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Abstract

The Schwarzian derivative of holomorphic mapping on classical domain IRI is zero iff it is
linear fractional.
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§1.

Let Z = (zij)1≤i,j≤n ∈ ICn×n denote a square complex matrix. The classical domain

of type one RI is a domain in ICn×n such that I − ZZ̄ ′ > 0, where I denotes the n × n

idendity matrix, Z̄ ′ denotes the conjugate transpose of Z, > 0 means positive definite.

Let Λ = (λij)1≤i,j≤n ∈ ICn×n, λ = (λ11, · · · , λ1n, · · · , λn1, · · · , λnn) ∈ ICn2

, λ(k) is the k-th

Kronecker product of λ. Let W = W (Z) be a holomorphic n× n matrix mapping of n× n

matrix variable Z. We denote the k-th directional derivative of a holomorphic mapping

W = W (Z) in the direction Λ by

DkW (Z) = Dk
ΛW (Z) = λ(k)

(
∂

∂Z

)′

W,

where

∂

∂Z
=

(
∂

∂z11
, · · · ∂

∂z1n
, · · · , ∂

∂zn1
, · · · , ∂

∂znn

)
.

In [1], Gong and FitzGerald defined the Schwarzian derivative of W = W (Z) along the

direction Λ by

{W ;Z}Λ = (D3
ΛW )(DΛW )−1 − 3

2
(D2

ΛW )(DΛW )−1(D2
ΛW )(DΛ)

−1,

and proved that

{W ;Z}Λ = 0 (1.1)
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for all Z ∈ RI and all non-zero matrix Λ ∈ ICn×n (when {W ;Z}Λ exists), if and only if

W = W (Z) = W (0)+(I−L(Z))−1DZW (0) or W (Z) = W (0)+DZW (0)(I−L(Z))−1 (1.2)

where L(Z) is an n × n matrix, each entry of L(Z) is a linear homogeneous polynomial of

zij , i, j = 1, 2, · · · , n, I − L(Z) is non-singular when Z ∈ RI .

In this note we prove that (1.1) may be replaced by {W ;Z}Z = 0 where Z ∈ RI .

Theorem 1.1. Let W = W (Z) : RI → ICn×n be a holomorphic mapping with JW (0)

non-singular. Then

{W ;Z}Z = 0 (1.3)

for all Z in IRI (when {W ;Z}Z exists) if and only if W = W (Z) is defined by (1.2).

Moreover, W (Z) is biholomorphic in RI .

As a consequance, we have

Corollary 1.1. Let W = W (Z) : RI → ICn×n be a holomorphic mapping with JW (0)

non-singular. Then {W ;Z}Z = 0 implies {W ;Z}Λ = 0 for all non-zero Λ when {W ;Z}Λ
exists.

Denote {W ;Z}Z by {W ;Z}. By Theorem 1.1, it is reasonable to define it as the

Schwarzian derivative of W (Z) at Z.

Of course Theorem 1.1 is still true if we replace RI by any domain in ICn×n.

§2.

Now we are going to prove Theorem 1.1.

A straighforward calculation shows that (1.3) is true if W = W (Z) is defined by (1.2).

The difficult part is that (1.3) implies W = W (Z) is defined by (1.2).

We expand W (Z) at Z = 0

W (Z) = W (0) +DZW (0) + C2(Z) + C3(Z) + C4(Z) + · · · ,

where C2, C3, C4, · · · are n×n matrices, all entries of C2(Z), C3(Z), C4(Z), · · · are homoge-

neous polynomials of entries of Z of degree 2, 3, 4,. . . , respectively.

Fix Z ∈ RI , if Z,DZW (0) are non-singular. Let Q(t) = W (tZ), t ∈ [0, 1]. Then

dQ

dt
= DZW (tZ) =

1

t
DtZW (tZ)

= DZW (0) + 2tC2(Z) + 3t2C3(Z) + · · · ,

and

d2Q

dt2
= D2

ZW (tZ) =
1

t2
D2

tZW (tZ)

= 2C2(Z) + 6tC3(Z) + · · · .

If we take ϵ > 0 sufficiently small, such that
dQ(t)
dt

is non-singular when t ∈ [0, ϵ], then we

may define

A(t) =
d2Q

dt2

(dQ
dt

)−1

= D2
ZW (tZ)(DZW (tZ))−1

for t ∈ [0, ϵ]. It is easy to verify that

dA

dt
− 1

2
A2 = 0,



No.1 Gong, S., Yu, Q. H. et al THE SCHWARZIAN DERIVATIVE (II) 3

since {W ;Z} = 0.

Consider a C∞ mapping G(t) : [0, ϵ] → ICn×n which is the solution of the following initial

value problem 
dG

dt
= −1

2
GA,

G(0) = I.
(2.1)

It is known that the solution exists and is unique (cf. [2]).

By (2.1), we have

d2G

dt2
= −1

2
G

(
dA

dt
− 1

2
A2

)
= 0.

That means dG
dt

is independent of t. Thus

dG(t)

dt
= −1

2
G(t)A(t) = −1

2
G(0)A(0) = −1

2
A(0). (2.2)

Integrating both sides of (2.2) with respect to t from 0 to t, we have

G(t)−G(0) =
t

2
A(0);

that is,

G(t) = I − t

2
A(0). (2.3)

Substituting it into (2.2), we obtain

−1

2

(
I − t

2
A(0)

)
A(t) = −1

2
A(0).

Hence (
I − t

2
A(0)

)
A(t) = A(0).

By the definition of A(t), the preceding equation is(
I − t

2
A(0)

)d2Q(t)

dt2
= A(0)

dQ(t)

dt
.

It is the same as
d

dt

[(
I − t

2
A(0)

)dQ(t)

dt

]
=

1

2
A(0)

dQ(t)

dt
.

Integrating both sides of the preceding equation with respect to t from 0 to t, we have(
I − t

2
A(0)

)dQ
dt

−DZW (0) =
1

2
A(0)(Q(t)−W (0)),

since Q(0) = W (0),
dQ
dt

(0) = DZW (0). Thus

d

dt

[
(I − t

2
A(0))Q(t)

]
= DZW (0)− 1

2
A(0)W (0)

holds. Integrating both sides of the preceding equation with respect to t from 0 to t, we

have (
I − t

2
A(0)

)
Q(t)−W (0) = t

(
DZW (0)− 1

2
A(0)W (0)

)
. (2.4)

By (2.3), G(t) is non-singular when t is sufficiently small, solving Q(t) from (2.4),

Q(t) = W (tZ) = t
(
I − t

2
A(0)

)−1

DZW (0) +W (0).
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Expanding W (tZ) and t(I − t
2A(0))

−1DZW (0)+W (0) with respect to t at a neighborhood

of t = 0, we have

W (tZ) = W (0) + tDZW (0) + t2C2(Z) + t3C3(Z) + t4C4(Z) + · · · , (2.5)

where C2(Z), C3(Z), C4(Z), · · · are n × n matrices, all entries of C2(Z), C3(Z), C4(Z), · · ·
are homogeneous polynomails of entries of Z of degree 2, 3, 4, · · · respectively.

On the other hand, in a neighborhood of t = 0, we have

W (0) + t
(
I − t

2
A(0)

)−1

DZW (0)

= W (0) + tDZW (0) +
t2

2
A(0)DZW (0) +

t3

4
A2(0)DZW (0) + · · · . (2.6)

Comparing the corresponding coefficeints of t2, t3 in (2.5) and (2.6), we get

C2(Z) =
1

2
A(0)DZW (0), C3(Z) =

1

4
A2(0)DZW (0).

Since DZW (0) is non-singular, we have

C3(Z) =
1

4
A(0)DZW (0)(DZW (0))−1A(0)DZW (0) = C2(Z)(DZW (0))−1C2(Z). (2.7)

Let ξ = (ξij)1≤i,j≤n = DZW (0). Because JW (0) is non-singular, we may express zij , i, j =

1, 2, · · · , n as homogeneous polynomials of the entries of ξ of degree one; that is,

Z = P (ξ) = (pij(ξ))1≤i,j≤n,

each pij , i, j = 1, 2, · · · , n, is a homogeneous polynomial of the entries of ξ of degree one. By

(2.7), we have

C3(P (ξ)) = C2(P (ξ))ξ−1C2(P (ξ)).

Let C3(P (ξ)) = B3(ξ), C2(P (ξ)) = B2(ξ). Then all entries of B2(ξ), B3(ξ) are homoge-

neous polynomials of the entries of ξ of deree 2, degree 3, respectively. From B3(ξ) =

B2(ξ)ξ
−1B2(ξ), and Theorem 2 of [1], we have B2(ξ) = ξL0(ξ) or B2(ξ) = L0(ξ)ξ, where

L0(ξ) is an n × n matrix, each entry is a homogeneous polynomial of the entries of degree

one. Thus we have C2(Z) = DZW (0)L0(DZW (0)) or C2(Z) = L0(DZW (0))DZW (0). We

get

C2(Z) = DZW (0)L(Z), or C2(Z) = L(Z)DZW (0).

If L(Z) + L0(DZW (0)), obviously each entry of L(Z) is a homogeneous polynomial of the

entries of Z of degree one.

If C2(Z) = DZW (0)L(Z), then

C3(Z) = C2(Z)(DZW (0))−1C2(Z)

= DZW (0)L(Z)(DZW (0))−1DZW (0)L(Z)

= DZW (0)(L(Z))2.

Similarly, we have C4(Z) = DZW (0)(L(Z))3, · · · . Substituting all these results into (2.5),

we obtain

W (tZ) = W (0) + tDZW (0) + t2DZW (0)L(Z) + t3DZW (0)(L(Z))2

+ t4DZW (0)(L(Z))3 + · · ·
= tDZW (0)(I − tL(Z))−1. (2.8)
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Similarly, in the case C2(Z) = L(Z)DZW (0), we obtain

W (tZ) = W (0) + t(I − tL(Z))−1DZW (0). (2.9)

Thus (2.8) or (2.9) holds true at a neighborhood of t = 0. No doubt, W (tZ) is an analytic

function of t when tZ ∈ RI . It implies (2.8) or (2.9) holds true when tZ ∈ IRI .

Let t → 1. We have

W (Z) = W (0) + (I − L(Z))−1DZW (0)

or W (Z) = W (0) + DZW (0)(I − L(Z))−1 when DZW (0) is non-singular. Since W (Z) is

holomorphic in IRI , we know that I − L(Z) is non-singular when Z is non-singular.

If DZW (0) is non-singular at a point Z ∈ RI , then there exists a neighborhood of Z,

such that DZW (0) is non-singular at this neighborhood.

By the uniqueness theorem of holomorphic mapping, we conclude that

W (Z) = W (0) + (I − L(Z))−1DZW (0)

or W (Z) = W (0) +DZW (0)(IL(Z))−1 for all Z ∈ IRI , and hence I − L(Z) is non-singular

when Z ∈ IRI . Thus we have proved that W = W (Z) is defined by (1.2) if (1.3) is true in

the case that JW (0) is non-singular.

§3.

Now, we prove that W = W (Z) which is defined by (1.2) is biholomorphic in IRI .

If it is not biholomorphic, then there exist two points Z1, Z2 ∈ RI , such that W1 =

W (Z1) = W2 = W (Z2). We consider W (Z) = W (0) +DZW (0)(I − L(Z))−1 at first. RI is

a convex domain, (1− t)Z1 + tZ2 ∈ RI , if t ∈ [0, 1]. Let

Q(t) = D(1−t)Z1+tZ2
W (0)(I − L((1− t)Z1 + tZ2))

−1 −DZW (0)(I − L(Z1))
−1

= (DZ1W (0) + t(DZ2W (0)−DZ1W (0))[I − L(Z1)− t(L(Z2)− L(Z1))]
−1

−DZ1W (0)(I − L(Z1))
−1.

Then

Q(0) = Q(1) = 0,

and
dQ

dt
= {(DZ2W (0)−DZ1W (0) + (DZ1W (0) + t(DZ2W (0)−DZ1W (0)))[I − L(Z1)

− t(L(Z2)− L(Z1))]
−1(L(Z2)− L(Z1))}[I − L(Z1)− t(L(Z2)− L(Z1))]

−1,
(3.1)

and

d2Q

dt2
= 2{(DZ2W (0)−DZ1W (0) + (DZ1W (0) + t(DZ2W (0)−DZ1W (0)))[I − L(Z1)

− t(L(Z2)− L(Z1))]
−1(L(Z2)− L(Z1))}[I − L(Z1)− t(L(Z2)− L(Z1))]

−1

× (L(Z2)− L(Z1))[I − L(Z1)− t(L(Z2)− L(Z1))]
−1

= 2
dQ

dt
(L(Z2)− L(Z1))[I − L(Z1)− t(L(Z2)− L(Z1))]

−1. (3.2)

Let

A(t) = 2(L(Z2)− L(Z1))[I − L(Z1)− t(L(Z2)− L(Z1))]
−1. (3.3)
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Then

dA(t)

dt
= 2(L(Z2)− L(Z1))[I − L(Z1)− tL(L(Z2)− L(Z1)]

−1

× (L(Z2)− L(Z1))[I − L(Z1)− t(L(Z2)− L(Z1)]
−1.

It follows that

dA(t)

dt
− 1

2
A2(t) = 0, (3.4)

when t ∈ [0, 1]. If G(t), t ∈ [0, 1] is the solution of the initial value problem
dG

dt
= −1

2
AG,

G(0) = I,
(3.5)

where A(t) is defined by (3.3), we have

d2(QG)

dt2
=

d2Q

dt2
G+ 2

dQ

dt

dG

dt
+Q

d2G

dt2
.

By (3.3), (3.4) and (3.5),

d2G

dt2
= −1

2

dA

dt
G− 1

2
A
dG

dt
= −1

2

dA

dt
G+

1

4
A2G = 0.

By (3.2), (3.5),

2
dQ

dt

dG

dt
+

d2Q

dt2
G = −dQ

dt
AG+

d2Q

dt2
G = 0.

We have

d2(QG)

dt2
= 0 (3.6)

when t ∈ [0, 1].

Since Q(t) is an analytic function of t when t ∈ [0, 1], G(t) ∈ C∞, (3.6) is true for t ∈ [0, 1].

The matrix QGḠ′Q̄′ is a semi-positive definite Hermitian matrix, and hence

tr (QGḠ′Q̄′) ≥ 0.

By (3.6),

d2

dt2
tr (QGḠ′Q̄′) = tr

( d2

dt2
(QGḠ′Q̄′)

)
= tr

(d(QG)

dt

d(QG
′
)

dt

)
≥ 0

for t ∈ [0, 1]. That means tr (QGḠ′Q̄′), as a function of t in [0,1], is a concave contineous

function. We know that QGḠ′Q̄′ = 0, at t = 0 and t = 1. It implies tr (QGḠ′Q̄′) ≡ 0, when

t ∈ [0, 1], that is, QGḠ′Q̄′ ≡ 0, t ∈ [0, 1]. Hence QG ≡ 0, t ∈ [0, 1]. There is a neighborhood

N of t = 0 such that G(t) is non-singular for t ∈ N , since G(0) = I, It follows that Q(t) ≡ 0,

when t ∈ N. It is impossible.

We have proved that W (Z) = W (0) +DZW (0)(I − L(Z))−1 is biholomorphic in IRI .

Using the similar argument we can prove W (Z) = W (0) + (I − L(Z))−1DZW (0) is

biholpmorphic in IRI .

§4.

Finally, we would like to make the following remark.
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Let us consider the mappings

W (Z) = (A(Z) +B)(C(Z) +D)−1 or W (Z) = (C(Z) +D)−1(A(Z) +B), (4.1)

where A(Z), B, C(Z), D ∈ ICn×n, all entries of A(Z), C(Z) are the homogeneous polynomials

of entries of Z of degree one, and C(Z) +D is non-singular when Z ∈ IRI .

We consider W = W (Z) = (C(Z) + D)−1(A(Z) + B) at first. Fix 0 ̸= Λ ∈ ICn×n. We

have

DΛW (Z) = (C(Z) +D)−1
[
A(Λ)− C(Λ)(C(Z) +D)−1(A(Z) +B)

]
, (4.2)

D2
ΛW (Z) = −2(C(Z) +D)−1C(Λ)(C(Z) +D)−1[A(Λ)− C(Λ)(C(Z) +D)−1(A(Z) +B)]

= −2(C(Z) +D)−1C(Λ)DΛW (Z),

and

D3
ΛW (Z) = 6(C(Z) +D)−1C(Λ)(C(Z) +D)−1C(Λ)(C(Z) +D)−1

× [A(Λ)− C(Λ)(C(Z) +D)−1(A(Z) +B)]

= 6(C(Z) +D)−1C(Λ)(C(Z) +D)−1C(Λ)DΛW (Z).

It follows that

{W ;Z}Λ = 0

for Z ∈ IRI except a lower dimension manifold of Z such that A(Λ) − C(Λ)(C(Z) +

D)−1(A(Z) +B) is singular.

By (4.2), we have

DZW (0) = D−1
[
A(Z)− C(Z)D−1B

]
.

Using the identity of matrix(
A C
B D

)(
I 0
0 D−1

)(
I 0

−B I

)
=

(
A− CD−1B CD−1

0 I

)
,

we have det DZW (0) ̸≡ 0 if and only if det

(
A B
C D

)
̸≡ 0.

Similarly, if W = W (Z) = (A(Z) +B)(C(Z) +D)−1, fixing 0 ̸= Λ ∈ ICn×n, then we have

{W ;Z}Λ = 0

for Z ∈ IRI , except a lower dimension manifold of Z, and detDZW (0) ̸≡ 0 if and only if

det

(
A B
C D

)
̸≡ 0. Thus we may rewrite Theorem 1.1 as

Theorem 4.1. The assumptions are the same as Theorem 1.1. Then {W ;Z} = 0 holds

for Z ∈ RI if and only if

W = W (Z) = (A(Z) +B)(C(Z) +D)−1 or W = W (Z) = (C(Z) +D)−1(A(Z) +B),

where A(Z), B,C(Z), D ∈ ICn×n, all entries of A(Z), C(Z) are homogeneous polynomi-

als of the entries of Z of degree one. Moreover, C(Z) + D is non-singular in IRI , and

det

(
A(Z) B
C(Z) D

)
̸≡ 0 in IRI . The mappings W = W (Z) which was defined by (4.1) are

biholomorphic in IRI .
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Actually, mappings (1.2) and (4.1) are equivalent to each other. For example,

W = W (Z) = (A(Z) +B)(C(Z) +D)−1

= BD−1 + (A(Z)−BD−1C(Z))D−1(I + C(Z))−1;

comparing it with (1.2), we get

W (0) = BD−1, L(Z) = −C(Z), DZW (0) = A(Z)D−1 −BD−1C(Z)D−1.

Hence detDZW (0) ̸≡ 0 and det

(
A(Z) B
C(Z) D

)
̸≡ 0 are equivalent to each other.

Conversely,

W = W (Z) = W (0) +DZW (0)(I − L(Z))−1

= [W (0)(I − L(Z) +DZW (0)](I − L(Z))−1;

comparing it with (4.1), we get

A(Z) = DZW (0)−W (0)L(Z), B = W (0), C(Z) = −L(Z), D = I.

Hence

det

(
A B
C D

)
= det

(
DZW (0)−W (0)L(Z) W (0)

−L(Z) I

)
= det

(
DZW (0) 0
−L(Z) I

)
.

Thus det

(
A B
C D

)
̸≡ 0 and detDZW (0) ̸≡ 0 are equivalent to each other.

The conclusion is also true when

W (Z) = (C(Z) +D)−1(A(Z) +B) and W (Z) = W (0) + (I − L(Z))−1DZW (0).

Theorem 4.1 is also true if we replace IRI by a convex domain in ICn×n.
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