THE RADICALS OF HOPF MODULE ALGEBRAS

ZHANG SHOUCHUAN*

Abstract

The characterization of H-prime radical is given in many ways. Meantime, the relations between the radical of smash product A # H and the H-radical of Hopf module algebra A are obtained.

Keywords Radical, Hopf module algebra, Smash product1991 MR Subject Classification 05A30Chinese Library Classification 0157.1

§0. Introduction

Let k be a commutative associative ring with unit, H be an algebra with unit and comultiplication $\triangle : H \to H \otimes H$, A be an algebra over k (A can be without unit). A is called an H-module algebra if the following conditions hold:

(i) A is a unital left H-module (i.e., $1_H \cdot a = a$ for any $a \in A$);

(ii) $h \cdot ab = \sum (h_1 \cdot a)(h_2 \cdot b)$ for any $a, b \in A, h \in H$, where $\Delta h = \sum h_1 \otimes h_2$.

An *H*-module algebra *A* is called a unital *H*-module algebra if *A* has an identity element 1_A such that $h \cdot 1_A = \epsilon(h)1_A$ for any $h \in H$.

For any ideal I of A, set $(I : H) := \{x \in A \mid h \cdot x \in I \text{ for all } h \in H\}$. I is called an H-ideal, if $h \cdot I \subseteq I$ for any $h \in H$. Let I_H denote the maximal H-ideal of A in I. A is called H-semiprime, if there are no non-zero nilpotent H-ideals in A. A is called H-prime if IJ = 0 implies I = 0 or J = 0 for any H-ideals I and J of A. An H-ideal I is called an H-(semi)prime ideal of A if A/I is H-(semi)prime. A left A-module M is called an A-H-module if M is also a left unital H-module with $h \cdot (am) = \sum (h_1 \cdot a)(h_2m)$ for all $h \in H, a \in A, m \in M$. An A-H-module M is called an irreducible A-H-module if there are no non-trivial A-H-submodules in M. An algebra homomorphism $\phi : A \to B$ is called an H-homomorphism if $\phi(h \cdot a) = h \cdot \phi(a)$ for any $h \in H, a \in A$. Let r_b and r_j denote the Baer radical and the Jacobson radical of algebras, respectively.

J. R. Fisher^[7] built up the general theory of *H*-radicals for *H*-module algebras, studied *H*-Jacobson radical $r_{H_j}(A) := \bigcap \{ (0:M)_A \mid M \text{ is an irreducible } A-H-module \}, and obtained$

$$r_j(A\#H) \cap A = r_{Hj}(A) \tag{0.1}$$

for any irreducible Hopf algebra H (see [7, Theorem 4]). J. R. Fisher^[7] asked when is

$$r_j(A\#H) = r_{Hj}(A)\#H (0.2)$$

Manuscript received May 5, 1995. Revised November 15, 1996.

^{*}Institute of Mathematics, Fudan University, Shanghai 200433, China.

and asked if

$$r_j(A\#H) \subseteq (r_j(A):H)\#H. \tag{0.3}$$

If $H = (kG)^*$, then relation (0.2) holds (see [6, Theorem 4.1]).

In this paper, we show that the *H*-Baer radical $r_{Hb}(A)$ of *A* consists of *H*-*m*-nilpotent elements in *A*, and give some sufficient conditions for (0.2) and (0.3), respectively. We also show that (0.1) holds for any Hopf algebra *H* and give the formulae similar to (0.1), (0.2) and (0.3) for *H*-prime radical.

We denote the *H*-ideal *I* of *A* by $I \triangleleft_H A$. The smash product is the same as in [7] and the other notations are the same as in [11] and [12].

$\S1$. The *H*-Special Radicals for *H*-Module Algebras

J. R. Fisherte^[7] built up the general theory of H-radicals for H-module algebras. We can easily give the definitions of the H-upper radical and the H-lower radical for H-module algebras as in [12]. In this section, we obtain some properties of H-special radicals for H-module algebras. We omit all of the proofs, because they are similar to those in [13].

Proposition 1.1. A is H-semiprime iff $(H \cdot a)A(H \cdot a) = 0$ always implies a = 0 for any $a \in A$.

A is H-prime iff $(H \cdot a)A(H \cdot b) = 0$ always implies a = 0 or b = 0 for any $a, b \in A$.

Proposition 1.2. If $I \triangleleft_H A$ and I is an H-semiprime module algebra, then

(i) $I \cap I^* = 0$,

(ii) $I_r = I_l = I^*$,

(iii) $I^* \triangleleft_H A$,

where $I_r = \{a \in A \mid I(H \cdot a) = 0\}, I_l = \{a \in A \mid (H \cdot a)I = 0\}, I^* = \{a \in A \mid (H \cdot a)I = 0 = I(H \cdot a)\}.$

Definition 1.1. \mathcal{K} is called an H-(weakly) special class if

(S1) \mathcal{K} consists of *H*-(semiprime) prime module algebras.

(S2) For any $A \in \mathcal{K}$, if $0 \neq I \triangleleft_H A$ then $I \in \mathcal{K}$.

(S3) A is an H-module algebra. If $B \triangleleft_H A$ and $B \in \mathcal{K}$, then $A/B^* \in \mathcal{K}$, where $B^* = \{a \in A \mid (H \cdot a)B = 0 = B(H \cdot a)\}$.

It is clear that (S3) may be replaced by one of the following conditions:

(S3') If B is an essential H-ideal of A (i.e., $B \cap I \neq 0$ for any non-zero H-ideal I of A) and $B \in \mathcal{K}$, then $A \in \mathcal{K}$.

(S3") If there exists an *H*-ideal *B* of *A* with $B^* = 0$ and $B \in \mathcal{K}$, then $A \in \mathcal{K}$.

It is easy to check that if \mathcal{K} is an *H*-special class, then \mathcal{K} is an *H*-weakly special class.

Theorem 1.1. If \mathcal{K} is an *H*-weakly special class, then $r^{\mathcal{K}}(A) = \cap \{I \triangleleft_H A \mid A/I \in \mathcal{K}\},$ where $r^{\mathcal{K}}$ denotes the *H*-upper radical determined by \mathcal{K} .

Definition 1.2. If r is a hereditary H-radical (i.e., if A is an r-H-module algebra and B is an H-ideal of A, then so is B) and any nilpotent H-module algebra is an r-H-module algebra, then r is called a supernilpotent H-radical.

Proposition 1.3. If r is a supernilpotent H-radical, then r is H-strongly hereditary, i.e., $r(I) = r(A) \cap I$ for any $I \triangleleft_H A$.

Theorem 1.2. If \mathcal{K} is an *H*-weakly special class, then $r^{\mathcal{K}}$ is a supernilpotent *H*-radical.

Definition 1.3. For $a \in A$, $\{a_n\}$ is called an H-m-sequence in H-module algebra A with beginning a if there exist $h_n, h'_n \in H$ such that $a_1 = a$ and $a_{n+1} = (h_n.a_n)b_n(h'_n.a_n)$ for any natural number n.

Proposition 1.4. A is H-semiprime iff for any $0 \neq a \in A$, there exists an H-m-sequence $\{a_n\}$ in A with $a_1 = a$ such that $a_n \neq 0$ for all n.

§2. *H*-Baer Radical

In this section, we give the characterization of H-Baer radical (H-prime radical) in many ways. We omit all of the proofs because they are similar to the proofs in [13].

Theorem 2.1. If $\mathcal{K} = \{A \mid A \text{ is an } H\text{-prime module algebra}\}$, then \mathcal{K} is an $H\text{-special class and } r^{\mathcal{K}}(A) = \cap\{I \mid I \text{ is an } H\text{-prime ideal of } A\}$, which is called $H\text{-prime radical or } H\text{-Baer radical, written as } r_{Hb}$.

Theorem 2.2. A is an r_{Hb} -H-module algebra iff every non-zero H-homomorphic image of A contains a non-zero nilpotent H-ideal.

Theorem 2.3. Let $\mathcal{E} = \{A \mid A \text{ is a nilpotent } H\text{-module algebra }\}, \text{ then } r_{\mathcal{E}} = r_{Hb}, \text{ where } r_{\mathcal{E}} \text{ denotes the } H\text{-lower radical determined by } \mathcal{E}.$

Proposition 2.1. A is H-semiprime if and only if $r_{Hb}(A) = 0$.

Definition 2.1. We define an H-ideal N_{α} in H-module algebra A for every ordinal number α as follows:

(i) $N_0 = 0$. Let us assume that N_{α} is already defined for $\alpha \prec \beta$.

(ii) If $\beta = \alpha + 1$, N_{β}/N_{α} is the sum of all nilpotent H-ideals of A/N_{α}

(iii) If β is a limit ordinal number, $N_{\beta} = \sum_{\alpha \prec \beta} N_{\alpha}$.

By set theory, there exists an ordinal number τ such that $N_{\tau} = N_{\tau+1}$.

Theorem 2.4. $N_{\tau} = r_{Hb}(A) = \cap \{I \mid I \text{ is an } H \text{-semiprime ideal of } A \}.$

Definition 2.2. Let $a \in A$. If for every H-m-sequence $\{a_n\}$ with $a_1 = a$, there exists a natural number k such that $a_k = 0$, then a is called an H-m-nilpotent element, written as $W_H(A) = \{a \in A \mid a \text{ is an } H\text{-m-nilpotent element }\}.$

Theorem 2.5. $r_{Hb}(A) = W_H(A)$.

Definition 2.3. Let $\Phi \neq L \subseteq H$. An H-m-sequence $\{a_n\}$ in A is called an L-m-sequence with beginning a if $a_1 = a$ and $a_{n+1} = (h_n.a_n)b_n(h'_n.a_n)$ such that $h_n, h'_n \in L$ for all n. If for every L-m-sequence $\{a_n\}$ with $a_1 = a$, there exists a natural number k such that $a_k = 0$, then a is called an L-m-nilpotent element, written as $W_L(A) = \{a \in A \mid a \text{ is an } L$ -m-nilpotent element $\}$.

Proposition 2.2. If $L \subseteq H$ and H = kL, then

(i) A is H-semiprime iff (L.a)A(L.a) = 0 always implies a = 0 for any $a \in A$.

(ii) A is H-prime iff (L.a)A(L.b) = 0 always implies a = 0 or b = 0 for any $a, b \in A$.

(iii) A is H-semiprime if and only if for any $0 \neq a \in A$, there exists an L-m-sequence $\{a_n\}$ with $a_1 = a$ such that $a_n \neq 0$ for all n.

(iv) $W_H(A) = W_L(A)$.

§3. The *H*-Module Theoretical Characterization of *H*-Special Radicals

In this section, let k be a commutative ring with unit, H be a Hopf algebra over k and

A be an *H*-module algebra over k (*A* can be without unit). We shall characterize *H*-Baer radical r_{Hb} , *H*-locally nil radical r_{Hl} , *H*-Jacobson radical r_{Hj} and *H*-Brown-McCoy radical r_{Hbm} by *A*-*H*-modules. We omit most of the proofs because they are similar to the proofs in [5].

Lemma 3.1. If M is an A-H-module, then M is an A#H-module. In this case, (0 : M)_{A#H} \cap $A = (0 : M)_A$ and $(0 : M)_A$ is an H-ideal of A.

Proof. Let γ be a map from H to A#H by $\gamma(h) = 1\#h$ for any $h \in H$. It is clear that γ is invertible with convolution inverse $\gamma^{-1} : h \mapsto 1\#S(h)$ and $h \cdot a = \sum \gamma(h_1)a\gamma^{-1}(h_2)$ for any $h \in H, a \in A$, where S is the antipode of H. Obviously, $(0:M)_A = (0:M)_{A\#H} \cap A$. For any $h \in H, a \in (0:M)_A$, we see that $(h \cdot a)M = \sum \gamma(h_1)a\gamma^{-1}(h_2)M \subseteq \sum \gamma(h_1)aM = 0$. Thus $h \cdot a \in (0:M)_A$, which implies that $(0:M)_A$ is an H-ideal of A.

Definition 3.1. An A-H-module M is called an A-H-prime module if for M the following conditions are fulfilled:

(i) $AM \neq 0$,

(ii) If x is an element of M and I is an H-ideal of A, then I(Hx) = 0 always implies x = 0 or $I \subseteq (0:M)_A$.

Definition 3.2. We associate to every *H*-module algebra *A* a class \mathcal{M}_A of *A*-*H*-modules. Then the class $\mathcal{M} = \bigcup \mathcal{M}_A$ is called an *H*-special class of modules if the following conditions are fulfilled:

(M1) If $M \in \mathcal{M}_A$, then M is an A-H-prime module.

(M2) If I is an H-ideal of A and $M \in \mathcal{M}_I$, then $IM \in \mathcal{M}_A$.

(M3) If $M \in \mathcal{M}_A$ and I is an H-ideal of A with $IM \neq 0$, then $M \in \mathcal{M}_I$.

(M4) Let I be an H-ideal of A and $\overline{A} = A/I$. If $M \in \mathcal{M}_A$ and $I \subseteq (0 : M)_A$, then $M \in \mathcal{M}_{\overline{A}}$. Conversely, if $M \in \mathcal{M}_{\overline{A}}$, then $M \in \mathcal{M}_A$.

Let $\mathcal{M}(A)$ denote $\cap \{(0:M)_A \mid M \in \mathcal{M}_A\}.$

Theorem 3.1. (i) If \mathcal{M} is an H-special class of modules and $\mathcal{K} = \{ A \mid \text{there exists a faithful } A$ -H-module $M \in \mathcal{M}_A \}$, then \mathcal{K} is an H-special class and $r^{\mathcal{K}}(A) = \mathcal{M}(A)$.

(ii) If \mathcal{K} is an H-special class and $\mathcal{M}_A = \{ M \mid M \text{ is an } A\text{-}H\text{-}prime \text{ module and } A/(0 : M)_A \in \mathcal{K} \}$, then $\mathcal{M} = \bigcup \mathcal{M}_A$ is an H-special class of modules and $r^{\mathcal{K}}(A) = \mathcal{M}(A)$.

Theorem 3.2. Let $\mathcal{M}_A = \{ M \mid M \text{ is an } A\text{-}H\text{-}prime \text{ module} \}$ for any H-module algebra A and $\mathcal{M} = \bigcup \mathcal{M}_A$. Then \mathcal{M} is an $H\text{-}special \ class \ of \ modules \ and \ \mathcal{M}(A) = r_{Hb}(A)$.

Theorem 3.3. Let $\mathcal{M}_A = \{ M \mid M \text{ is an irreducible } A-H-module \}$ for any H-module algebra A and $\mathcal{M} = \bigcup \mathcal{M}_A$. Then \mathcal{M} is an H-special class of modules and $\mathcal{M}(A) = r_{Hj}(A)$, where r_{Hj} denotes the H-Jacobson radical defined by J. R. Fisher^[7].

Let $r_b, r_k, r_l, r_j, r_{bm}$ denote the common prime radical, nil radical, locally nilpotent radical, the Jacobson radical, the Brown-McCoy radical for algebras, respectively. J. R. Fisher (see [7, Proposition 2]) constructed an *H*-radical r_H by a common hereditary radical r for algebras. Thus we can get *H*-radicals $r_{bH}, r_{kH}, r_{lH}, r_{jH}, r_{bmH}$. Let $r_{Hl} = r_{lH}$ and $r_{Hk} = r_{kH}$ for convenience.

Definition 3.3. An A-H-module M is called an A-H-BM-module, if for M the following conditions are fulfilled:

(i) $AM \neq 0$.

Theorem 3.4. Let $\mathcal{M}_A = \{ M \mid M \text{ is an } A\text{-}H\text{-}BM\text{-}module \}$ for every H-module algebraA and $\mathcal{M} = \bigcup \mathcal{M}_A$. Then \mathcal{M} is an H-special class of modules and $r_{Hbm}(A) = \mathcal{M}(A)$, where r_{Hbm} denotes the H-upper radical determined by $\{A \mid A \text{ is an } H\text{-simple module algebra } (i.e., A \text{ has no non-trivial } H\text{-}ideal \text{ and } A^2 \neq 0)$ with unit $\}$.

Theorem 3.5. *H* is a finite-dimensional semisimple Hopf algebra with $t \in \int_{H}^{l}$ and $\epsilon(t) = 1$. Let $G_t(a) = \{z \mid z = x + (t.a)x + \sum(x_i(t.a)y_i + x_iy_i) \text{ for all } x_i, y_i, x \in A\}$. A is called an r_{gt} -H-module algebra, if $a \in G_t(a)$ for all $a \in A$. Then r_{gr} is an H-radical property of module algebras and $r_{gt}(A) = r_{Hbm}(A)$ for any unital H-module algebra A.

Proof. It is similar to the proof of [9, Theorem 9.3.1] and [9, Theorem 9.5.5].

Definition 3.4. Let I be an H-ideal of H-module algebra A, N be an A-H-submodule of A-H-module M. N and I are said to have "L-condition", if for any finite subset $F \subseteq I$, there exists a positive integer k such that $F^k N = 0$.

Definition 3.5. An A-H-module M is called an A-H-L-module, if for M the following conditions are fulfilled:

(i) $AM \neq 0$.

(ii) For every non-zero A-H-submodule N of M and every H-ideal I of A, if N and I have "L-condition", then $I \subseteq (0:M)_A$.

Theorem 3.6. Let $\mathcal{M}_A = \{ M \mid M \text{ is an } A\text{-}H\text{-}L\text{-}module \} \text{ for any } H\text{-}module \text{ algebra } A$ and $\mathcal{M} = \bigcup \mathcal{M}_A$. Then \mathcal{M} is an H-special class of modules and $\mathcal{M}(A) = r_{Hl}(A)$.

§4. The Relations Between the Radical of A#H and the H-Radical of A

In this section, k is a field, H is a Hopf algebra over k, A is an H-module algebra (A can be without unit).

Proposition 4.1. If r is a hereditary common radical for algebras, then

$$r_H(A) = (r(A))_H = (r(A) : H)$$

Furthermore, $r_H(A) \subseteq r(A)$.

Proposition 4.2. If B is an H-ideal of A, then $(A#H)/(B#H) \cong (A/B)#H$ (as algebras).

Proposition 4.3. Let $\overline{\mathcal{M}} = \bigcup \overline{\mathcal{M}}_A$ be a common special class of modules and satisfy the condition: $M \in \overline{\mathcal{M}}_A$ and $A \cong B$ (as algebras) imply $M \in \overline{\mathcal{M}}_B$ (defined by $\psi(a)x = ax$). If let $\mathcal{M}_A = \{M \mid M \in \overline{\mathcal{M}}_{A\#H}\}$ for every H-module algebra A and $\mathcal{M} = \bigcup \mathcal{M}_A$, then \mathcal{M} is an H- special class of modules.

Proof. It is easy to check that \mathcal{M} satisfies (M1), (M2) and (M3) in Definition 3.3. Using the assumption, we see that \mathcal{M} satisfies (M4).

Let

 $\bar{r}_{Hj}(A) = \cap \{(0:M)_A \mid M \text{ is an irreducible } A \# H \text{- module} \} = r_j(A \# H) \cap A;$ $\bar{r}_{Hb}(A) = \cap \{(0:M)_A \mid M \text{ is an } A \# H \text{-prime module}\} = r_b(A \# H) \cap A;$ $\bar{r}_{Hl}(A) = \cap \{(0:M)_A \mid M \text{ is an } A \# H \text{-} L \text{- module}\} = r_l(A \# H) \cap A;$ $\bar{r}_{Hbm}(A) = \cap \{(0:M)_A \mid M \text{ is an } A \# H \text{-} B M \text{-module}\} = r_{bm}(A \# H) \cap A.$

Then \bar{r}_{Hj} , \bar{r}_{Hb} , \bar{r}_{Hl} and \bar{r}_{Hbm} are *H*-radicals and *H*-special radicals by Proposition 4.3.

Proposition 4.4. $r_{Hb}(A) \subseteq r_b(A \# H) \cap A \subseteq r_{bH}(A)$.

Proof. If A is a nilpotent *H*-module algebra, then $r_b(A#H) = A#H$, which implies $\bar{r}_{Hb}(A) = A$. Since \bar{r}_{Hb} is an *H*-radical property for *H*-module algebras, we have $\bar{r}_{Hb} \ge r_{Hb}$ by Theorem 2.3, i.e., $r_{Hb}(A) \subseteq r_b(A#H) \cap A$. $r_b(A#H) \cap A \subseteq r_{bH}(A)$ can be showed by *m*-nilpotent element.

Theorem 4.1. $r_{Hb}(A) \# H \subseteq r_b(A \# H)$.

Proof. $r_{Hb}(A) \# H \subseteq r_b(A \# H)$ since $r_{Hb}(A) \subseteq r_b(A \# H)$ by Proposition 4.4. **Theorem 4.2.** If $r_{bH}(A)$ is nilpotent, then

$$r_{Hb}(A) = r_{bH}(A) = r_b(A \# H) \cap A = \bar{r}_{Hb}(A).$$

Proof. By Theorem 2.3 and Proposition 4.4, $r_{Hb}(A) = r_{bH}(A) = \bar{r}_{Hb}(A)$.

Theorem 4.3. Let H be a finite-dimensional Hopf algebra and A be a unital H-module algebra. Let H^* act on A # H by $f \cdot (a \# h) = \sum a \# f(h_2) h_1$ for any $f \in H^*, h \in H, a \in A$. If A is semiprime, then A # H is H^* -semiprime, where H^* is the dual space of H.

Proof. By duality theorem $(A#H)#H^* \cong M_n(A)$, which implies that $(A#H)#H^*$ is semiprime. It follows from Theorem 4.1 that A#H is H^* -semiprime.

Proposition 4.5. If the action of H on A is inner (defined in [2]) and r is a hereditary common radical for algebras, then $r(A) = r_H(A)$. Furthermore,

$$r_b(A) = r_{Hb}(A) = r_{bH}(A) = r_b(A \# H) \cap A$$

and

$$r_{bm}(A) = r_{Hbm}(A) = r_{bmH}(A)$$

Proof. Since the action of H on A is inner, every ideal of A is an H-ideal, which implies $r(A) = r_H(A)$. By the same reason, A is H-prime iff A is prime. A is H-simple iff A is simple. Then the others hold.

Theorem 4.4. If H is a finite-dimensional semisimple Hopf algebra and A is a unital H-module algebra, then

$$r_b(A\#H) = r_{Hb}(A)\#H$$

in the following four cases:

- (1) k is a perfect field and H is cocommutative.
- (2) H is irreducible cocommutative.

(3) The action of H on A is inner.

(4) $H = (kG)^*$, where G is a finite group.

Proof. By [6, Theorem 5.3], (4) holds. Now we show that (1) and (2) and (3) hold. Considering Theorem 4.1, we only need to show that

$$r_b(A \# H) \subseteq r_{Hb}(A) \# H.$$

Since

$$(A#H)/(r_{Hb}(A)#H) \cong (A/r_{Hb}(A))#H$$
 (as algebras)

by Proposition 4.2 and $A/r_{Hb}(A)\#H$ is semiprime by [3, Theorem 2], or [3, Corollary 1], or [10, Theorem 7.4.7] and Proposition 4.5, we have $r_b(A\#H) \subseteq r_{Hb}(A)\#H$.

Proposition 4.6. If r is a hereditary common radical for algebras and H = kG is a group algebra, then $r_H(A) = r(A)$.

Proof. For any $g \in G$, define a map α_g from A to A by $\alpha_g(a) = g \cdot a$ for any $a \in A$. We easily check that α_g is an algebra epimorphism, then $g \cdot r(A) \subseteq r(A)$, which implies $r_H(A) = r(A)$ by Proposition 4.1.

Theorem 4.5. If A is a unital H-module algebra, then $r_{H_j}(A) = r_j(A \# H) \cap A$.

Proof. It follows from [7, Lemma 1] that $\{(0:M)_{A\#H} \cap A \mid M \text{ is an irreducible } A\#H$ module $\} = \{(0:M)_A \mid M \text{ is an irreducible } A-H-$ module $\}$. Thus $r_{H_j}(A) = r_j(A\#H) \cap A$.

Theorem 4.6. $r_j(A \# H) \cap A \subseteq r_{jH}(A)$. Furthermore, if A is a unital H-module algebra, then $r_{Hj}(A) \subseteq r_{jH}(A)$ and $r_{Hj}(A) \# H \subseteq r_j(A \# H)$.

Proof. For any $a \in r_j(A \# H) \cap A$, there exists $u = \sum a_i \# h_i \in A \# H$ such that a + u + au = 0. Using $(id \otimes \epsilon)$, we get

$$a + \left(\sum a_i \epsilon(h_i)\right) + a\left(\sum a_i \epsilon(h_i)\right) = 0$$

Thus a is right quasi-regular in A. Considering $r_j(A\#H) \cap A$ is an H-ideal of A, we have $r_j(A\#H) \cap A \subseteq r_{jH}(A)$. By Theorem 4.5, $r_{Hj}(A) \subseteq r_j(A\#H)$. Thus

$$r_{Hj}(A) \# H = (r_{Hj}(A) \# 1)(1 \# H) \subseteq r_j(A \# H).$$

Theorem 4.7. Let A be a unital H-module algebra. If H is a finite-dimensional semisimple Hopf algebra and the action of H on A is inner, then $r_j(A#H) \subseteq r_{jH}(A)#H$.

Proof. By Proposition 4.5, $r_{jH}(A) = r_j(A)$. Since

$$(A \# H) / (r_{jH}(A) \# H) \cong (A / r_{jH}(A)) \# H$$

and $A/r_{jH}(A)$ is semiprimitive, we have $(A#H)/(r_{jH}(A)#H)$ is semiprimitive by [10, Corollary 7.4.3] and $r_j(A#H) \subseteq r_{jH}(A)#H$.

Proposition 4.7. If A is a unital H-module algebra, then $r_{Hbm}(A) = r_{bmH}(A)$.

Proof. It is clear that $\{B \mid B \triangleleft_H A \text{ and } A/B \text{ is } H \text{-simple with unit }\} = \{I_H \mid I \triangleleft A \text{ and } A/I \text{ is simple with unit }\}$. Thus

 $\begin{aligned} r_{bmH}(A) &= (\cap \{I \mid I \triangleleft A \text{ and } A/I \text{ is simple with unit }\})_H \quad \text{by Proposition 4.1} \\ &= \cap \{I_H \mid I \triangleleft A \text{ and } A/I \text{ is simple with unit }\} \\ &= \cap \{B \mid B \triangleleft_H A \text{ and } A/B \text{ is } H\text{-simple with unit}\} \\ &= r_{Hbm}(A) \quad \text{by Theorem 3.4} . \end{aligned}$

Proposition 4.8. $r_{Hb} \leq r_{Hl}, r_{Hl} \leq r_{Hj}, r_{bH} \leq r_{lH} \leq r_{kH} \leq r_{jH} \leq r_{bmH}, r_{jH} \leq r_{Hbm}.$

Proof. It is easy to check that $r_{bH} \leq r_{lH} \leq r_{kH} \leq r_{jH} \leq r_{bmH}$ by Proposition 4.1 and ring theory. By Theorem 2.3, $r_{Hb} \leq r_{Hl}$. Since every irreducible A-H-module is an A-H-L-module, we have $r_{Hl} \leq r_{Hj}$ by Theorem 3.6. If A is an H-simple module algebra with unit, then $r_{jH}(A) = 0$. By Theorem 3.4, $r_{jH} \leq r_{Hbm}$.

Theorem 4.8. Let A be a unital H-module algebra. If $r_{jH}(A)$ is nilpotent, then

$$r_{iH}(A) = r_{Hi}(A) = r_{Hb}(A) = r_{bH}(A) = r_i(A \# H) \cap A = r_b(A \# H) \cap A.$$

Proof. Since $r_{jH}(A)$ is nilpotent, $r_{jH}(A) \subseteq r_{Hb}(A)$ by Theorem 2.3. It is easy to check that

$$r_{Hb}(A) \subseteq r_b(A \# H) \cap A \subseteq r_{bH}(A) \subseteq r_{jH}(A)$$
 and $r_{Hb}(A) \subseteq r_{Hj}(A) \subseteq r_{jH}(A)$

by Proposition 4.4, Proposition 4.8 and Theorem 4.6. Therefore

 $r_{jH}(A) = r_{Hj}(A) = r_{Hb}(A) = r_{bH}(A) = r_j(A\#H) \cap A = r_b(A\#H) \cap A.$

Theorem 4.9. Let A be a unital H-module algebra, H be a finite-dimensional semisimple Hopf algebra and the action of H on A be inner. If $r_{jH}(A)$ is nilpotent (Example: A is left Artinian or right Artinian or finite dimensional), then

$$r_j(A \# H) = r_{jH}(A) \# H = r_b(A \# H)$$

and

$$r_{jH}(A) = r_{Hj}(A) = r_j(A) = r_b(A) = r_{bH}(A) = r_{Hb}(A) = \bar{r}_{Hj}(A) = \bar{r}_{Hb}(A)$$

Proof. By Proposition 4.5, $r_j(A) = r_{jH}(A)$ and $r_b(A) = r_{bH}(A)$. Applying Theorem 4.8, we get

$$r_{jH}(A) = r_{Hj}(A) = r_j(A) = r_b(A) = r_{Hb}(A) = r_{bH}(A) = \bar{r}_{Hb}(A) = \bar{r}_{Hj}(A)$$

By Theorem 4.7 and Theorem 4.6, $r_j(A \# H) = r_{Hj}(A) \# H$. We see that

 $\begin{aligned} r_j(A \# H) &\supseteq r_b(A \# H) \\ &= r_{Hb}(A) \# H \quad \text{by Theorem 4.4} \\ &= r_{Hj}(A) \# H \quad \text{by Theorem 4.8} \\ &= r_j(A \# H). \end{aligned}$

Thus $r_j(A \# H) = r_b(A \# H).$

Proposition 4.9. A is H-semiprime if and only if $aA(H \cdot a) = 0$ always implies a = 0 for any $a \in A$, if and only if $(H \cdot a)Aa = 0$ always implies a = 0 for any $a \in A$.

Proof. It is similar to the proof of Lemma 3.1.

Acknowledgement. I would like to show my gratitude to my advisor Professor Xu Yonghua for his guidance.

References

- Blattner, R. J. & Montgomery, S., Ideals and quotients in crossed products of Hopf algebras, J. algebra, 152 (1992),374–396.
- [2] Blattner, R. J., Cohen, M. & Montgomery, S., Crossed products and inner actions of Hopf algebras, Transactions of the AMS., 298:2(1986), 671–711.
- [3] Chin William, Crossed products of semisimple cocommutive of Hopf algebras, Proceeding of AMS, 116:2(1992), 321–327.
- [4] Chin William, Crossed products and generalized inner actions of Hopf algebras, Pacific Journal of Math., 150:2(1991), 241–259.
- [5] Chin Weixin & Zhang Shouchuan, The module theoretic characterization of special and supernilpotent radicals for Γ-rings, Math.Japonic, 38:3(1993), 541–547.
- [6] Cohen, M. & Montgomery, S., Group-graded rings, smash products, and group actions, Transactions of AMS, 282:1(1984), 237–258.
- [7] Fisher, J. R., A Jacobson radical for Hopf module algebras, J. Algebra, 35 (1975), 217–231.
- [8] Liu Shaoxue, Baer radical and Levitzki radical for additive category, J. Bejing Normal University, 4(1987), 13–27 (in Chinese).
- [9] Liu Shaoxue, Rings and algebras, Science Press, 1983 (in Chinese).
- [10] Montgomery, S., Hopf algebras and their actions on rings, CBMS Number 82, Published by AMS, 1993.[11] Sweedler, M., Hopf algebras, Benjamin, New York, 1969.
- [12] Szasz, F. A., Radicals of rings, John Wiley and Sons, New York, 1982.
- [13] Zhang Shouchuan & Chen Weixin, The general theory of radicals and Baer radical for Γ-rings, J. Zhejiang University, 25 (1991), 719–724 (in Chinese).