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Abstract

The characterization of H-prime radical is given in many ways. Meantime, the relations
between the radical of smash product A#H and the H-radical of Hopf module algebra A are
obtained.
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§0. Introduction

Let k be a commutative associative ring with unit, H be an algebra with unit and comul-

tiplication △ : H → H ⊗H, A be an algebra over k (A can be without unit). A is called an

H-module algebra if the following conditions hold:

(i) A is a unital left H-module (i.e., 1H · a = a for any a ∈ A);

(ii) h · ab =
∑

(h1 · a)(h2 · b) for any a, b ∈ A, h ∈ H, where △h =
∑
h1 ⊗ h2.

An H-module algebra A is called a unital H-module algebra if A has an identity element

1A such that h · 1A = ϵ(h)1A for any h ∈ H.

For any ideal I of A, set (I : H) := {x ∈ A | h · x ∈ I for all h ∈ H }. I is called an

H-ideal, if h · I ⊆ I for any h ∈ H. Let IH denote the maximal H-ideal of A in I. A is

called H-semiprime, if there are no non-zero nilpotent H-ideals in A. A is called H-prime

if IJ = 0 implies I = 0 or J = 0 for any H-ideals I and J of A. An H-ideal I is called

an H-(semi)prime ideal of A if A/I is H-(semi)prime. A left A-module M is called an

A-H-module if M is also a left unital H-module with h · (am) =
∑

(h1 · a)(h2m) for all

h ∈ H, a ∈ A,m ∈M . An A-H-module M is called an irreducible A-H-module if there are

no non-trivial A-H-submodules in M . An algebra homomorphism ϕ : A → B is called an

H-homomorphism if ϕ(h · a) = h · ϕ(a) for any h ∈ H, a ∈ A. Let rb and rj denote the Baer

radical and the Jacobson radical of algebras, respectively.

J. R. Fisher[7] built up the general theory ofH-radicals forH-module algebras, studiedH-

Jacobson radical rHj(A) := ∩{(0 :M)A |M is an irreducible A-H-module}, and obtained

rj(A#H) ∩A = rHj(A) (0.1)

for any irreducible Hopf algebra H (see [7, Theorem 4]). J. R. Fisher[7] asked when is

rj(A#H) = rHj(A)#H (0.2)
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and asked if

rj(A#H) ⊆ (rj(A) : H)#H. (0.3)

If H = (kG)∗, then relation (0.2) holds (see [6, Theorem 4.1]).

In this paper, we show that the H-Baer radical rHb(A) of A consists of H-m-nilpotent

elements in A, and give some sufficient conditions for (0.2) and (0.3), respectively. We also

show that (0.1) holds for any Hopf algebra H and give the formulae similar to (0.1), (0.2)

and (0.3) for H-prime radical.

We denote the H-ideal I of A by I ▹H A. The smash product is the same as in [7] and

the other notations are the same as in [11] and [12].

§1. The H-Special Radicals for H-Module Algebras

J. R. Fisherte[7] built up the general theory of H-radicals for H-module algebras. We

can easily give the definitions of the H-upper radical and the H-lower radical for H-module

algebras as in [12]. In this section, we obtain some properties of H-special radicals for

H-module algebras. We omit all of the proofs, because they are similar to those in [13].

Proposition 1.1. A is H-semiprime iff (H · a)A(H · a) = 0 always implies a = 0 for

any a ∈ A.

A is H-prime iff (H · a)A(H · b) = 0 always implies a = 0 or b = 0 for any a, b ∈ A.

Proposition 1.2. If I ▹H A and I is an H-semiprime module algebra, then

(i) I ∩ I∗ = 0,

(ii) Ir = Il = I∗,

(iii) I∗ ▹H A,

where Ir = {a ∈ A | I(H · a) = 0}, Il = {a ∈ A| (H · a)I = 0}, I∗ = {a ∈ A| (H · a)I = 0 =

I(H · a)}.
Definition 1.1. K is called an H-(weakly) special class if

(S1) K consists of H-(semiprime) prime module algebras.

(S2) For any A ∈ K, if 0 ̸= I ▹H A then I ∈ K.

(S3) A is an H-module algebra. If B ▹H A and B ∈ K, then A/B∗ ∈ K, where B∗ = {a ∈
A | (H · a)B = 0 = B(H · a)}.

It is clear that (S3) may be replaced by one of the following conditions:

(S3’) If B is an essential H-ideal of A (i.e., B ∩ I ̸= 0 for any non-zero H-ideal I of A)

and B ∈ K, then A ∈ K.

(S3”) If there exists an H-ideal B of A with B∗ = 0 and B ∈ K, then A ∈ K.

It is easy to check that if K is an H-special class, then K is an H-weakly special class.

Theorem 1.1. If K is an H-weakly special class, then rK(A) = ∩{I ▹H A | A/I ∈ K},
where rK denotes the H-upper radical determined by K.

Definition 1.2. If r is a hereditary H-radical (i.e., if A is an r-H-module algebra and

B is an H-ideal of A, then so is B) and any nilpotent H-module algebra is an r-H-module

algebra, then r is called a supernilpotent H-radical.

Proposition 1.3. If r is a supernilpotent H-radical, then r is H-strongly hereditary, i.e.,

r(I) = r(A) ∩ I for any I ▹H A.

Theorem 1.2. If K is an H-weakly special class, then rK is a supernilpotent H-radical.
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Definition 1.3. For a ∈ A, {an} is called an H-m-sequence in H-module algebra A with

beginning a if there exist hn, h
′
n ∈ H such that a1 = a and an+1 = (hn.an)bn(h

′
n.an) for any

natural number n.

Proposition 1.4. A is H-semiprime iff for any 0 ̸= a ∈ A, there exists an H-m-sequence

{an} in A with a1 = a such that an ̸= 0 for all n.

§2. H-Baer Radical

In this section, we give the characterization of H-Baer radical (H-prime radical) in many

ways. We omit all of the proofs because they are similar to the proofs in [13].

Theorem 2.1. If K = {A | A is an H-prime module algebra}, then K is an H-special

class and rK(A) = ∩{I | I is an H-prime ideal of A }, which is called H-prime radical or

H-Baer radical, written as rHb.

Theorem 2.2. A is an rHb-H-module algebra iff every non-zero H-homomorphic image

of A contains a non-zero nilpotent H-ideal.

Theorem 2.3. Let E = {A | A is a nilpotent H-module algebra }, then rE = rHb, where

rE denotes the H-lower radical determined by E.
Proposition 2.1. A is H-semiprime if and only if rHb(A) = 0.

Definition 2.1. We define an H-ideal Nα in H-module algebra A for every ordinal

number α as follows:

(i) N0 = 0. Let us assume that Nα is already defined for α ≺ β.

(ii) If β = α+ 1, Nβ/Nα is the sum of all nilpotent H-ideals of A/Nα

(iii) If β is a limit ordinal number, Nβ =
∑
α≺β

Nα.

By set theory, there exists an ordinal number τ such that Nτ = Nτ+1.

Theorem 2.4. Nτ = rHb(A) = ∩{I | I is an H-semiprime ideal of A }.
Definition 2.2. Let a ∈ A. If for every H-m-sequence {an} with a1 = a, there exists a

natural number k such that ak = 0, then a is called an H-m-nilpotent element, written as

WH(A) = {a ∈ A | a is an H-m-nilpotent element }.
Theorem 2.5. rHb(A) =WH(A).

Definition 2.3. Let Φ ̸= L ⊆ H. An H-m-sequence {an} in A is called an L-m-sequence

with beginning a if a1 = a and an+1 = (hn.an)bn(h
′
n.an) such that hn, h

′
n ∈ L for all n. If for

every L-m-sequence {an} with a1 = a, there exists a natural number k such that ak = 0, then

a is called an L-m-nilpotent element, written as WL(A) = {a ∈ A | a is an L-m-nilpotent

element}.
Proposition 2.2. If L ⊆ H and H = kL, then

(i) A is H-semiprime iff (L.a)A(L.a) = 0 always implies a = 0 for any a ∈ A.

(ii) A is H-prime iff (L.a)A(L.b) = 0 always implies a = 0 or b = 0 for any a, b ∈ A.

(iii) A is H-semiprime if and only if for any 0 ̸= a ∈ A, there exists an L-m-sequence

{an} with a1 = a such that an ̸= 0 for all n.

(iv) WH(A) =WL(A).

§3. The H-Module Theoretical Characterization of H-Special Radicals

In this section, let k be a commutative ring with unit, H be a Hopf algebra over k and
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A be an H-module algebra over k (A can be without unit). We shall characterize H-Baer

radical rHb, H-locally nil radical rHl, H-Jacobson radical rHj and H-Brown-McCoy radical

rHbm by A-H-modules. We omit most of the proofs because they are similar to the proofs

in [5].

Lemma 3.1. If M is an A-H-module, then M is an A#H-module. In this case, (0 :

M)A#H ∩A = (0 :M)A and (0 :M)A is an H-ideal of A.

Proof. Let γ be a map from H to A#H by γ(h) = 1#h for any h ∈ H. It is clear that γ

is invertible with convolution inverse γ−1 : h 7→ 1#S(h) and h·a =
∑
γ(h1)aγ

−1(h2) for any

h ∈ H, a ∈ A, where S is the antipode of H. Obviously, (0 : M)A = (0 : M)A#H ∩ A. For

any h ∈ H, a ∈ (0 : M)A, we see that (h · a)M =
∑
γ(h1)aγ

−1(h2)M ⊆
∑
γ(h1)aM = 0.

Thus h · a ∈ (0 :M)A, which implies that (0 :M)A is an H-ideal of A.

Definition 3.1. An A-H-moduleM is called an A-H-prime module if forM the following

conditions are fulfilled:

(i) AM ̸= 0,

(ii) If x is an element of M and I is an H-ideal of A, then I(Hx) = 0 always implies

x = 0 or I ⊆ (0 :M)A.

Definition 3.2. We associate to every H-module algebra A a class MA of A-H-modules.

Then the class M = ∪MA is called an H-special class of modules if the following conditions

are fulfilled:

(M1) If M ∈ MA, then M is an A-H-prime module.

(M2) If I is an H-ideal of A and M ∈ MI , then IM ∈ MA.

(M3) If M ∈ MA and I is an H-ideal of A with IM ̸= 0, then M ∈ MI .

(M4) Let I be an H-ideal of A and Ā = A/I. If M ∈ MA and I ⊆ (0 : M)A, then

M ∈ MĀ. Conversely, if M ∈ MĀ, then M ∈ MA.

Let M(A) denote ∩{(0 :M)A |M ∈ MA}.
Theorem 3.1. (i) If M is an H-special class of modules and K = { A | there exists a

faithful A-H-module M ∈ MA}, then K is an H-special class and rK(A) = M(A).

(ii) If K is an H-special class and MA = { M | M is an A-H-prime module and A/(0 :

M)A ∈ K}, then M = ∪MA is an H-special class of modules and rK(A) = M(A).

Theorem 3.2. Let MA ={ M |M is an A-H-prime module} for any H-module algebra

A and M = ∪MA. Then M is an H-special class of modules and M(A) = rHb(A).

Theorem 3.3. Let MA ={ M | M is an irreducible A-H-module} for any H-module

algebra A and M = ∪MA. Then M is an H-special class of modules and M(A) = rHj(A),

where rHj denotes the H-Jacobson radical defined by J. R. Fisher[7].

Let rb, rk, rl, rj , rbm denote the common prime radical, nil radical, locally nilpotent radi-

cal, the Jacobson radical, the Brown-McCoy radical for algebras, respectively. J. R. Fisher

(see [7, Proposition 2]) constructed an H-radical rH by a common hereditary radical r for al-

gebras. Thus we can get H-radicals rbH , rkH , rlH , rjH , rbmH . Let rHl = rlH and rHk = rkH

for convenience.

Definition 3.3. An A-H-moduleM is called an A-H-BM -module, if forM the following

conditions are fulfilled:

(i) AM ̸= 0.
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(ii) If I is an H-ideal of A and I ̸⊆ (0 : M)A, then there exists an element u ∈ I such

that m = um for all m ∈M .

Theorem 3.4. Let MA = { M |M is an A-H-BM -module} for every H-module algebra

A and M = ∪MA. Then M is an H-special class of modules and rHbm(A) = M(A), where

rHbm denotes the H-upper radical determined by {A | A is an H-simple module algebra (i.e.,

A has no non-trivial H-ideal and A2 ̸= 0) with unit }.
Theorem 3.5. H is a finite-dimensional semisimple Hopf algebra with t ∈

∫ l
H

and

ϵ(t) = 1. Let Gt(a) = {z | z = x + (t.a)x +
∑

(xi(t.a)yi + xiyi) for all xi, yi, x ∈ A}. A

is called an rgt-H-module algebra, if a ∈ Gt(a) for all a ∈ A. Then rgr is an H-radical

property of module algebras and rgt(A) = rHbm(A) for any unital H-module algebra A.

Proof. It is similar to the proof of [9, Theorem 9.3.1] and [9, Theorem 9.5.5].

Definition 3.4. Let I be an H-ideal of H-module algebra A, N be an A-H-submodule

of A-H-module M . N and I are said to have “L-condition”, if for any finite subset F ⊆ I,

there exists a positive integer k such that F kN = 0.

Definition 3.5. An A-H-module M is called an A-H-L-module, if for M the following

conditions are fulfilled:

(i) AM ̸= 0.

(ii) For every non-zero A-H-submodule N of M and every H-ideal I of A, if N and I

have “L-condition”, then I ⊆ (0 :M)A.

Theorem 3.6. Let MA = { M | M is an A-H-L-module} for any H-module algebra A

and M = ∪MA. Then M is an H-special class of modules and M(A) = rHl(A).

§4. The Relations Between the Radical of A#H and the H-Radical of A

In this section, k is a field, H is a Hopf algebra over k, A is an H-module algebra (A can

be without unit).

Proposition 4.1. If r is a hereditary common radical for algebras, then

rH(A) = (r(A))H = (r(A) : H).

Furthermore, rH(A) ⊆ r(A).

Proposition 4.2. If B is an H-ideal of A, then (A#H)/(B#H) ∼= (A/B)#H (as

algebras).

Proposition 4.3. Let M̄ = ∪M̄A be a common special class of modules and satisfy the

condition: M ∈ M̄A and A
ψ∼= B (as algebras) imply M ∈ M̄B (defined by ψ(a)x = ax). If

let MA = {M | M ∈ M̄A#H} for every H-module algebra A and M = ∪MA, then M is

an H- special class of modules.

Proof. It is easy to check that M satisfies (M1), (M2) and (M3) in Definition 3.3. Using

the assumption, we see that M satisfies (M4).

Let

r̄Hj(A) = ∩{(0 :M)A |M is an irreducible A#H- module } = rj(A#H) ∩A;
r̄Hb(A) = ∩{(0 :M)A |M is an A#H-prime module}= rb(A#H) ∩A;
r̄Hl(A) = ∩{(0 :M)A |M is an A#H-L- module}= rl(A#H) ∩A;
r̄Hbm(A) = ∩{(0 :M)A |M is an A#H-BM -module}= rbm(A#H) ∩A.

Then r̄Hj , r̄Hb, r̄Hl and r̄Hbm are H-radicals and H-special radicals by Proposition 4.3.
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Proposition 4.4. rHb(A) ⊆ rb(A#H) ∩A ⊆ rbH(A).

Proof. If A is a nilpotent H-module algebra, then rb(A#H) = A#H, which implies

r̄Hb(A) = A. Since r̄Hb is an H-radical property for H-module algebras, we have r̄Hb ≥ rHb

by Theorem 2.3, i.e., rHb(A) ⊆ rb(A#H) ∩ A. rb(A#H) ∩ A ⊆ rbH(A) can be showed by

m-nilpotent element.

Theorem 4.1. rHb(A)#H ⊆ rb(A#H).

Proof. rHb(A)#H ⊆ rb(A#H) since rHb(A) ⊆ rb(A#H) by Proposition 4.4.

Theorem 4.2. If rbH(A) is nilpotent, then

rHb(A) = rbH(A) = rb(A#H) ∩A = r̄Hb(A).

Proof. By Theorem 2.3 and Proposition 4.4, rHb(A) = rbH(A) = r̄Hb(A).

Theorem 4.3. Let H be a finite-dimensional Hopf algebra and A be a unital H-module

algebra. Let H∗ act on A#H by f · (a#h) =
∑
a#f(h2)h1 for any f ∈ H∗, h ∈ H, a ∈ A.

If A is semiprime, then A#H is H∗-semiprime, where H∗ is the dual space of H.

Proof. By duality theorem (A#H)#H∗ ∼= Mn(A), which implies that (A#H)#H∗ is

semiprime. It follows from Theorem 4.1 that A#H is H∗-semiprime.

Proposition 4.5. If the action of H on A is inner (defined in [2]) and r is a hereditary

common radical for algebras, then r(A) = rH(A). Furthermore,

rb(A) = rHb(A) = rbH(A) = rb(A#H) ∩A

and

rbm(A) = rHbm(A) = rbmH(A).

Proof. Since the action of H on A is inner, every ideal of A is an H-ideal, which implies

r(A) = rH(A). By the same reason, A is H-prime iff A is prime. A is H-simple iff A is

simple. Then the others hold.

Theorem 4.4. If H is a finite-dimensional semisimple Hopf algebra and A is a unital

H-module algebra, then

rb(A#H) = rHb(A)#H

in the following four cases:

(1) k is a perfect field and H is cocommutative.

(2) H is irreducible cocommutative.

(3) The action of H on A is inner.

(4) H = (kG)∗, where G is a finite group.

Proof. By [6, Theorem 5.3], (4) holds. Now we show that (1) and (2) and (3) hold.

Considering Theorem 4.1, we only need to show that

rb(A#H) ⊆ rHb(A)#H.

Since

(A#H)/(rHb(A)#H) ∼= (A/rHb(A))#H (as algebras)

by Proposition 4.2 and A/rHb(A)#H is semiprime by [3, Theorem 2], or [3, Corollary 1], or

[10, Theorem 7.4.7] and Proposition 4.5, we have rb(A#H) ⊆ rHb(A)#H.

Proposition 4.6. If r is a hereditary common radical for algebras and H = kG is a

group algebra, then rH(A) = r(A).



No.4 Zhang, S. C. THE RADICALS OF HOPF MODULE ALGEBRAS 501

Proof. For any g ∈ G, define a map αg from A to A by αg(a) = g · a for any a ∈ A.

We easily check that αg is an algebra epimorphism, then g · r(A) ⊆ r(A), which implies

rH(A) = r(A) by Proposition 4.1.

Theorem 4.5. If A is a unital H-module algebra, then rHj(A) = rj(A#H) ∩A.
Proof. It follows from [7, Lemma 1] that {(0 :M)A#H ∩ A |M is an irreducible A#H-

module } = {(0 :M)A |M is an irreducible A-H-module }. Thus rHj(A) = rj(A#H) ∩A.
Theorem 4.6. rj(A#H)∩A ⊆ rjH(A). Furthermore, if A is a unital H-module algebra,

then rHj(A) ⊆ rjH(A) and rHj(A)#H ⊆ rj(A#H).

Proof. For any a ∈ rj(A#H)∩A, there exists u =
∑
ai#hi ∈ A#H such that a+u+au =

0. Using (id⊗ ϵ), we get

a+
(∑

aiϵ(hi)
)
+ a

(∑
aiϵ(hi)

)
= 0.

Thus a is right quasi-regular in A. Considering rj(A#H) ∩ A is an H-ideal of A, we have

rj(A#H) ∩A ⊆ rjH(A). By Theorem 4.5, rHj(A) ⊆ rj(A#H). Thus

rHj(A)#H = (rHj(A)#1)(1#H) ⊆ rj(A#H).

Theorem 4.7. Let A be a unital H-module algebra. If H is a finite-dimensional semisim-

ple Hopf algebra and the action of H on A is inner, then rj(A#H) ⊆ rjH(A)#H.

Proof. By Proposition 4.5, rjH(A) = rj(A). Since

(A#H)/(rjH(A)#H) ∼= (A/rjH(A))#H

and A/rjH(A) is semiprimitive , we have (A#H)/(rjH(A)#H) is semiprimitive by [10,

Corollary 7.4.3] and rj(A#H) ⊆ rjH(A)#H.

Proposition 4.7. If A is a unital H-module algebra, then rHbm(A) = rbmH(A).

Proof. It is clear that {B | B ▹H A and A/B is H-simple with unit } = {IH | I ▹ A and

A/I is simple with unit }. Thus

rbmH(A) = (∩{I | I ▹ A and A/I is simple with unit })H by Proposition 4.1

= ∩{IH | I ▹ A and A/I is simple with unit }
= ∩{B | B ▹H A and A/B is H-simple with unit}
= rHbm(A) by Theorem 3.4 .

Proposition 4.8. rHb ≤ rHl, rHl ≤ rHj, rbH ≤ rlH ≤ rkH ≤ rjH ≤ rbmH , rjH ≤ rHbm.

Proof. It is easy to check that rbH ≤ rlH ≤ rkH ≤ rjH ≤ rbmH by Proposition 4.1

and ring theory. By Theorem 2.3, rHb ≤ rHl. Since every irreducible A-H-module is an

A-H-L-module, we have rHl ≤ rHj by Theorem 3.6. If A is an H-simple module algebra

with unit, then rjH(A) = 0. By Theorem 3.4, rjH ≤ rHbm.

Theorem 4.8. Let A be a unital H-module algebra. If rjH(A) is nilpotent, then

rjH(A) = rHj(A) = rHb(A) = rbH(A) = rj(A#H) ∩A = rb(A#H) ∩A.

Proof. Since rjH(A) is nilpotent, rjH(A) ⊆ rHb(A) by Theorem 2.3. It is easy to check

that

rHb(A) ⊆ rb(A#H) ∩A ⊆ rbH(A) ⊆ rjH(A) and rHb(A) ⊆ rHj(A) ⊆ rjH(A)

by Proposition 4.4, Proposition 4.8 and Theorem 4.6. Therefore

rjH(A) = rHj(A) = rHb(A) = rbH(A) = rj(A#H) ∩A = rb(A#H) ∩A.
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Theorem 4.9. Let A be a unital H-module algebra, H be a finite-dimensional semisimple

Hopf algebra and the action of H on A be inner. If rjH(A) is nilpotent (Example: A is left

Artinian or right Artinian or finite dimensional), then

rj(A#H) = rjH(A)#H = rb(A#H)

and

rjH(A) = rHj(A) = rj(A) = rb(A) = rbH(A) = rHb(A) = r̄Hj(A) = r̄Hb(A).

Proof. By Proposition 4.5, rj(A) = rjH(A) and rb(A) = rbH(A). Applying Theorem

4.8, we get

rjH(A) = rHj(A) = rj(A) = rb(A) = rHb(A) = rbH(A) = r̄Hb(A) = r̄Hj(A).

By Theorem 4.7 and Theorem 4.6, rj(A#H) = rHj(A)#H. We see that

rj(A#H) ⊇ rb(A#H)

= rHb(A)#H by Theorem 4.4

= rHj(A)#H by Theorem 4.8

= rj(A#H).

Thus rj(A#H) = rb(A#H).

Proposition 4.9. A is H-semiprime if and only if aA(H · a) = 0 always implies a = 0

for any a ∈ A, if and only if (H · a)Aa = 0 always implies a = 0 for any a ∈ A.

Proof. It is similar to the proof of Lemma 3.1.
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