THE SCHWARZIAN DERIVATIVE IN SEVERAL COMPLEX VARIABLES (II)****

Gong Sheng* Yu Qihuang** Zheng Xuean***

Abstract

The Schwarzian derivative of holomorphic mapping on classical domain $I\!\!R_I$ is zero iff it is linear fractional.

Keywords Schwarzian derivative, Classical domain, Linear fractional mapping1991 MR Subject Classification 32H02Chinese Library Classification 0174.56

§**1.**

Let $Z = (z_{ij})_{1 \leq i,j \leq n} \in \mathbb{C}^{n \times n}$ denote a square complex matrix. The classical domain of type one R_I is a domain in $\mathbb{C}^{n \times n}$ such that $I - Z\bar{Z}' > 0$, where I denotes the $n \times n$ idendity matrix, \bar{Z}' denotes the conjugate transpose of Z, > 0 means positive definite. Let $\Lambda = (\lambda_{ij})_{1 \leq i,j \leq n} \in \mathbb{C}^{n \times n}, \lambda = (\lambda_{11}, \dots, \lambda_{1n}, \dots, \lambda_{n1}, \dots, \lambda_{nn}) \in \mathbb{C}^{n^2}, \lambda^{(k)}$ is the k-th Kronecker product of λ . Let W = W(Z) be a holomorphic $n \times n$ matrix mapping of $n \times n$ matrix variable Z. We denote the k-th directional derivative of a holomorphic mapping W = W(Z) in the direction Λ by

$$D^{k}W(Z) = D^{k}_{\Lambda}W(Z) = \lambda^{(k)} \left(\frac{\partial}{\partial Z}\right)' W,$$

where

$$\frac{\partial}{\partial Z} = \left(\frac{\partial}{\partial z_{11}}, \cdots, \frac{\partial}{\partial z_{1n}}, \cdots, \frac{\partial}{\partial z_{n1}}, \cdots, \frac{\partial}{\partial z_{nn}}\right).$$

In [1], Gong and FitzGerald defined the Schwarzian derivative of W = W(Z) along the direction Λ by

$$\{W; Z\}_{\Lambda} = (D_{\Lambda}^{3}W)(D_{\Lambda}W)^{-1} - \frac{3}{2}(D_{\Lambda}^{2}W)(D_{\Lambda}W)^{-1}(D_{\Lambda}^{2}W)(D_{\Lambda})^{-1},$$

and proved that

$$\{W; Z\}_{\Lambda} = 0 \tag{1.1}$$

Manuscript received August 30, 1996.

^{*}Department of Mathematics, University of Science and Technology of China, Hefei 230026, China.

^{**}Department of Mathematics, Institute of Applied Mathematics, Academia Sinica, Beijing 100080, China.

^{***}Department of Mathematics, Beijing Normal University, Beijing 100875, China.

^{****}Project supported by the National Natural Science Foundation of China.

for all $Z \in R_I$ and all non-zero matrix $\Lambda \in \mathbb{C}^{n \times n}$ (when $\{W; Z\}_{\Lambda}$ exists), if and only if

 $W = W(Z) = W(0) + (I - L(Z))^{-1} D_Z W(0) \text{ or } W(Z) = W(0) + D_Z W(0) (I - L(Z))^{-1}$ (1.2)

where L(Z) is an $n \times n$ matrix, each entry of L(Z) is a linear homogeneous polynomial of $z_{ij}, i, j = 1, 2, \cdots, n, I - L(Z)$ is non-singular when $Z \in R_I$.

In this note we prove that (1.1) may be replaced by $\{W; Z\}_Z = 0$ where $Z \in R_I$.

Theorem 1.1. Let $W = W(Z) : R_I \to \mathbb{C}^{n \times n}$ be a holomorphic mapping with $J_W(0)$ non-singular. Then

$$\{W; Z\}_Z = 0 \tag{1.3}$$

for all Z in \mathbb{R}_I (when $\{W; Z\}_Z$ exists) if and only if W = W(Z) is defined by (1.2). Moreover, W(Z) is biholomorphic in \mathbb{R}_I .

As a consequence, we have

Corollary 1.1. Let $W = W(Z) : R_I \to \mathbb{C}^{n \times n}$ be a holomorphic mapping with $J_W(0)$ non-singular. Then $\{W; Z\}_Z = 0$ implies $\{W; Z\}_\Lambda = 0$ for all non-zero Λ when $\{W; Z\}_\Lambda$ exists.

Denote $\{W; Z\}_Z$ by $\{W; Z\}$. By Theorem 1.1, it is reasonable to define it as the Schwarzian derivative of W(Z) at Z.

Of course Theorem 1.1 is still true if we replace R_I by any domain in $\mathbb{C}^{n \times n}$.

§**2.**

Now we are going to prove Theorem 1.1.

A straightforward calculation shows that (1.3) is true if W = W(Z) is defined by (1.2). The difficult part is that (1.3) implies W = W(Z) is defined by (1.2).

We expand W(Z) at Z = 0

$$W(Z) = W(0) + D_Z W(0) + C_2(Z) + C_3(Z) + C_4(Z) + \cdots$$

where C_2, C_3, C_4, \cdots are $n \times n$ matrices, all entries of $C_2(Z), C_3(Z), C_4(Z), \cdots$ are homogeneous polynomials of entries of Z of degree 2, 3, 4,..., respectively.

Fix $Z \in R_I$, if $Z, D_Z W(0)$ are non-singular. Let $Q(t) = W(tZ), t \in [0, 1]$. Then

$$\frac{dQ}{dt} = D_Z W(tZ) = \frac{1}{t} D_{tZ} W(tZ) = D_Z W(0) + 2t C_2(Z) + 3t^2 C_3(Z) + \cdots$$

and

$$\frac{d^2Q}{dt^2} = D_Z^2 W(tZ) = \frac{1}{t^2} D_{tZ}^2 W(tZ)$$

= 2C₂(Z) + 6tC₃(Z) + \cdots .

If we take $\epsilon > 0$ sufficiently small, such that $\frac{dQ(t)}{dt}$ is non-singular when $t \in [0, \epsilon]$, then we may define

$$A(t) = \frac{d^2 Q}{dt^2} \left(\frac{dQ}{dt}\right)^{-1} = D_Z^2 W(tZ) (D_Z W(tZ))^{-1}$$

for $t \in [0, \epsilon]$. It is easy to verify that

$$\frac{dA}{dt} - \frac{1}{2}A^2 = 0,$$

since $\{W; Z\} = 0$.

Consider a C^{∞} mapping $G(t): [0, \epsilon] \to \mathbb{C}^{n \times n}$ which is the solution of the following initial value problem

$$\begin{cases} \frac{dG}{dt} = -\frac{1}{2}GA, \\ G(0) = I. \end{cases}$$
(2.1)

It is known that the solution exists and is unique (cf. [2]).

By (2.1), we have

$$\frac{d^2G}{dt^2} = -\frac{1}{2}G\left(\frac{dA}{dt} - \frac{1}{2}A^2\right) = 0$$

That means $\frac{dG}{dt}$ is independent of t. Thus

$$\frac{dG(t)}{dt} = -\frac{1}{2}G(t)A(t) = -\frac{1}{2}G(0)A(0) = -\frac{1}{2}A(0).$$
(2.2)

Integrating both sides of (2.2) with respect to t from 0 to t, we have

$$G(t) - G(0) = \frac{t}{2}A(0);$$

that is,

$$G(t) = I - \frac{t}{2}A(0).$$
 (2.3)

Substituting it into (2.2), we obtain

$$-\frac{1}{2}\left(I - \frac{t}{2}A(0)\right)A(t) = -\frac{1}{2}A(0)$$

Hence

$$\left(I - \frac{t}{2}A(0)\right)A(t) = A(0)$$

By the definition of A(t), the preceding equation is

$$\left(I - \frac{t}{2}A(0)\right)\frac{d^2Q(t)}{dt^2} = A(0)\frac{dQ(t)}{dt}.$$

It is the same as

$$\frac{d}{dt}\left[\left(I - \frac{t}{2}A(0)\right)\frac{dQ(t)}{dt}\right] = \frac{1}{2}A(0)\frac{dQ(t)}{dt}.$$

Integrating both sides of the preceding equation with respect to t from 0 to t, we have

$$\left(I - \frac{t}{2}A(0)\right)\frac{dQ}{dt} - D_Z W(0) = \frac{1}{2}A(0)(Q(t) - W(0)),$$

since $Q(0) = W(0), \frac{dQ}{dt}(0) = D_Z W(0)$. Thus

$$\frac{d}{dt}\left[(I - \frac{t}{2}A(0))Q(t)\right] = D_Z W(0) - \frac{1}{2}A(0)W(0)$$

holds. Integrating both sides of the preceding equation with respect to $t \mbox{ from } 0$ to t, we have

$$\left(I - \frac{t}{2}A(0)\right)Q(t) - W(0) = t\left(D_Z W(0) - \frac{1}{2}A(0)W(0)\right).$$
(2.4)

By (2.3), G(t) is non-singular when t is sufficiently small, solving Q(t) from (2.4),

$$Q(t) = W(tZ) = t\left(I - \frac{t}{2}A(0)\right)^{-1}D_Z W(0) + W(0).$$

Expanding W(tZ) and $t(I - \frac{t}{2}A(0))^{-1}D_ZW(0) + W(0)$ with respect to t at a neighborhood of t = 0, we have

$$W(tZ) = W(0) + tD_Z W(0) + t^2 C_2(Z) + t^3 C_3(Z) + t^4 C_4(Z) + \cdots, \qquad (2.5)$$

where $C_2(Z), C_3(Z), C_4(Z), \cdots$ are $n \times n$ matrices, all entries of $C_2(Z), C_3(Z), C_4(Z), \cdots$ are homogeneous polynomials of entries of Z of degree 2, 3, 4, \cdots respectively.

On the other hand, in a neighborhood of t = 0, we have

Z

$$W(0) + t\left(I - \frac{t}{2}A(0)\right)^{-1}D_Z W(0)$$

= $W(0) + tD_Z W(0) + \frac{t^2}{2}A(0)D_Z W(0) + \frac{t^3}{4}A^2(0)D_Z W(0) + \cdots$ (2.6)

Comparing the corresponding coefficients of t^2, t^3 in (2.5) and (2.6), we get

$$C_2(Z) = \frac{1}{2}A(0)D_Z W(0),$$
 $C_3(Z) = \frac{1}{4}A^2(0)D_Z W(0).$

Since $D_Z W(0)$ is non-singular, we have

$$C_3(Z) = \frac{1}{4}A(0)D_Z W(0)(D_Z W(0))^{-1}A(0)D_Z W(0) = C_2(Z)(D_Z W(0))^{-1}C_2(Z).$$
(2.7)

Let $\xi = (\xi_{ij})_{1 \le i,j \le n} = D_Z W(0)$. Because $J_W(0)$ is non-singular, we may express $z_{ij}, i, j = 1, 2, \cdots, n$ as homogeneous polynomials of the entries of ξ of degree one; that is,

$$T = P(\xi) = (p_{ij}(\xi))_{1 \le i,j \le n},$$

each $p_{ij}, i, j = 1, 2, \dots, n$, is a homogeneous polynomial of the entries of ξ of degree one. By (2.7), we have

$$C_3(P(\xi)) = C_2(P(\xi))\xi^{-1}C_2(P(\xi)).$$

Let $C_3(P(\xi)) = B_3(\xi)$, $C_2(P(\xi)) = B_2(\xi)$. Then all entries of $B_2(\xi)$, $B_3(\xi)$ are homogeneous polynomials of the entries of ξ of deree 2, degree 3, respectively. From $B_3(\xi) = B_2(\xi)\xi^{-1}B_2(\xi)$, and Theorem 2 of [1], we have $B_2(\xi) = \xi L_0(\xi)$ or $B_2(\xi) = L_0(\xi)\xi$, where $L_0(\xi)$ is an $n \times n$ matrix, each entry is a homogeneous polynomial of the entries of degree one. Thus we have $C_2(Z) = D_Z W(0) L_0(D_Z W(0))$ or $C_2(Z) = L_0(D_Z W(0)) D_Z W(0)$. We get

$$C_2(Z) = D_Z W(0) L(Z),$$
 or $C_2(Z) = L(Z) D_Z W(0).$

If $L(Z) + L_0(D_Z W(0))$, obviously each entry of L(Z) is a homogeneous polynomial of the entries of Z of degree one.

If $C_2(Z) = D_Z W(0) L(Z)$, then

$$C_3(Z) = C_2(Z)(D_Z W(0))^{-1}C_2(Z)$$

= $D_Z W(0)L(Z)(D_Z W(0))^{-1}D_Z W(0)L(Z)$
= $D_Z W(0)(L(Z))^2$.

Similarly, we have $C_4(Z) = D_Z W(0)(L(Z))^3, \cdots$. Substituting all these results into (2.5), we obtain

$$W(tZ) = W(0) + tD_Z W(0) + t^2 D_Z W(0) L(Z) + t^3 D_Z W(0) (L(Z))^2 + t^4 D_Z W(0) (L(Z))^3 + \cdots = tD_Z W(0) (I - tL(Z))^{-1}.$$
(2.8)

Similarly, in the case $C_2(Z) = L(Z)D_ZW(0)$, we obtain

$$W(tZ) = W(0) + t(I - tL(Z))^{-1}D_Z W(0).$$
(2.9)

Thus (2.8) or (2.9) holds true at a neighborhood of t = 0. No doubt, W(tZ) is an analytic function of t when $tZ \in R_I$. It implies (2.8) or (2.9) holds true when $tZ \in \mathbb{R}_I$.

Gong, S., Yu, Q. H. et al THE SCHWARZIAN DERIVATIVE (II)

Let $t \to 1$. We have

$$W(Z) = W(0) + (I - L(Z))^{-1} D_Z W(0)$$

or $W(Z) = W(0) + D_Z W(0) (I - L(Z))^{-1}$ when $D_Z W(0)$ is non-singular. Since W(Z) is holomorphic in \mathbb{R}_I , we know that I - L(Z) is non-singular when Z is non-singular.

If $D_Z W(0)$ is non-singular at a point $Z \in R_I$, then there exists a neighborhood of Z, such that $D_Z W(0)$ is non-singular at this neighborhood.

By the uniqueness theorem of holomorphic mapping, we conclude that

$$W(Z) = W(0) + (I - L(Z))^{-1}D_Z W(0)$$

or $W(Z) = W(0) + D_Z W(0) (I_L(Z))^{-1}$ for all $Z \in \mathbb{R}_I$, and hence I - L(Z) is non-singular when $Z \in \mathbb{R}_I$. Thus we have proved that W = W(Z) is defined by (1.2) if (1.3) is true in the case that $J_W(0)$ is non-singular.

§**3.**

Now, we prove that W = W(Z) which is defined by (1.2) is biholomorphic in \mathbb{R}_I .

If it is not biholomorphic, then there exist two points $Z_1, Z_2 \in R_I$, such that $W_1 = W(Z_1) = W_2 = W(Z_2)$. We consider $W(Z) = W(0) + D_Z W(0) (I - L(Z))^{-1}$ at first. R_I is a convex domain, $(1 - t)Z_1 + tZ_2 \in R_I$, if $t \in [0, 1]$. Let

$$Q(t) = D_{(1-t)Z_1+tZ_2}W(0)(I - L((1-t)Z_1 + tZ_2))^{-1} - D_Z W(0)(I - L(Z_1))^{-1}$$

= $(D_{Z_1}W(0) + t(D_{Z_2}W(0) - D_{Z_1}W(0))[I - L(Z_1) - t(L(Z_2) - L(Z_1))]^{-1}$
 $- D_{Z_1}W(0)(I - L(Z_1))^{-1}.$

Then

$$Q(0) = Q(1) = 0,$$

and

$$\frac{dQ}{dt} = \{ (D_{Z_2}W(0) - D_{Z_1}W(0) + (D_{Z_1}W(0) + t(D_{Z_2}W(0) - D_{Z_1}W(0))) [I - L(Z_1) - t(L(Z_2) - L(Z_1))]^{-1} (L(Z_2) - L(Z_1)) \} [I - L(Z_1) - t(L(Z_2) - L(Z_1))]^{-1},$$
(3.1)

and

$$\frac{d^2Q}{dt^2} = 2\{(D_{Z_2}W(0) - D_{Z_1}W(0) + (D_{Z_1}W(0) + t(D_{Z_2}W(0) - D_{Z_1}W(0)))[I - L(Z_1) - t(L(Z_2) - L(Z_1))]^{-1}(L(Z_2) - L(Z_1))\}[I - L(Z_1) - t(L(Z_2) - L(Z_1))]^{-1} \times (L(Z_2) - L(Z_1))[I - L(Z_1) - t(L(Z_2) - L(Z_1))]^{-1} = 2\frac{dQ}{dt}(L(Z_2) - L(Z_1))[I - L(Z_1) - t(L(Z_2) - L(Z_1))]^{-1}.$$
(3.2)

Let

$$A(t) = 2(L(Z_2) - L(Z_1))[I - L(Z_1) - t(L(Z_2) - L(Z_1))]^{-1}.$$
(3.3)

Then

$$\frac{dA(t)}{dt} = 2(L(Z_2) - L(Z_1))[I - L(Z_1) - tL(L(Z_2) - L(Z_1)]^{-1} \times (L(Z_2) - L(Z_1))[I - L(Z_1) - t(L(Z_2) - L(Z_1))]^{-1}.$$

It follows that

$$\frac{dA(t)}{dt} - \frac{1}{2}A^2(t) = 0, \qquad (3.4)$$

when $t \in [0, 1]$. If $G(t), t \in [0, 1]$ is the solution of the initial value problem

$$\begin{cases} \frac{dG}{dt} = -\frac{1}{2}AG, \\ G(0) = I, \end{cases}$$
(3.5)

where A(t) is defined by (3.3), we have

$$\frac{d^2(QG)}{dt^2} = \frac{d^2Q}{dt^2}G + 2\frac{dQ}{dt}\frac{dG}{dt} + Q\frac{d^2G}{dt^2}.$$

By (3.3), (3.4) and (3.5),

$$\frac{d^2G}{dt^2} = -\frac{1}{2}\frac{dA}{dt}G - \frac{1}{2}A\frac{dG}{dt} = -\frac{1}{2}\frac{dA}{dt}G + \frac{1}{4}A^2G = 0.$$

By (3.2), (3.5),

 $2\frac{dQ}{dt}\frac{dG}{dt} + \frac{d^2Q}{dt^2}G = -\frac{dQ}{dt}AG + \frac{d^2Q}{dt^2}G = 0.$

We have

$$\frac{d^2(QG)}{dt^2} = 0\tag{3.6}$$

when $t \in [0, 1]$.

Since Q(t) is an analytic function of t when $t \in [0, 1], G(t) \in C^{\infty}$, (3.6) is true for $t \in [0, 1]$. The matrix $QG\bar{G}'\bar{Q}'$ is a semi-positive definite Hermitian matrix, and hence

$$\operatorname{tr}\left(QG\bar{G}'\bar{Q}'\right) \ge 0.$$

By (3.6),

$$\frac{d^2}{dt^2} \operatorname{tr}\left(QG\bar{G}'\bar{Q}'\right) = \operatorname{tr}\left(\frac{d^2}{dt^2}(QG\bar{G}'\bar{Q}')\right) = \operatorname{tr}\left(\frac{d(QG)}{dt}\frac{d(\overline{QG}')}{dt}\right) \ge 0$$

for $t \in [0, 1]$. That means tr $(QG\bar{G}'\bar{Q}')$, as a function of t in [0,1], is a concave contineous function. We know that $QG\bar{G}'\bar{Q}' = 0$, at t = 0 and t = 1. It implies tr $(QG\bar{G}'\bar{Q}') \equiv 0$, when $t \in [0,1]$, that is, $QG\bar{G}'\bar{Q}' \equiv 0, t \in [0,1]$. Hence $QG \equiv 0, t \in [0,1]$. There is a neighborhood N of t = 0 such that G(t) is non-singular for $t \in N$, since G(0) = I, It follows that $Q(t) \equiv 0$, when $t \in N$. It is impossible.

We have proved that $W(Z) = W(0) + D_Z W(0) (I - L(Z))^{-1}$ is biholomorphic in \mathbb{R}_I .

Using the similar argument we can prove $W(Z) = W(0) + (I - L(Z))^{-1}D_Z W(0)$ is biholpmorphic in \mathbb{R}_I .

§4.

Finally, we would like to make the following remark.

Let us consider the mappings

$$W(Z) = (A(Z) + B)(C(Z) + D)^{-1} \text{ or } W(Z) = (C(Z) + D)^{-1}(A(Z) + B),$$
(4.1)

where $A(Z), B, C(Z), D \in \mathbb{C}^{n \times n}$, all entries of A(Z), C(Z) are the homogeneous polynomials of entries of Z of degree one, and C(Z) + D is non-singular when $Z \in \mathbb{R}_I$.

We consider $W = W(Z) = (C(Z) + D)^{-1}(A(Z) + B)$ at first. Fix $0 \neq \Lambda \in \mathbb{C}^{n \times n}$. We have

$$D_{\Lambda}W(Z) = (C(Z) + D)^{-1} \left[A(\Lambda) - C(\Lambda)(C(Z) + D)^{-1}(A(Z) + B) \right],$$
(4.2)

$$D^{2}_{\Lambda}W(Z) = -2(C(Z) + D)^{-1}C(\Lambda)(C(Z) + D)^{-1}[A(\Lambda) - C(\Lambda)(C(Z) + D)^{-1}(A(Z) + B)]$$

= -2(C(Z) + D)^{-1}C(\Lambda)D_{\Lambda}W(Z),

and

No.1

$$D^{3}_{\Lambda}W(Z) = 6(C(Z) + D)^{-1}C(\Lambda)(C(Z) + D)^{-1}C(\Lambda)(C(Z) + D)^{-1}$$
$$\times [A(\Lambda) - C(\Lambda)(C(Z) + D)^{-1}(A(Z) + B)]$$
$$= 6(C(Z) + D)^{-1}C(\Lambda)(C(Z) + D)^{-1}C(\Lambda)D_{\Lambda}W(Z).$$

It follows that

$$\{W; Z\}_{\Lambda} = 0$$

for $Z \in \mathbb{R}_I$ except a lower dimension manifold of Z such that $A(\Lambda) - C(\Lambda)(C(Z) + D)^{-1}(A(Z) + B)$ is singular.

By (4.2), we have

$$D_Z W(0) = D^{-1} \left[A(Z) - C(Z) D^{-1} B \right].$$

Using the identity of matrix

$$\begin{pmatrix} A & C \\ B & D \end{pmatrix} \begin{pmatrix} I & 0 \\ 0 & D^{-1} \end{pmatrix} \begin{pmatrix} I & 0 \\ -B & I \end{pmatrix} = \begin{pmatrix} A - CD^{-1}B & CD^{-1} \\ 0 & I \end{pmatrix},$$

we have det $D_Z W(0) \neq 0$ if and only if det $\begin{pmatrix} A & B \\ C & D \end{pmatrix} \neq 0$.

Similarly, if $W = W(Z) = (A(Z) + B)(C(Z) + D)^{-1}$, fixing $0 \neq \Lambda \in \mathbb{C}^{n \times n}$, then we have $\{W; Z\}_{\Lambda} = 0$

for $Z \in \mathbb{R}_I$, except a lower dimension manifold of Z, and $\det D_Z W(0) \neq 0$ if and only if $\det \begin{pmatrix} A & B \\ C & D \end{pmatrix} \neq 0$. Thus we may rewrite Theorem 1.1 as

Theorem 4.1. The assumptions are the same as Theorem 1.1. Then $\{W; Z\} = 0$ holds for $Z \in R_I$ if and only if

$$W = W(Z) = (A(Z) + B)(C(Z) + D)^{-1} \quad or \ \ W = W(Z) = (C(Z) + D)^{-1}(A(Z) + B),$$

where $A(Z), B, C(Z), D \in \mathbb{C}^{n \times n}$, all entries of A(Z), C(Z) are homogeneous polynomials of the entries of Z of degree one. Moreover, C(Z) + D is non-singular in \mathbb{R}_I , and $\det \begin{pmatrix} A(Z) & B \\ C(Z) & D \end{pmatrix} \neq 0$ in \mathbb{R}_I . The mappings W = W(Z) which was defined by (4.1) are biholomorphic in \mathbb{R}_I . Actually, mappings (1.2) and (4.1) are equivalent to each other. For example,

$$W = W(Z) = (A(Z) + B)(C(Z) + D)^{-1}$$

= $BD^{-1} + (A(Z) - BD^{-1}C(Z))D^{-1}(I + C(Z))^{-1};$

comparing it with (1.2), we get

$$W(0) = BD^{-1}, \quad L(Z) = -C(Z), \quad D_Z W(0) = A(Z)D^{-1} - BD^{-1}C(Z)D^{-1}.$$

Hence $\det D_Z W(0) \neq 0$ and $\det \begin{pmatrix} A(Z) & B \\ C(Z) & D \end{pmatrix} \neq 0$ are equivalent to each other.

Conversely,

comparing it with (4.1), we get

W

$$A(Z) = D_Z W(0) - W(0)L(Z), \quad B = W(0), \quad C(Z) = -L(Z), \quad D = I.$$

Hence

$$\det \begin{pmatrix} A & B \\ C & D \end{pmatrix} = \det \begin{pmatrix} D_Z W(0) - W(0)L(Z) & W(0) \\ -L(Z) & I \end{pmatrix} = \det \begin{pmatrix} D_Z W(0) & 0 \\ -L(Z) & I \end{pmatrix}.$$

Thus det $\begin{pmatrix} A & B \\ C & D \end{pmatrix} \neq 0$ and det $D_Z W(0) \neq 0$ are equivalent to each other.

The conclusion is also true when

$$W(Z) = (C(Z) + D)^{-1}(A(Z) + B)$$
 and $W(Z) = W(0) + (I - L(Z))^{-1}D_Z W(0).$

Theorem 4.1 is also true if we replace \mathbb{R}_I by a convex domain in $\mathbb{C}^{n \times n}$.

References

 Gong Sheng & FitzGerald, C. H., The Schwarzian derivative in several complex variables, Science in China (Series A), 36(1993), 513–523.

[2] Birkhoff, G. & Rota, G. C., Ordinary differential equations, Gim and Co., 1962.

Vol.19 Ser.B