of H-radicals for H-module algebras. We
can easily give the definitions of the H-upper radical and the H-lower radical for H-module
algebras as in [12]. In this section, we obtain some properties of H-special radicals for
H-module algebras. We omit all of the proofs, because they are similar to those in [13].

Proposition 1.1. A is H-semiprime iff (H - a)A(H - a) = 0 always implies a = 0 for
any a € A.

A is H-prime iff (H - a)A(H - b) =0 always implies a =0 or b =0 for any a, b € A.

Proposition 1.2. If I <y A and I is an H-semiprime module algebra, then

(i) InI*=0,

(ii) I, = I; = I*,

(iil) I* <y A,
where I, ={a € A|I(H -a)=0}, [ ={a€ A|(H-a)l =0}, " ={a€ Al (H-a)l =0=
I(H -a)}.

Definition 1.1. K is called an H-(weakly) special class if

(S1) K consists of H-(semiprime) prime module algebras.

(S2) Forany A€ K, if 0 £ I <y A then I € K.

(S3) A is an H-module algebra. If Bay A and B € K, then A/B* € K, where B* = {a €
A|(H-a)B=0=B(H -a)}.

It is clear that (S3) may be replaced by one of the following conditions:

(S3’) If B is an essential H-ideal of A (i.e., BN I # 0 for any non-zero H-ideal I of A)
and B € IC, then A € K.

(S37) If there exists an H-ideal B of A with B* =0 and B € K, then A € K.

It is easy to check that if IC is an H-special class, then K is an H-weakly special class.

Theorem 1.1. If K is an H-weakly special class, then r*(A) = N{I ag A | A/I € K},
where 7 denotes the H-upper radical determined by K.

Definition 1.2. If r is a hereditary H-radical (i.e., if A is an r-H-module algebra and
B is an H-ideal of A, then so is B) and any nilpotent H-module algebra is an r-H-module
algebra, then r s called a supernilpotent H -radical.

Proposition 1.3. If r is a supernilpotent H-radical, then r is H-strongly hereditary, i.e.,
r(I)=r(A)NI for any I <y A.

Theorem 1.2. If K is an H-weakly special class, then v is a supernilpotent H-radical.
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Definition 1.3. Fora € A,{a,} is called an H-m-sequence in H-module algebra A with
beginning a if there exist hy, hl, € H such that a; = a and apy1 = (hy.an)by (bl .ay) for any
natural number n.

Proposition 1.4. A is H-semiprime iff for any 0 # a € A, there exists an H-m-sequence
{an} in A with a1 = a such that a,, # 0 for all n.

§2. H-Baer Radical

In this section, we give the characterization of H-Baer radical (H-prime radical) in many
ways. We omit all of the proofs because they are similar to the proofs in [13].

Theorem 2.1. If K = {A| A is an H-prime module algebra}, then K is an H-special
class and 7™ (A) = N{I | I is an H-prime ideal of A }, which is called H-prime radical or
H-Baer radical, written as 7p.

Theorem 2.2. A is an rgp-H-module algebra iff every non-zero H-homomorphic image
of A contains a non-zero nilpotent H-ideal.

Theorem 2.3. Let £ = {A | A is a nilpotent H-module algebra }, then rg = rmp, where
re denotes the H-lower radical determined by E.

Proposition 2.1. A is H-semiprime if and only if rgp(A) = 0.

Definition 2.1. We define an H-ideal N, in H-module algebra A for every ordinal
number « as follows:

(i) No = 0. Let us assume that N, is already defined for a < f3.

(ii) If B = o+ 1, Ng /N, is the sum of all nilpotent H-ideals of A/N,

(iil) If B is a limit ordinal number, Ng = 3 N,.

a=<f
By set theory, there exists an ordinal number T such that N = N.41.

Theorem 2.4. N, = rgp(A) = N{I | I is an H-semiprime ideal of A }.

Definition 2.2. Let a € A. If for every H-m-sequence {a,} with ay = a, there exists a
natural number k such that air = 0, then a is called an H-m-nilpotent element, written as
Wy (A) ={a € A|a is an H-m-nilpotent element }.

Theorem 2.5. r(A) = Wr(A).

Definition 2.3. Let ® # L C H. An H-m-sequence {a,} in A is called an L-m-sequence
with beginning a if a1 = a and any1 = (hn.an)bp(h),.an) such that hy, hl, € L for alln. If for
every L-m-sequence {a,} with a1 = a, there exists a natural number k such that ar, = 0, then
a is called an L-m-nilpotent element, written as Wi (A) = {a € A | a is an L-m-nilpotent
element}.

Proposition 2.2. If L C H and H = kL, then

(i) A is H-semiprime iff (L.a)A(L.a) =0 always implies a =0 for any a € A.

(ii) A is H-prime iff (L.a)A(L.b) =0 always implies a =0 or b =0 for any a, b € A.

(iil) A is H-semiprime if and only if for any 0 # a € A, there exists an L-m-sequence
{an} with a1 = a such that a, # 0 for all n.

(iv) Wi (A) = Wr(A).

§3. The H-Module Theoretical Characterization of H-Special Radicals

In this section, let k be a commutative ring with unit, H be a Hopf algebra over k and
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A be an H-module algebra over k (A can be without unit). We shall characterize H-Baer
radical rgy, H-locally nil radical rg;, H-Jacobson radical 7z and H-Brown-McCoy radical
THbm by A-H-modules. We omit most of the proofs because they are similar to the proofs
in [5].

Lemma 3.1. If M is an A-H-module, then M is an A#H-module. In this case, (0 :
M)agp NA=(0:M)a and (0: M) 4 is an H-ideal of A.

Proof. Let v be a map from H to A#H by v(h) = 1#h for any h € H. It is clear that ~
is invertible with convolution inverse y=1 : h + 1#S(h) and h-a = > v(h1)ay~!(hz) for any
h € H,a € A, where S is the antipode of H. Obviously, (0: M)4 = (0: M)z N A. For
any h € H,a € (0: M)a, we see that (h-a)M = > v(h1)ay 1 (ha)M C Y ~v(hi)aM = 0.
Thus h-a € (0: M), which implies that (0 : M)4 is an H-ideal of A.

Definition 3.1. An A-H-module M is called an A-H -prime module if for M the following
conditions are fulfilled:

(i) AM #0,

(ii) If = is an element of M and I is an H-ideal of A, then I(Hz) = 0 always implies
x=00rIC(0:M)y.

Definition 3.2. We associate to every H-module algebra A a class M a of A-H-modules.
Then the class M = UM 4 s called an H-special class of modules if the following conditions
are fulfilled:

(M1) If M € My, then M is an A-H-prime module.

(M2) If I is an H-ideal of A and M € My, then IM € M4.

(M3) If M € My and I is an H-ideal of A with IM # 0, then M € M.

(M4) Let I be an H-ideal of A and A = A/I. If M € Ma and I C (0 : M)a, then
M e Mj. Conversely, if M € Mz, then M € M.

Let M(A) denote N{(0: M) | M € My}

Theorem 3.1. (i) If M is an H-special class of modules and K = { A | there exists a
faithful A-H-module M € M4}, then K is an H-special class and r™*(A) = M(A).

(i) If K is an H-special class and My = { M | M is an A-H-prime module and A/(0 :
M)a € K}, then M = UM 4 is an H-special class of modules and r*(A) = M(A).

Theorem 3.2. Let M4 ={ M | M is an A-H-prime module} for any H-module algebra
A and M =UMy. Then M is an H-special class of modules and M(A) = rgp(A).

Theorem 3.3. Let Ms ={ M | M is an irreducible A-H-module} for any H-module
algebra A and M = UM 4. Then M is an H-special class of modules and M(A) = rg;(A),
where ry; denotes the H-Jacobson radical defined by J. R. Fisher).

Let ry, 74, 7,75, Tom denote the common prime radical, nil radical, locally nilpotent radi-
cal, the Jacobson radical, the Brown-McCoy radical for algebras, respectively. J. R. Fisher
(see [7, Proposition 2]) constructed an H-radical g by a common hereditary radical r for al-
gebras. Thus we can get H-radicals rym, xer, "im, 758, Tome- Let 7 = g and gy = rim
for convenience.

Definition 3.3. An A-H-module M is called an A-H-BM -module, if for M the following
conditions are fulfilled:

(i) AM #0.
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(i) If I is an H-ideal of A and I € (0 : M)a, then there exists an element u € I such
that m = um for all m € M.

Theorem 3.4. Let M4 ={ M | M is an A-H-BM -module} for every H-module algebra
A and M = UM 4. Then M is an H-special class of modules and rgpm(A) = M(A), where
rHym denotes the H-upper radical determined by {A | A is an H-simple module algebra (i.e.,
A has no non-trivial H-ideal and A? # 0) with unit }.

Theorem 3.5. H is a finite-dimensional semisimple Hopf algebra with t € f;I and
e(t) = 1. Let Gi(a) = {2z | z = z + (t-a)x + > (x;(t.a)y; + ziy;) for all x;,y;,x € A}, A
is called an rg-H-module algebra, if a € Gi(a) for all a € A. Then ry, is an H-radical
property of module algebras and 4 (A) = rHem (A) for any unital H-module algebra A.

Proof. It is similar to the proof of [9, Theorem 9.3.1] and [9, Theorem 9.5.5].

Definition 3.4. Let I be an H-ideal of H-module algebra A, N be an A-H-submodule
of A-H-module M. N and I are said to have “L-condition”, if for any finite subset F' C I,
there exists a positive integer k such that FKN = 0.

Definition 3.5. An A-H-module M is called an A-H-L-module, if for M the following
conditions are fulfilled:

(i) AM #0.

(ii) For every non-zero A-H-submodule N of M and every H-ideal I of A, if N and I
have “L-condition”, then I C (0: M) 4.

Theorem 3.6. Let My ={ M | M is an A-H-L-module} for any H-module algebra A
and M =UM 4. Then M is an H-special class of modules and M(A) = rmi(A).

84. The Relations Between the Radical of A#H and the H-Radical of A

In this section, k is a field, H is a Hopf algebra over k, A is an H-module algebra (A can
be without unit).
Proposition 4.1. If r is a hereditary common radical for algebras, then

ra(A) = (r(A)m = (r(4) : H).
Furthermore, rig(A) C r(A).
Proposition 4.2. If B is an H-ideal of A, then (A#H)/(B#H) = (A/B)#H (as
algebras).
Proposition 4.3. Let M = UM 4 be a common special class of modules and satisfy the

condition: M € M, and A ’é B (as algebras) imply M € Mp (defined by v (a)r = ax). If
let Mg ={M | M € Maygp} for every H-module algebra A and M = UM 4, then M is
an H- special class of modules.

Proof. It is easy to check that M satisfies (M1), (M2) and (M3) in Definition 3.3. Using
the assumption, we see that M satisfies (M4).

Let

Trj(A) =N{(0: M)4 | M is an irreducible A#H- module } = r;(A#H) N A4;

Trp(A) =N{(0: M)4 | M is an A# H-prime module}= ry,(A#H) N A;

Tmi(A) =n{(0: M)4 | M is an A#H-L- module}=r;(A#H) N A,

Trom(A) =N{(0: M)4 | M is an A#H-BM-module}= 14, (A#H) N A.
Then 7gj, THe, TH1 and THyy, are H-radicals and H-special radicals by Proposition 4.3.
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Proposition 4.4. rg,(A) Cry(A#H)N A Cryg(A).

Proof. If A is a nilpotent H-module algebra, then r,(A#H) = A#H, which implies
7up(A) = A. Since 7y is an H-radical property for H-module algebras, we have 7gp > rgyp
by Theorem 2.3, i.e., rgp(A) C rp(A#H) N A. my(A#H) N A C 1y (A) can be showed by
m-nilpotent element.

Theorem 4.1. ryp(A)#H C ry(A#H).

Proof. ryy(A)#H C ry(A#H) since rp(A) C rpy(A#H) by Proposition 4.4.

Theorem 4.2. If rpp(A) is nilpotent, then

T‘Hb(A) = TbH(A) = Tb(A#H) NA= FHb(A).

Proof. By Theorem 2.3 and Proposition 4.4, rg,(A) = ryp(A) = Frp(A).

Theorem 4.3. Let H be a finite-dimensional Hopf algebra and A be a unital H-module
algebra. Let H* act on A#H by f - (a#h) = > a# f(ha)hy for any f € H*,h € H,a € A.
If A is semiprime, then A#H is H*-semiprime, where H* is the dual space of H.

Proof. By duality theorem (A#H)#H* = M,(A), which implies that (A#H)#H* is
semiprime. It follows from Theorem 4.1 that A#H is H*-semiprime.

Proposition 4.5. If the action of H on A is inner (defined in [2]) and r is a hereditary
common radical for algebras, then r(A) = ry(A). Furthermore,

ro(A) = rpp(A) = rpg(A) = rp(A#H) N A
and
Tom (A) = Tapm (A) = romu (A).
Proof. Since the action of H on A is inner, every ideal of A is an H-ideal, which implies
r(A) = rg(A). By the same reason, A is H-prime iff A is prime. A is H-simple iff A is
simple. Then the others hold.

Theorem 4.4. If H is a finite-dimensional semisimple Hopf algebra and A is a unital

H-module algebra, then
Tb(A#H) = ’I"Hb(A)#H

in the following four cases:

(1) k is a perfect field and H is cocommutative.

(2) H is irreducible cocommutative.

(3) The action of H on A is inner.

(4) H = (kG)*, where G is a finite group.

Proof. By [6, Theorem 5.3], (4) holds. Now we show that (1) and (2) and (3) hold.
Considering Theorem 4.1, we only need to show that

ro(A#H) C ryy(A)#H.
Since
(A#H)/(rapy(A)#H) = (A/rmp(A))#H (as algebras)
by Proposition 4.2 and A/rg,(A)#H is semiprime by [3, Theorem 2], or [3, Corollary 1], or
[10, Theorem 7.4.7] and Proposition 4.5, we have ry(A#H) C ryy(A)#H.

Proposition 4.6. If r is a hereditary common radical for algebras and H = kG is a
group algebra, then ri(A) = r(A).
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Proof. For any g € G, define a map o, from A to A by ay4(a) = g - a for any a € A.
We easily check that a4 is an algebra epimorphism, then g - r(A) C r(A), which implies
rg(A) = r(A) by Proposition 4.1.

Theorem 4.5. If A is a unital H-module algebra, then rp;(A) = rj(A#H)N A.

Proof. It follows from [7, Lemma 1] that {(0 : M)axmy N A | M is an irreducible A#H-
module } = {(0: M)4 | M is an irreducible A-H-module }. Thus ry,;(A) = r;(A#H) N A.

Theorem 4.6. r;(A#H)NA C rjg(A). Furthermore, if A is a unital H-module algebra,
then 1 (A) Crjp(A) and ra;(A)#H C rj(A#H).

Proof. For any a € r;(A#H)NA, there exists u = ) a;#h; € A#H such that a+u+au =
0. Using (id ® €), we get

a+ (Z aie(hi)> + a( Z aie(hi)) = 0.
Thus a is right quasi-regular in A. Considering r;(A#H) N A is an H-ideal of A, we have
ri(A#H)NACrja(A). By Theorem 4.5, rg;(A) C r;(A#H). Thus
raj(A)#H = (ru;(A)#1)(1#H) C rj(A#H).
Theorem 4.7. Let A be a unital H-module algebra. If H is a finite-dimensional semisim-
ple Hopf algebra and the action of H on A is inner, then r;(A#H) C rjg(A)#H.
Proof. By Proposition 4.5, 7 (A) = r;(A). Since
(A#H)/(rjn(A)#H) = (A/r;jn(A))#H
and A/r;u(A) is semiprimitive , we have (A#H)/(rju(A)#H) is semiprimitive by [10,
Corollary 7.4.3] and r;(A#H) C r;u(A)#H.
Proposition 4.7. If A is a unital H-module algebra, then rgpm(A) = romm (A).
Proof. It is clear that {B | B<g A and A/B is H-simple with unit } = {Iy | I < A and
A/I is simple with unit }. Thus
Tomu (A) = (MN{I | I <A and A/I is simple with unit })z by Proposition 4.1
=N{Ig | I <A and A/I is simple with unit }
=N{B | B<g A and A/B is H-simple with unit}
=rgpm(A4) by Theorem 3.4 .
Proposition 4.8. rgy, < g, v < ray, Torm STt S e S T5H S TomH, TiH S THbm-
Proof. It is easy to check that rvg < rig < rpy < 75 < Tomu by Proposition 4.1
and ring theory. By Theorem 2.3, rg;, < rg;. Since every irreducible A-H-module is an
A-H-L-module, we have rg; < rg; by Theorem 3.6. If A is an H-simple module algebra
with unit, then 75 (A) = 0. By Theorem 3.4, rjg < 7fpm.
Theorem 4.8. Let A be a unital H-module algebra. If rjg(A) is nilpotent, then
T’jH(A) = ’I"Hj(A) = ’I’Hb(A) = ’I"bH(A) = T‘J(A#H) NA= Tb(A#H) NA.
Proof. Since r;y(A) is nilpotent, 75 (A) C rup(A) by Theorem 2.3. It is easy to check
that
THb(A) Q Tb(A#H) N A Q TbH(A) Q TjH(A) and T‘Hb(A) g THj(A) Q T‘jH(A)
by Proposition 4.4, Proposition 4.8 and Theorem 4.6. Therefore
’I“jH(A) = ’I“Hj(A) = T‘Hb(A) = ’I“bH(A) = TJ(A#H) NA= Tb(A#H) N A.
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Theorem 4.9. Let A be a unital H-module algebra, H be a finite-dimensional semisimple
Hopf algebra and the action of H on A be inner. If r;g(A) is nilpotent (Example: A is left
Artinian or right Artinian or finite dimensional), then

ri(A#H) = rjg(A)#H = ry(A#H)
and
riu(A) = raj(A) = rj(A) = r0(A) = rou(A) = ras(A) = Tu; (A) = Tap(A).
Proof. By Proposition 4.5, r;(A) = rjg(A) and ry(A) = rea(A). Applying Theorem
4.8, we get
ri(A) = ruj(A) = rj(A) = ro(A) = rp(A) = ron (A) = Tap(A) = Ta; (A).
By Theorem 4.7 and Theorem 4.6, r;(A#H) = ry;(A)#H. We sce that
ri(A#H) D r,(A#H)
=ryp(A)#H by Theorem 4.4
=ry,;(A)#H by Theorem 4.8
ri(A#H).

Thus rj(A#H) = r,(A#H).

Proposition 4.9. A is H-semiprime if and only if aA(H - a) = 0 always implies a = 0
for any a € A, if and only if (H - a)Aa = 0 always implies a = 0 for any a € A.

Proof. It is similar to the proof of Lemma 3.1.
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