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ON INTERIOR POINTS OF THE JULIA SET J(R)

FOR RANDOM DYNAMICAL SYSTEM R**
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Abstract

The authors consider the random iteration of serval functions. Denote by J(R) the Julia
set for the random iteration dynamical system formed by a set of complex functions R =

{R1, R2, · · · , RM}. Some sufficient conditions are given for J(R) to have no interior points.
Also some conditions are given for J(R) to have interior points but fail to be the extended
plane. In addition, J(azn, bzn) (n ≥ 2, ab ̸= 0) and J(z2 + c1, z2 + c2) are investigated and
some interesting results are obtained.
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§1. Introduction

Earlier in 1900s Fatou and Julia independently develeped iteration theory of a complex

function, and great achievements have been made in recent years. Let R be a meromorphic

function, denote by Rn the nth iteration of R. Under the iteration of a meromorphic function

R, the Riemann sphere decomposes into two completely invarient sets; one of them is Fatou

Set, on which the family {Rn} is normal, and the other is Julia set, the complement of the

Fatou set. Fatou set and Julia set are basic objects studied in the iteration of a function

as a dynamical system, which may be called classical dynamical system, in contrast with

random dynamical system. In this paper, we concern ourselves with the random dynamical

system concerning the random iterations of several functions.

For introduction and surveys of iteration theory of a single function as a dynamical

system, we refer to [1, 2, 3]. As an extention of the classical dynamical system, one

may consider the iteration of a finite number of functions. To be more precise, let R =

{R1, R2, . . . , RM} be a set of meromorphic functions, and ΣR = {(j1, j2, · · · , jn, · · · ) : ji ∈
{1, 2, · · · ,M}, for all i ∈ N}. For each σ = (j1, j2, · · · , jn, · · · ) ∈ ΣR, define Wn

σ as the

composition of Rj1 , Rj2 , . . . , Rjn , that is,

W 1
σ (z) = Rj1(z), Wn+1

σ (z) = Rjn ◦Wn
σ (z).

A point z is said to be a stable point if there exists a neighborhood U of z such that {Wn
σ }

is normal on U for each σ ∈ ΣR. The set of stable points is called Fatou set of the system
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R, denoted by F (R) or to be more precise by F (R1, · · · , RM ), and its complement, J(R) or

J(R1, · · · , RM ), is called the Julia set of the system R.

As in the classical case, the Fatou set F (R) of a system R = {R1, R2, · · · , RM} is open and

the Julia set J(R) is closed. For more information about the random dynamical system, we

refer to [4], where we can see that the random dynamical system and the classical dynamical

system behave differently in many ways, although in some aspects the two dynamical systems

have similar properties. For example, it is well known that the classical Julia set of a

meromorphic function has no interior points except for the case when the Julia set is the

extended plane. But this is not the case for the random dynamical system, that is to say, it

is possibile for J(R) to have interior points but fail to be the extended plane if R is a system

formed by a number of functions. A simple example for this case is

Ĉ ̸= J(z2, (z − 1)
2
+ 1) ⊃ {|z| ≤ 1} ∪ {|z − 1| ≤ 1},

which will be proved in §7. On the other hand, the dynamicial properties of the random

iterations of a number of functions is much more complicated than that of the classical

case. At last, we should poind out that, as shown in [4], Fatou set and Juila set for random

dynamical system are not completely invariant, although the former is forward invariant

and the latter backforward invariant.

In this paper, however, we will mainly devote ourselves to the investigations of the Julia

set J(f1, f2, · · · , fn), where f1, f2, . . . , fn are meromorphic functions. In §3, we give some

sufficient conditions for J(f1, f2) (J(f1, f2, · · · , fn)) to have interior points but fail to be the

whole plane. Also, in §4 some sufficient conditions for J(f1, f2) (J(f1, f2, · · · , fn)) to have

no interior points are given. On the other hand it is proved that if |c1 − c2| ≥ 4
√
|c2|(|c2| ≥

|c1|), then J(z2 + c1, z
2 + c2) has no interior points. Furthermore, the detailed studies of

J(azn, bzn) (n ≥ 2, ab ̸= 0) are available in this paper (see §6).
Throughout this paper, we shall assume that the functions to be discussed are neither

constants nor rational functions of degree one. And as usual, the rational functions and

entire functions are considered special cases of the meromorphic functions.

§2. Some Lemmas

In order to prove our theorems, the following Lemmas are necessary.

Lemma 2.1.[4] Let R = {R1, R2, . . . , RM} be a set of rational functions, E(R) be the

exceptional set of R. If z /∈ E(R), then J(R) is contained in the set of accumulation points

of the full backward orbit of z for every σ ∈ ΣR. That is

J(R) ⊂
{
accumulation points of

[ ∪
σ∈ΣR

∪
n≥0

W−n
σ (z)

]}
.

Lemma 2.2.[4] Let J(Ri) be the classical Julia set of rational functions Ri for i =

1, 2, · · · ,M . Then

J(R) = closure of
{ ∪

σ∈ΣR

∪
n≥0

W−n
σ

( M∪
i=1

J(Ri)
)}

.

Lemma 2.3. If there exists a domain Ω such that Ω ∩ F ̸= ∅, and R−1
i (Ω ∩ F ) ⊂ Ω ∩ F

for i = 1, 2, . . . ,M , where F = F (R), then the Julia set J(R) of R = {R1, R2, · · · , RM} has
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no interior points.

Proof. Let z be a point in J(R). Take a point z0 in Ω ∩ F such that z0 /∈ E(R), where

E(R) denotes the exceptional set of R. Let U be any neighborhood of z. Then there must

exist σ ∈ ΣR and n ∈ N such that

U
∩

{
∪
n≥0

W−n
σ (z0)} ̸= ∅

by Lemma 2.1. From the assumption, it is easy to show W−n
σ (z0) ⊂ F by induction and so

U contains stable points. This means that z is not an interior point of J(R). The proof is

complete.

Lemma 2.4. Let f = anz
n + an−1z

n−1 + · · · + a1z + a0 (an ̸= 0) and denote by D(f)

the diameter of J(f). Then there exists a constant C(n) depending only on n such that for

any fixed point Q of f we have |f(z)−Q| ≥ 4|z −Q|, provided |z −Q| ≥ C(n)D(f). In fact

we may take C(n) = n−1
ln(4/3) .

Proof. For any fixed point Q of f , let h(z) = z −Q. Then the origin is a fixed point of

h◦ f ◦h−1. And so we may assume Q = 0 without loss of generality. Under the assumption,

we have a0 = 0 and hence

f(z) = z(anz
n−1 + an−1z

n−2 + · · ·+ a1).

Consider equation

anz
n−1 + an−1z

n−2 + · · ·+ a1 = 0.

Denoting by x1, x2, . . . , xn−1 the roots of the equation, we have
ai
an

= (−1)
n−i

∑
j1 ̸=j2···̸=jn−i ̸=j1

xj1xj2 · · ·xjn−i , i = 1, 2, . . . , n− 1.

Let D = D(f). Then ∣∣∣ ai
an

∣∣∣ ≤ (
n− i

n− 1

)
Dn−i, i = 1, 2, · · · , n− 1.

From this we get

|f(z)| = |anzn|
∣∣∣1 + an−1

anz
+ · · ·+ a1

anzn−1

∣∣∣
≥ |anzn|

[
2−

(
1 +

D

|z|

)n−1]
= |z|m

(D

|z|

)
,

where

m(x) =
|an|Dn−1[2− (1 + x)

n−1
]

xn−1
.

We want to show that if x > 0 is small enough then we have m(x) ≥ 4. For this purpose,

let x = y
n−1 , then (1 + x)

n−1
< ey. If

x =
D

|z|
=

y

n− 1
≤ ln(4/3)

n− 1
,

then we can get

y ≤ n−1

√
1

6
· n−1

√
|an| · (n− 1) ·D, (2.1)

using the next lemma. It is not hard to show that (2.1) implies m(x) ≥ 4. Take C(n) =
n−1

ln(4/3) . Then obviously |z| ≥ C(n)D(f) implies |f(z)| ≥ 4|z|, as required.
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Lemma 2.5. Let f = anz
n + · · ·+ a1z + a0 (an ̸= 0). Then the diameter D(f) of J(f)

is lager than 2 · n−1
√

|an|
Proof. Take a = n−1

√
an, let γ(z) = az. Then γ ◦ f ◦ γ−1 is a monic polynomial,

and clearly J(f) = γ−1(γ ◦ f ◦ γ−1). Our lemma follows from the assertion that a monic

polynomial has the Julia set of diameter greater than or equal to 2, which was conjectured

by Y. E. Arumaraj and proved by Yin Yongcheng in [5].

Lemma 2.6. Let

f =
zn+2 + an+1z

n+1 + · · ·+ a1z + a0
bkzk + · · ·+ b1z + b0

=
Q(z)

P (z)
,

where bk ̸= 0, 0 ≤ k ≤ n. Suppose that P (z) and Q(z) do not have common factors. Denote

by D(f) the diameter of J(f). Then there exists a constant C(n) depending only on n such

that for any fixed point Q̃ of f we have |f(z)− Q̃| ≥ 4|z− Q̃|, provided |z− Q̃| ≥ C(n)D(f).

In fact one may take

C(n) =
n+ 1

ln
(
1 + 1

16n+28

) .
Proof. We can suppose that P (z) is not a constant, for this case is contained in Lemma

2.4. Also, as before we may assume Q̃ = 0 without loss of generality. Because otherwise

we may consider h ◦ f ◦ h−1 instead of f , where h(z) = z − Q̃. Denote by K(f) the filled

Julia set of f , that is the set consisting of all points with bounded forward orbit under f .

By hypothesis above, we have

f(z) =
z(zn+1 + an+1z

n + · · ·+ a1)

bkzk + · · ·+ b1z + b0
.

Consider equation

zn+1 + an+1z
n + · · ·+ a1 = 0,

and we get as in the proof of Lemma 2.4,

|Q(z)| ≥ |z|n+2
[
2−

(
1 +

D

|z|

)n+1]
. (2.2)

By assumption we can take a point ω ∈ K(f) such that |ω| ≥ D(f)
2 , and consider equation

zn+2 + an+1z
n+1 + · · ·+ a1z

bkzk + · · ·+ b1z + b0
= ω,

that is,

zn+2 + an+1z
n+1 + · · ·+ (ak − ωbk)z

k + · · ·+ (a1 − ωb1)z − ωb0 = 0.

Let D = D(f). It is easy to see |b0ω| ≤ Dn+2 and thus |b0| ≤ 2Dn+1. In general, we have

|ai − ωbi| ≤
(
n+ 2− i

n+ 2

)
Dn+2−i, i = 1, 2, · · · , k,

and so

|bi| ≤ 2
[(n+ 2− i

n+ 1

)
+

(
n+ 2− i

n+ 2

)]
Dn+1−i, i = 1, 2, · · · , k,
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which implies

|P (z)| = |bkzk + · · ·+ b1z + b0|

= |z|k
∣∣∣bk +

bk−1

z
+ · · ·+ bk−i

zi
+ · · ·+ b0

zk

∣∣∣
≤ 2|z|n+1 · |z|

D
·
[(

1 +
D

|z|

)n+1

+
(
1 +

D

|z|

)n+2

− (2n+ 3) · D
|z|

− 2
]
.

Combining this with (2.2) we get

|f(z)| ≥ |z| · D
|z|

·
2−

(
1 + D

|z|

)n+1

2
[(

1 + D
|z|

)n+1

+
(
1 + D

|z|

)n+2

− (2n+ 3) · D
|z| − 2

] = |z|ρ
(D

|z|

)
,

where

ρ(x) =
x[2− (1 + x)

n+1
]

2[(1 + x)
n+1

+ (1 + x)
n+2 − (2n+ 3)x− 2]

.

What remains to prove is to show that if x is small enough then ρ(x) ≥ 4, that is,

θ(x) = 2x− x(1 + x)
n+1 − 8(1 + x)

n+1 − 8(1 + x)
n+2

+ 8(2n+ 3)x+ 16 ≥ 0. (2.3)

Let x = y
n+1 . We can prove that if y < ln

(
1 + 1

16n+28

)
, then (2.3) holds, which implies

ρ(x) ≥ 4. Take C(n) = n+1
ln(1+ 1

16n+28 )
. Then clearly |z| ≥ C(n)D implies

|f(z)| ≥ |z|ρ
(D

|z|

)
≥ 4|z|.

The proof is complete.

§3. Sufficient Conditions for J(f1,f2) to Have Interior Points

In the classical iteration theory of a single function, it is well-knowen that if the Julia set

J(f) of a meoromorphic function f has interior points, then J(f) = Ĉ. But this is not true

for the random iteration theory of finitely many functions. As we will see in §6, J(z2, 4z2)
has interior points but it is not the whole plane. In fact, we have in general the following

assertions.

Theorem 3.1. Let f1, f2 be two meromorphic functions in the complex plane C. Suppose

that f1, f2 have a common attractive (superattractive) fixed point, and that there exists a

superattractive periodic point P1 of f1 such that P1 ∈ Γ ⊂ J(f2), where Γ is a Jordan arc.

Then J(f1, f2) has interior points but J(f1, f2) ̸= Ĉ.

Corollary 3.1. Assume f1, f2, · · · , fn to be meromorphic functions in C. Suppose that

f1, f2, · · · , fn have a common attractive (superattractive) fixed point, and that there exists a

superattractive periodic point Pi of fi for some i such that Pi ∈ Γ ⊂ J(fj) for some j ̸= i,

where Γ is a Jordan arc. Then J(f1, f2, · · · , fn) has interior points but J(f1, f2, · · · , fn) ̸=
Ĉ.

Proof of Corollary 3.1. Note that Pi is a stable point and so F (f1, f2, · · · , fn) ̸= ∅.
On the other hand, J(f1, f2, · · · , fn) ⊃ J(fi, fj), the corollary follows.

Corollary 3.2. Let f1, f2 be two meromorphic functions in C. Suppose that f1, f2 have

a common attractive (superattractive) fixed point, and that J(f2) is connected (or locally
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connected ). If f1 has a superattractive periodic point P1 of f1 such that P1 ∈ J(f2), then

J(f1, f2) has interior points but J(f1, f2) ̸= Ĉ.

Proof of Corollary 3.2. The Proof is similar to the proof for Theorem 3.1.

Theorem 3.2. Let f1, f2 be two polynomials. Suppose that f1 has a superattractive

periodic point P1 such that P1 ∈ Γ ⊂ J(f2), where Γ is a Jordan arc. Then J(f1, f2) has

interior points but J(f1, f2) ̸= Ĉ.

Corollary 3.3. Let f1, f2, · · · , fn be polynomials. Assume that there exists a superat-

tractive periodic point Pi of fi for some i such that Pi ∈ Γ ⊂ J(fj) for some j ̸= i, where Γ

is a Jordan arc. Then J(f1, f2, · · · , fn) has interior points but J(f1, f2, · · · , fn) ̸= Ĉ.

Proof of Corollary 3.3. Since ∞ is a common superattractive fixed point of f1, f2, · · · ,
fn.

Proof of Theorem 3.1. For simplicity, we will often write F for F (f1, f2, · · · , fn) and J

for J(f1, f2, · · · , fn) if no ambiguous meaning yields. In addition, in what follows we always

let R denote the set of functions as a random system to discuss.

Clearly, the common superattractive fixed point of f1 and f2 is a stable point, and hence

J ̸= Ĉ. On the other hand, without loss of generality, we may suppose 0 is a superattractive

fixed point of f1 contained in a Jordan arc Γ ⊂ J(f2). That is f1(0) = f ′
1(0) = 0. Then

there exists a neighborhood U of 0 and a conformal mapping ϕ : D = {|z| < 1} → U such

that

ϕ(0) = 0, ϕ−1 ◦ f1 ◦ ϕ(z) = azn (n ≥ 2).

It is clear that there exists a ‘cut sector’

S = {z : r1 < |z| < r2, θ1 < arg z < θ2} ⊂ D

such that ϕ(S) ⊂ F . If n is large enough, f1
n(ϕ(S)) is a doubly-connected domaim, of

which the complement has two components, and the bounded one contains 0. Obviously,

dist (f1
n(ϕ(S)), 0) tends to zero as n tends to ∞. Therefore, for sufficiently large n,

f1
n(ϕ(S)) ∩ J(f2) ⊃ f1

n(ϕ(S)) ∩ Γ ̸= ∅;

this contradicts the fact that f1
n(ϕ(S)) ⊂ F (f1, f2), since the Fatou set for the random

iteration system is forward invariant.

Proof of Theorem 3.2. Notice that ∞ is a common superattractive fixed point of f1

and f2. The proof for Theorem 3.1 also works for Theorem 3.2 with few modifications.

§4. Sufficient Conditions for J(f1,f2) to Have no Interior Points

In this section, we are going to show the following assertions.

Theorem 4.1. Let f1, f2 be two rational functions of the form:

f1 =
zn+2 + an+1z

n+1 · · ·+ a0
bkzk + · · ·+ b1z + b0

=
Q1

P1
(n ≥ k),

f2 =
zm+2 + bm+1z

m+1 · · ·+ b0
blzl + · · ·+ b1z + b0

=
Q2

P2
(m ≥ l).

Suppose that Pi and Qi have no common factors, i = 1, 2. If

dist (J(f1), J(f2)) ≥ C(n)D(f1) + C(m)D(f2),
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then J((f1), (f2)) has no interior points, where C(n) (respectively C(m)) is the constant

appeared in Lemma 2.4 or Lemma 2.6 according as f1 (respectively f2) is a polynomial (i.e.,

P1 is a constant) or not.

Note. Since C(n), C(m) ≥ 3, we have

D(f1) +D(f2) <
1

2
· dist(J(f1), J(f2)).

In particular, we have

Corollay 4.1. Let

f1 = anz
n + · · ·+ a1z + a0,

f2 = bmzm + · · ·+ b1z + b0.

If dist (J(f1), J(f2)) ≥ n−1
ln(4/3)D(f1)+

m−1
ln(4/3)D(f2), then J((f1), (f2)) has no interior points.

Proof of Theorem 4.1. Let d =dist (J(f1), J(f2)),

Ω1 =
{
z : dist(z,K(f1)) ≤

d

2

}
, Ω2 =

{
z : dist(z,K(f2)) ≤

d

2

}
,

where K(fi) denote the filled Julia sets of fi (i = 1, 2). First of all, we show that

J(f1, f2) ⊂ Ω1

∪
Ω2. (4.1)

For this purpose, we establish the following assertion

f1
−1(Ωi) ⊂ Ω1, f2

−1(Ωi) ⊂ Ω2 (i = 1, 2). (4.2)

In fact, if z ∈ f1
−1(Ω1) but z /∈ Ω1, we will get a contradiction. Let Q̃1 be a fixed point of

f1. Then we can prove by Lemma 2.6 that for any point P̃1 ∈ K(f1),

|f1(z)− P̃1| ≥ |f1(z)− Q̃1| − |Q̃1 − P̃1| >
3d

2
.

This means f1(z) /∈ Ω1, a contradiction, that is to say, f1
−1(Ω1) ⊂ Ω1. A similar argument

can show

f1
−1(Ω2) ⊂ Ω1 and f2

−1(Ωi) ⊂ Ω2 (i = 1, 2),

and hence we come to assertion (4.2).

Take a point ω0 in Ω1 ∪ Ω2, which is not an exceptional point. We get from (4.2) by

induction that W−n
σ (ω0) ⊂ Ω1

∪
Ω2 for any σ ∈ ΣR and n ∈ N , from which we arrive at

assertion (4.1) by Lemma 2.1.

Our theorem follows from Lemma 2.3 together with the following assertion

fi
−1((Ω1

∪
Ω2)

∩
F ) ⊂ (Ω1

∪
Ω2)

∩
F, i = 1, 2,

which can be proved by using (4.1) and (4.2). The proof is complete.

§5. Discussions of J(z2+c1,z
2+c2)

Theorem 5.1. If |c1−c2| ≥ 4
√
|c2| (|c2| ≥ |c1|), then J(z2+c1, z

2+c2) has no interior

points.

Remark. Obviously, f1 = z2 + c1, f = z2 + c2 fail to satisfy the conditions of Theorem

4.1.

Corollary 5.1. If |c| ≥ 16, then J(z2, z2 + c) has no interior points.
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Proof of Theorem 5.1. Let f1 = z2 + c1, f2 = z2 + c2. We may as well suppose

c1 ̸= c2. First we show

Ω0 = {z : |z| >
√

2|c2|} ⊂ F. (5.1)

By assumption it is easy to see 2|c2| ≥ |c2 − c1| ≥ 4
√
|c2|, so that if |z| >

√
2|c2|, then

|z2 + c1| > 2|c2| − |c1| ≥ |c2| ≥ 2
√
|c2|,

|z2 + c2| > 2|c2| − |c2| = |c2| ≥ 2
√
|c2|.

That is to say f1(z), f2(z) ∈ Ω0, and furthermore f1
n(z), f2

n(z) ∈ Ω0 for all n ∈ N by

induction. This implies (5.1) by Montel’s principle. Secondly, let Ω = {z : |z| < 2
√

|c2|},
we prove

fi
−1(Ω

∩
F ) ⊂ Ω

∩
F, i = 1, 2. (5.2)

Suppose that z ∈ Ω ∩ F . We want to show f1
−1(z), f2

−1(z) ⊂ Ω
∩
F. We need only to

prove f1
−1(z) ⊂ Ω ∩ F , the proof for f2

−1(z) ⊂ Ω ∩ F is similar. Let ω1 ∈ f1
−1(z). Since

|z| < 2
√
|c2|, we have

|ω1
2| = |z − c1| < 2

√
|c2|+ |c1| < 4|c2|

and hence |w1| < 2
√
|c2|. This means w1 ∈ Ω.

On the other hand, f2(w1) = z − c1 + c2, and so

|f2(ω1)| ≥ |c2 − c1| − |z| > |c2 − c1| − 2
√
|c2| ≥ 2

√
|c2|,

and thus f2(ω1) ∈ F by (5.1). Since f1(ω1) = z ∈ F , we have ω1 ∈ F . The argument above

shows f1
−1(z) ⊂ Ω ∩ F , as required.

Now it is easy to see that Theorem 5.1 follows from Lemma 2.3 and assertion (5.2), since

(5.1) implies that there are stable points in Ω. The proof is complete.

§6. Discussion of J(azn, bzn)

In this section, we are to prove some interesting results.

Theorem 6.1. J(az2, bz2) has interior points for |a| ̸= |b| (ab ̸= 0). If |a| < |b|, then

J(az2, bz2) =
{ 1

|b|
≤ |z| ≤ 1

|a|

}
.

Remark. If |a| = |b|, then J(az2, bz2) = J(az2) = {|z| = 1
|a|}.

Theorem 6.2. If |a| < |b|, n ≥ 3, then J(azn, bzn) has no interior points. As a matter

of fact, we have

J(azn, bzn) =
{
z : |z| = |a|−

1
n−1 ·

(∣∣∣a
b

∣∣∣) ∞∑
i=1

ti
ni

, ti = 0, 1.
}
. (6.1)

It is easy to see that Theorem 6.1 and Theorem 6.2 suggest some differences between

J(az2, bz2) and J(azn, bzn) for n ≥ 3. But, as a generalization of Theorem 6.1, we still have

Theorem 6.3. If |b| > 1, n ≥ 2, then

J(zn, bzn, · · · , bn−1zn) =
{ 1

|b|
≤ |z| ≤ 1

}
,

and if |b| < 1, then

J(zn, bzn, · · · , bn−1zn−1) =
{
1 ≤ |z| ≤ 1

|b|

}
.
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Proof of Theorem 6.1. First we prove

J(z2, λz2) =
{ 1

|λ|
≤ |z| ≤ 1

}
(6.2)

for |λ| > 1. By Montel’s principle, it is trival to see{
|z| < 1

|λ|

}
⊂ F, {|z| > 1} ⊂ F. (6.3)

On the other hand, all circles{
z : |z| = | 1

λ
|

1
2n1 + 1

2n2 +···+ 1
2nk

}
,

where 1 ≤ n1 < n2 < · · · < nk , are preimages of {|z| = 1} ⊂ J(z2, λz2) under Wn
σ for some

σ ∈ ΣR and n ∈ N and so are contained in J(z2, λz2).

We notice that any real number in [0, 1] can be represented as infinity series

t1
2
+

t2
22

+ · · ·+ tk
2k

+ · · · ,

where tk = 0, 1, and since the Julia set is closed, we obtain (6.2) from (6.3).

Now we are able to deal with the general case by use of transformation γ : z 7→ az. It is

simple to verify

J(f1, f2) = γ−1(J(γ ◦ f1 ◦ γ−1, γ ◦ f2 ◦ γ−1)),

and therefore we get by (6.2),

J(az2, bz2) = γ−1
(
J
(
z2,

bz2

a

))
=

{ 1

|b|
≤ |z| ≤ 1

|a|

}
.

This is what we want to prove.

Proof of Theorem 6.2. Let f1 = azn, f2 = bzn. We may as well assume that a =

1, |b| > 1 ( see the proof of Theorem 6.1). It is easy to see

D1 =
{
|z| < n−1

√∣∣∣1
b

∣∣∣} ⊂ F, D2 = {|z| > 1} ⊂ F, (6.4)

since

Wn
σ (D1) ⊂ D1,W

n
σ (D2) ⊂ D2

for any σ ∈ ΣR and n ∈ N by induction. From (6.4), we can prove easily that

D =
{

n

√∣∣∣1
b

∣∣∣ < |z| < n

√
n−1

√∣∣∣1
b

∣∣∣ }
⊂ F. (6.5)

Now, let Ω = { n−1

√
| 1b | < |z| < 1}. We are able to show

fi
−1(Ω ∩ F ) ⊂ Ω ∩ F, i = 1, 2. (6.6)

Evidently, fi
−1(Ω) ⊂ Ω(i = 1, 2). Let z ∈ Ω∩F, ω1 ∈ f1

−1(z). Then f1(ω1) = ω1
n = z ∈ F ,

and hence

|f2(ω1)| = |bω1
n| = |bz| ≥ |b| · n−1

√∣∣∣1
b

∣∣∣ > 1.

By (6.4), f2(ω1) ∈ F , and then ω1 ∈ F . The argument above shows f−1
1 (Ω ∩ F ) ⊂ Ω ∩ F ,

and in the same way we can show f2
−1(Ω ∩ F ) ⊂ Ω ∩ F .
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It is clear that Lemma 2.3 and assertion (6.6) prove that J(azn, bzn) has no interior

points, as there are stable points in Ω by (6.5). To prove (6.1), we note that all circles{
z : |z| =

∣∣∣ 1
λ

∣∣∣ 1

nt1
+ 1

nt2
+···+ 1

ntk
}
,

where 1 ≤ t1 < t2 < · · · < tk, are preimages of {|z| = 1} ⊂ J(azn, bzn) under Wn
σ for some

σ ∈ ΣR and n ∈ N and so are contained in J . This observation completes our proof.

Proof of Theorem 6.3. The proof of this theorem is similar to that of Theorem 6.1,

we omit the details.

§7. An Example and a Problem

Let f0 = z2, f1 = (z − 1)
2
+ 1. As pointed out in §1, J(f0, f1) has interior points. What

is more, it is easy to see

J(f0, f1) ⊃ K(f0)
∪

K(f1) = {|z| ≤ 1}
∪

{|z − 1| ≤ 1},

where K(fi) denote the filled Julia sets of fi(i = 0, 1). In fact, if on the contrary, we may as

well suppose that the unit disc {|z| ≤ 1} contains an open set U ⊂ F (f0, f1). Furthermore,

one can assume that U contains a ‘cut sector’

S = {z : r1 < |z| < r2, θ1 < arg z < θ2}.

For a natural number n large enough, f0
n(S) is an annulus with the origin as its center,

and then f0
n(S) ∩ J(f1) ̸= ∅, which contradicts f0

n(S) ⊂ F (f0, f1). In general, we can

study the dynamical system of R = {f0, ft}, where f0 = z2, ft = (z − t)
2
. By Theorem

4.1, if |t| > 2 + 4
ln(4/3) , then J(f0, ft) has no interior points. Also it is trival that if t = 0,

then J(f0, ft) = J(f0) has no interior points. It would be interesting but seems difficult to

determine the set of t for which the Julia sets J(f0, ft) have interior points. Unfortunately,

we even do not know what will happen if t is suffciently small other than 0.
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