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Abstract

This paper is divided into two parts. In the first part the authors extend Kac’s classical

problem to the fractal case, i.e., to ask: Must two isospectral planar domains with fractal
boundaries be isometric? It is demonstrated that the answer to this question is no, by con-
structing a pair of disjoint isospectral planar domains whose boundaries have the same interior
Bouligand-Minkowski dimension but are not isometric. In the second part of this paper the

authors give the exact two-term asymptotics for the Dirichlet counting functions associated
with the examples given here and obtain sharp two sided estimates for the second term of the
counting functions. The first result in the second part of the paper shows that the coefficient
of the second term is an oscillatory function of λ, which implies that the Weyl-Berry conjec-

ture, for the examples given here, is false. The second result implies that the weaker form of
the Weyl-Berry conjecture, for these examples, is true. This in turn means that the interior
Bouligand-Minkowski dimension of the examples is a spectral invariant.
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§1. Introduction

Let (M, g) be a compact Riemann manifold with boundary. Then M has a Laplace

operator ∆ defined by ∆f = −div (gradf) that acts on functions defined on M . The

spectrum of M is a sequence of eigenvalues of ∆. Two Riemannian manifolds are isospectral

if their spectra coincide (counting multiplicities).

A fundamental question concerning the interplay of analysis and geometry is: must two

isospectral Riemannian manifolds actually be isometric? If M is a domain in the Euclidean

plane then the Dirichlet eigenvalues of ∆ are essentially the frequencies produced by a

drumhead shaped like M. In this case Kac[14] rephrased the question in poetic terms: can

one hear the shape of a drum?

The problem of uncovering geometric information about M from a knowledge of the

spectrum has a long history and originates with the work of Weyl[21,22] who proved that the
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area of a plane domain is determined by the spectrum. Since Weyl’s pioneering work the

subject has developed along two main fronts. These are

(i) The structure of isospectral domains in Rn,

(ii) The spectral asymptotics of the counting function for domains in Rn.

On the former theme Milnor[18] constructed a pair of isospectral, non isometric six-

teen dimensional tori. There then followed other isospectral pairs of Riemann surfaces

by Vigneras[20], Buser[5], Brookes[2,3], Brooks-Tse[4]; pairs of lens spaces by Ikeda[13], pairs

of domains in R4 by Urakawa[19] and continuous families of isospectral metrics on solvmani-

folds by Gordon-Wilson[11], De Turck-Gordon[9]. Kac’s question concerning planar domains

was finally answered in the negative by Gordon, Webb and Wolpert[12].

Regarding the latter theme, one studies the asymptotics of the Dirichlet counting function

N(λ) ≡ N(λ,∆,M) = #{k | λk < λ}. (1.1)

That is, N(λ) is the number of eigenvalues of the Dirichlet Laplacian ∆ defined by M less

than a given number λ.

As λ → ∞ Weyl[21] established the asymptotic estimate

N(λ) ∼ (2π)−nωn|M |nλn/2, (1.2)

where ωn is the volume of the unit ball in Rn, | · |n denotes the n-dimensional Lebesgue

measure and f(λ) ∼ g(λ) as λ → ∞ means lim
λ→∞

f(λ)/g(λ) = 1.

Following this work Weyl[22] conjectured that

N(λ) = (2π)−nωn|M |nλn/2 +O(λ(n−1)/2) (1.3)

as λ → ∞, which has stimulated active and intensive research for most of this century.

We now know that, under a variety of geometrical and regularity conditions, for sufficiently

smooth boundaries

N(λ) = (2π)−nωn|M |nλn/2 − C ′
n|∂M |n−1λ

(n−1)/2 + o(λ(n−1)/2), (1.4)

as λ → ∞, where C ′
n = [4(4π)(n−1)/2Γ(1 + n−1

2 )]−1 (cf. References in [16]).

In 1979, Berry[1] proposed an extension of Weyl’s conjecture to the case of domains with

fractal boundaries, namely

N(λ) = (2π)−nωn|M |nλn/2 − Cn,HH(∂M)λH/2 + o(λH/2), (1.5)

as λ → ∞, where H ∈ (n − 1, n) is the Hausdorff dimension of the boundary ∂M,H(∂M)

is the H-dimensional Hausdorff measure of ∂M and Cn,H is a positive constant depending

only on n and H. Berry’s conjecture turns out to be false in general but has attracted

considerable attention over the passed decade. Indeed it has been proved that

N(λ) = (2π)−nωn|M |nλn/2 +O(λδ/2) (1.6)

as λ → ∞, where δ is the interior Bouligand-Minkowski dimension of the boundary ∂M (or

the interior Minkowski dimension for simplicity).

For an up-to-date account of these developments we cite Lapidus[16], Chen-Sleeman[7,8],

Kigami-Lapidus[15], Fleckinger-Vassiliev[10].

In this paper we extend Kac’s question to the fractal case, i.e., to ask : Must two isospec-

tral planar domains with fractal boundaries be isometric?
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We demonstrate that the answer to this question is no, by constructing a pair of dis-

joint isospectral planar domains whose fractal boundaries have the same interior Bouligand-

Minkowski dimension but are not isometric. This pair is a sample of a wide class of isospec-

tral non-isometric fractal domains which may be constructed using the methods described

here.

The plan of this paper is as follows: In Section 2 we introduce some basic ideas and notions

required for the construction of our examples. Section 3 describes the examples and Section

4 gives precise asymptotic estimates for the Dirichlet counting functions associated with the

examples. We also prove that the so-called weaker form of the Weyl-Berry conjecture holds

for the examples.

§2. Concepts

2.1. Interior Bouligand-Minkowski Dimension and Measure

Given ϵ ≥ 0, define

M i
ϵ = {x ∈ M | d(x, ∂M) < ϵ}, (2.1)

where d(x, ∂M) denotes the Euclidean distance of x to the boundary ∂M . The set M i
ϵ is

called the interior ϵ-neighbourhood of ∂M . For l ≥ 0, let

µ∗(l, ∂M) = lim
ϵ→0+

sup ϵ−(n−l)|M i
ϵ |n, µ∗(l, ∂M) = lim

ϵ→0+
inf ϵ−(n−l)|M i

ϵ |n. (2.2)

The interior Minkowski dimension of ∂M is defined as

δ = inf{l ∈ R+ | µ∗(l, ∂M) = 0},

or

δ = sup{l ∈ R+ | µ∗(l, ∂M) = +∞}. (2.3)

Observe that δ ∈ [n−1, n] and µ∗(δ, ∂M) ∈ [0.∞]. On the other hand, if H is the Hausdorff

dimension of ∂M then we know thatH ≤ δ. Further, if δ is the interior Minkowski dimension

of ∂M and

0 < µ∗(δ, ∂M) = µ∗(δ, ∂M) < ∞, (2.4)

we say that ∂M is interior δ-Minkowski measurable and denote by

µ(δ, ∂M) = lim
ϵ→0+

ϵ−(n−δ)
∣∣M i

ϵ

∣∣
n

(2.5)

the interior δ-Minkowski measure of ∂M .

In the light of (1.6) and the above notions conjecture (1.5) (i.e., the so-called Weyl-Berry

conjecture) has been modified to

N(λ) = (2π)−nωn|M |nλn/2 − Cn,δµ(δ, ∂M)λδ/2 + o(λδ/2), (2.6)

as λ → +∞ where δ ∈ (n− 1, n) and Cn,δ is a positive constant depending only on δ and n.

In the literature cited above, it has been shown that even (2.6) is false in general (see

[7,10]) and that the conjecture should be further refined. Indeed our isospectral examples

constructed in this paper run counter to (2.6).

2.2. Isospectral Planar Domains

The isospectral non-isometric domains constructed by Gordon, Webb and Wolpert[12]

are simply connected domains of rather complex shape. Since the announcement of their
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work, other examples have been constructed which, although not simply connected, are quite

elementary.

A pair of domains which form the basis of our constructions is due to Chapman[6] and

are shown in Figure 1.

Figure 1a Figure 1b

From [6] or directly using the method of separation of variables it is fairly straight forward

to show that these configurations are isospectral.

In order to discuss the asymptotics of the counting function for domains with fractal

boundaries and so investigate the Weyl-Berry conjecture a basic tool is the idea of tessella-

tion of domains whereby M is approximated by a finer and finer Whitney covering with a

sequence of smaller and smaller disjoint and non-overlapping cubes (see [7,16]). This idea

also motivates the constructions of this paper. The essential difference is that instead of

using cubes we choose a tessellation built up of “tiles” formed from a combination of the

domains illustrated in Figure 1. Specifically we consider tiles of the form shown in Figure 2.

Figure 2a Figure 2b

It is clear that since the domains in Figure 1 are isospectral the same is true of the tiles

in Figure 2.

§3. Isospectral domains with Fractal Boundaries

In this section we describe the pair of isospectral domains which form the basis of our

discussion. The first domain is constructed as follows.

Let Q0 be the central tile shown in Figure 2a. On each of the four sides of length 2 we

erect a similar tile Q1 of size s times smaller. Thus there are four tiles Q1. Next, on the

three exposed faces of a tile Q1 we erect three tiles Q2 again scaled by s. The process is

repeated to obtain the domain M1 shown in Figure 3a.

Thus M1 is the union of disjoint non-overlapping tiles Qk which are copies of Q0 scaled

by s−k. Clearly there are

nk = 4× 3k−1, k ≥ 1, n0 = 1, (3.1)

tiles Qk.
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Figure 3a Domain M1

In order to show that M1 is a domain with fractal boundary we need to determine the

interior Bouligand-Minkowski dimension δ of ∂M1. Furthermore we need to show that the

length of ∂M1 is infinite and also determine a condition on s to ensure no overlapping of

tiles. Now the length of ∂M1 is

|∂M1|1 = 4(8 + 2
√
2)
{
1 +

4

3

∞∑
k=1

(3
s

)k}
,

which is infinite if s < 3. To prevent overlapping of tiles it is easy to see that s > 1 +
√
2.

Thus we have the condition

1 +
√
2 < s < 3. (3.2)

Next we calculate the “area” of interior ϵ-neighbourhood of ∂M1. This is seen to be

|M i
1,ϵ|2 =

K∑
k=0

nk(2
√
2(1 + 2

√
2)ϵs−k − (7 + 2

√
2)ϵ2) + 3

∞∑
k=K+1

nks
−2k, (3.3)

where K is such that

s−(K+1) <
7 + 2

√
2

2
√
2

· ϵ

1 + 2
√
2
< s−K . (3.4)

A simple calculation (see [25, Proposition 3.2, p. 42]) then shows that

δ =
ln 3

ln s
. (3.5)

Let us now turn to the construction of a fractal drum M2 isospectral to M1. This time we

take Q0 to be the central tile of Figure 2b and develop M2 in precisely the same manner as

for M1 and using precisely the same scale factor s. The domain is shown in Figure 3b.

By analysing this domain along the lines of that for M1 we again find that the length

of ∂M2 is infinite provided s < 3, is non-overlapping if s > 1 +
√
2, and furthermore the

interior Bouligand-Minkowski dimension of ∂M2 is again δ = ln 3/ ln s.
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From our constructions we have actually established the main result of this section.

Figure 3b Domain M2

Theorem 3.1. There exist non-isometric, isospectral planar domains with fractal bound-

aries.

Remark 3.1. The domains constructed in this paper are relatively simple examples of a

wide class of non-isometric isospectral fractal domains and it is clear how to generalise and

explore many other domains not only in R2 but in higher dimensions as well.

Remark 3.2. It would be very interesting to construct fractal domains which are simply

connected. One way of proceeding would be to open up sufficiently small cuts on adjacent

sides of connecting elements as in [8, 10]. We shall consider these problems in a forthcoming

paper.

Figure 4 Fleckinger-Vassiliev Example
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An example of a domain in R2 with fractal boundary which is closely related to those

constructed above is due to Fleckinger and Vassiliev[10]. In this example the basic tile Q0 is

the unit square. Thus M is the union of disjoint open squares. The construction proceeds

in precisely the same manner as the above examples in that we append four squares Q1 of

side s−1 to the sides of Q0. Then on each of the exposed sides of Q1 we append squares Q2

of sides s−2 and so on. The resulting planar domain is shown in Figure 4.

For the same reasons as above we require 1 +
√
2 < s < 3. Furthermore the interior

Minkowski dimension of ∂M is again δ = ln 3
ln s .

This example is important in that 0 < µ∗(δ, ∂M) < µ∗(δ, ∂M) < ∞ and that the modified

Weyl-Berry conjecture (2.6) is also false. It does however satisfy what we have introduced

in [7] as the “weaker form” of the modified Weyl-Berry conjecture. That is, there exist

two positive constants C∗
δ , C∗,δ depending only on δ such that the counting function N(λ)

satisfies the two sided inequality

C∗,δµ∗(δ, ∂M)λδ/2 + o(λδ/2) ≤ (2π)−2ω2|M |2λ−N(λ)

≤ C∗
δµ

∗(δ, ∂M)λδ/2 + o(λδ/2) as λ → ∞. (3.6)

§4. Two Term Asymptotics for Dirichlet Counting
Functions and the Weyl-Berry Conjecture

We now turn to the study of the asymptotics of the Dirichlet counting functions associated

with the isospectral fractal domains M1 and M2. Clearly it is sufficient to consider the

counting function for one of these fractal domains; we choose M2. Since M2 is the union of

disjoint squares and triangles we have

N(λ,∆,M2) =
∞∑
k=0

nkN(λ,∆, Qk), (4.1)

where nk is given by (3.1) and N(λ,∆, Qk) can be represented by

N(λ,∆, Qk) = 4N1(λ,∆, Q1k) + 4N2(λ,∆, Q2k), (4.2)

where N1(λ,∆, Q1k) is the Dirichlet counting function for a square of side s−k and N2(λ,

∆, Q2k) is the Dirichlet counting function for a right triangle of the form shown in Figure

1a but with sides 2s−k, 2s−k and
√
8s−k.

It is well known that

N1(λ,∆, Q1k) = #
{
(q1, q2) ∈ N2

∣∣ q21 + q22 <
λ

π2
s−2k

}
, (4.3)

and from a result of Makai[17] we know that the Dirichlet eigenvalues for the right triangle

with sides 2s−k, 2s−k and
√
8s−k are

λm,n =
( mπ

2s−k

)2

+
( nπ

2s−k

)2

, (m,n) ∈ N2, m > n. (4.4)

Thus we deduce that

N2(λ,∆, Q2k) =
1

2
#
{
(q1, q2) ∈ N2

∣∣ q21 + q22 <
(2s−k

π

)2

λ
}
− 1

2

[√2λ

π
s−k

]
, (4.5)

where [x] denotes the integer part of x.
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If we denote by N2(r) the number of positive lattice points within a disc of radius r, i.e.,

N2(r) = #{(q1, q2) ∈ N2 | q21 + q22 < r2}, then

N(λ,∆,M2) = 4
∞∑
k=0

nkN2

(√λ

π
s−k

)
+ 2

∞∑
k=0

nk

{
N2

(2√λ

π
s−k

)
−
[√2λ

π
s−k

]}
. (4.6)

Denoting ϕ(λ,Mi) = 1
4π |Mi|2λ (i = 1, 2) as the first term (i.e., the Weyl term) of N(λ,

∆,Mi), then

ϕ(λ,M2)−N(λ,∆,M2) = 4
∞∑
k=0

nk

[ λ

4π
s−2k −N2

(√λ

π
s−k

)]
+ 2

∞∑
k=0

nk

[λ
π
s−2k −N2

(2√λ

π
s−k

)]
+ 2

∞∑
k=0

nk

[√2λ

π
s−k

]
.
(4.7)

Finally, if we define h(r) = π
4 r

2 −N2(r), then (4.7) gives

ϕ(λ,M2)−N(λ,∆,M2) = 4

∞∑
k=0

nkh
(λ
π
s−k

)
+ 2

∞∑
k=0

nkh
(2√λ

π
s−k

)
+ 2

∞∑
k=0

nk

[√2λ

π
s−k

]
.

(4.8)

Thus we have the following result:

Theorem 4.1. Using the above notation, for i = 1, 2, we have as λ → ∞
|Mi|2
4π

λ−N(λ,∆,Mi) = F1

( lnλ− 2 lnπ

2 ln s

)
λδ/2 + 2δ−1F1

( ln(4λ)− 2 lnπ

2 ln s

)
λδ/2

+ F2

( ln(2λ)− 2 lnπ

2 ln s

)
λδ/2 +O(

√
λ), (4.9)

where

F1(y) =
16

3
π−δ

∞∑
k=−∞

sδ(k−y)h(sy−k), (4.10)

F2(y) =
8

3

(√2

π

)δ ∞∑
k=−∞

sδ(k−y)[sy−k] (4.11)

are two well defined, positive, bounded, 1-periodic and left continuous functions and their

sets of points of discontinuity are dense in R.

Proof. From (4.8) we have

|Mi|2
4π

λ−N(λ,∆,Mi)

=
16

3

∞∑
k=−∞

3kh
(√λ

π
s−k

)
+

8

3

∞∑
k=−∞

3kh
(2√λ

π
s−k

)
+

8

3

∞∑
k=−∞

3k
[√2λ

π
s−k

]

− 16

3

−1∑
k=−∞

3kh
(√λ

π
s−k

)
− 8

3

−1∑
k=−∞

3kh
(2√λ

π
s−k

)
− 8

3

−1∑
k=−∞

3k
[√2λ

π
s−k

]
.

Observe that 3k = sδk, and so if we write y1 = lnλ−2 lnπ
2 ln s , then

√
λ
π s−k = sy1−k and λ−δ/2 =

π−δs−δy1 . Consequently

16

3

∞∑
k=−∞

3kh
(√λ

π
s−k

)
=

16

3
π−δ

∞∑
k=−∞

sδ(k−y1)h(sy1−k)λδ/2 = F1(y1)λ
δ/2. (4.12)



No.1 Sleeman, B. D. & Chen, H. ISOSPECTRAL DOMAINS AND WEYL-BERRY CONJECTURE 17

Similarly if we define y2 = ln(4λ)−2 lnπ
2 ln s , then

8

3

∞∑
k=−∞

3kh
(2√λ

π
s−k

)
= 2δ−1F1(y2)λ

δ/2. (4.13)

Next, by letting y3 = ln(2λ)−2 lnπ
2 ln s , we have

8

3

∞∑
k=−∞

3k
[√2λ

π
s−k

]
= F2(y3)λ

δ/2. (4.14)

Now we denote by P2(r) the number of all lattice points within a disc of radius r. From

a result of Chen Jingrun[23] we have, as r → ∞

0 < πr2 − P2(r) = O
(
r

24
37+ϵ

)
, for any ϵ > 0. (4.15)

Observe that 4N2(r) + 4[r] + 1 = P2(r), and so

0 < h(r) = r +O
(
r

24
37+ϵ

)
, for any ϵ > 0. (4.16)

Since O(r
24
37+ϵ) ⊂ O(r

2
3 ), we have from (4.16)

−1∑
k=−∞

3kh
(√λ

π
s−k

)
=

√
λ

π

−1∑
k=−∞

s(δ−1)k +O(λ1/3)
−1∑

k=−∞

s(δ−2/3)k,

which implies that

−1∑
k=−∞

3kh
(√λ

π
s−k

)
= O(

√
λ). (4.17)

In a similar manner we find
−1∑

k=−∞

3kh
(2√λ

π
s−k

)
= O(

√
λ),

−1∑
k=−∞

3k
[√2λ

π
s−k

]
= O(

√
λ). (4.18)

By combining (4.12)–(4.18) we see that the formula (4.9) holds.

Since µ∗(δ, ∂Mi) < +∞, for i = 1, 2, we know from (1.6) that |Mi|2
4π λ − N(λ,∆,Mi) =

O(λδ/2), as λ → ∞, which implies that Fj(y) (j = 1, 2) is well defined, positive and bounded.

Furthermore it is obvious that Fj(y) = Fj(y + 1), i.e. Fj(y) is 1-periodic. Finally we prove

that Fj(y) is left continuous. Actually we see that the functions h(sy−k) and [sy−k] ( and

so F1(y) and F2(y) ) are left continuous with discontinuity in y ∈ R, satisfying

s2(y−k) = q21 + q22 , k ∈ Z, qj ∈ N, j = 1, 2, (4.19)

sy−k = m, k ∈ Z, m ∈ N, (4.20)

respectively.

If we take q1 = q2 = q in (4.19), then we see that h(sy−k) is discontinuous at those points

y ∈ R, where y = ln 2
2 ln s +

ln q
ln s +k, k ∈ Z+, q ∈ N. For any given y0 ∈ R, choose k ∈ Z with

|k| sufficiently large so that ln 2
2 ln s + k < y0. Furthermore, by choosing qk ∈ N, the largest

positive integer for which

yk =
ln 2

2 ln s
+

ln qk
ln s

+ k ≤ y0,

then we have

0 ≤ y0 − yk <
ln(qk + 1)

ln s
− ln qk

ln s
=

1

ln s
ln
(
1 +

1

qk

)
. (4.21)
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Observe that qk → +∞ as k → −∞ and so (4.21) implies that yk → y0 as k → −∞. That

is, the set of points of discontinuity of F1(y) is dense in R.

Similarly from (4.20) we know that [sy−k] is discontinuous at those points y ∈ R satisfying

y = lnm
lns + k, k ∈ Z,m ∈ N. For any fixed y0 ∈ R, we choose k ∈ Z so that k < y0 and

choose mk ∈ N, the largest positive integer, so that yk = lnmk

ln s + k ≤ y0. That is,

0 ≤ y0 − yk <
1

ln s
ln
(
1 +

1

mk

)
. (4.22)

Since mk → +∞ as k → −∞, (4.22) shows that the set of points of discontinuity of F2(y)

is dense in R. This completes the proof of Theorem 4.1.

From Theorem 4.1 we know that the Weyl-Berry conjecture (2.6) is not true for the

domains M1 and M2. This is because in these examples the second term of N(λ) is an

oscillatory function of λ. Theorem 4.1 also shows that Conjecture 3 in [16] holds for strictly

self-similar fractal drums M1 and M2.

We now go on to prove , for the domains M1 and M2 constructed here, that the weaker

form of the Weyl-Berry conjecture (3.6) holds. Actually we can give two sided sharp esti-

mates for the second term of N(λ,∆,Mi) (i = 1, 2), which demonstrate that the interior

Minkowski dimension δ is a spectral invariant.

Theorem 4.2. Following the above notation, for i = 1, 2 we have as λ → ∞

c2(δ)λ
δ/2 + o(λδ/2) ≤ |Mi|2

4π
λ−N(λ,∆,Mi) ≤ c1(δ)µ

∗(δ, ∂Mi)λ
δ/2 + o(λδ/2), (4.23)

where

c1(δ) = (1 +
1

π
)

1
2 2

2−δ
2 (2− δ)

δ−2
δ−1 (δ − 1)−1 +

1

4π
2

2−δ
2 , (4.24)

c2(δ) =
16

3
cdπ

d−1(1 + 2−d)
1

1− s1−d−δ
+

4sδ−2

π(1− sδ−2)

+
8
√
2

3π(1− s1−δ)
− 8

3(1− s−δ)
(4.25)

are two positive constants and in which cd > 0 is a constant depending only on d ∈ (1/3, 1/2].

Proof. From a result in [7, Corollary 2.1] we have directly for i = 1, 2,

ϕ(λ,Mi)−N(λ,∆,Mi) ≤ c1(δ)µ
∗(δ, ∂Mi)λ

δ/2 + o(λδ/2) (4.26)

as λ → ∞, where c1(δ) is defined by (4.24).

To obtain a lower bound for ϕ(λ,Mi) − N(λ,∆,Mi), we take L ∼ lnλ
2 ln s (i.e., L → ∞ if

and only if λ → ∞), then k > L implies 2
√
λ

π s−k < 1. Furthermore from the definitions we

know that for r ∈ (0, 1), N2(r) = 0, h(r) = π
4 r

2 and [r] = 0.

Next, from [24] we know that the positive bounded function 1
rh(r) is at most polynomially

decreasing as r → ∞, and that there exists a positive constant cd > 0 depending on d ∈
(1/3, 1/2] such that

inf
r≥1/π

{h(r)rd−1} ≥ cd > 0. (4.27)

This implies that

h(r) ≥ cdr
1−d, for r ≥ 1/π. (4.28)
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Now we have from (4.8)

ϕ(λ,Mi)−N(λ,∆,Mi)

=
16

3

L∑
k=0

3kh
(√λ

π
s−k

)
+

16

3

∞∑
k=L+1

3k
π

4

(√λ

π
s−k

)2

+
8

3

L∑
k=0

3kh
(2√λ

π
s−k

)
+

8

3

∞∑
k=L+1

3k
π

4

(2√λ

π
s−k

)2

+
8

3

L∑
k=0

3k
[√2λ

π
s−k

]
.

Since 3k = sδk and sL ∼ λ1/2, on using the estimate (4.28) we have, for d ∈ (1/3, 1/2],

L∑
k=0

3kh(

√
λ

π
s−k) ≥ cdπ

d−1
L∑

k=0

λ
1−d
2 s(δ−1+d)k ∼ cdπ

d−1
L∑

k=0

s(1−d−δ)(L−k)λδ/2,

which implies that
L∑

k=0

3kh
(√λ

π
s−k

)
≥ cdπ

d−1 1

1− s1−d−δ
λδ/2 + o(λδ/2). (4.29)

Similarly
L∑

k=0

3kh
(2√λ

π
s−k

)
≥ cd

( 2

π

)1−d 1

1− s1−d−δ
λδ/2 + o(λδ/2). (4.30)

Next
∞∑

k=L+1

3k
π

4

(√λ

π
s−k

)2

∼ 1

4π

∞∑
k=L+1

s(δ−2)(k−L)λδ/2 =
1

4π

sδ−2

1− sδ−2
λδ/2 + o(λδ/2). (4.31)

In a similar manner we have
∞∑

k=L+1

3k
π

4

(2√λ

π
s−k

)2

=
1

π
· sδ−2

1− sδ−2
λδ/2 + o(λδ/2). (4.32)

Finally, we know that
L∑

k=0

3k
[√2λ

π
s−k

]
≥

L∑
k=0

3k
(√2λ

π
s−k − 1

)
,

and that
L∑

k=0

3k
√
2λ

π
s−k =

√
2

π

1

1− s1−δ
λδ/2 + o(λδ/2), −

L∑
k=0

3k = − λδ/2

1− s−δ
+ o(λδ/2). (4.33)

Combining (4.29)–(4.33) we obtain the lower bound estimate in (4.23) and so Theorem

4.2 is proved.

Concluding Remarks. In this paper we have demonstrated by example that there

exist non-isometric, isospectral planar domains with fractal boundaries . The examples and

their method of construction allow one to generate a wide class of non-isometric,isospectral

domains. It would be of considerable interest to study the problem in relation to simply con-

nected fractal domains and in higher dimensions. Furthermore, regarding the asymptotics of

the counting function, our examples show once again that the modified Weyl-Berry conjec-

ture is false in general, but that the weaker form of the conjecture holds. It would therefore

be of interest to explore the question of whether there exist non-isometric, isospectral planar

domains with fractal boundaries and for which the modified Weyl-Berry conjecture holds.
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