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Abstract

The author studies the oscillating multipliers on Riemannian symmetric space SL(3,
H)/Sp(3). The results are analogous to that for Riemannian symmetric spaces of rank one
and of complex type.
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§0. Introduction

We consider the family m, ; of radial multipliers on noncompact Riemannian symmetric
space SL(3,IH)/Sp(3), defined by

Map(N) = (I + [p][2) 3NN T Rep>o 6 > 0.

Let T, be the associated convolutive operator (see section 1 for its precise definition). The
LP(IR"™) boundedness of Euclidean analogue of T ; are well-known (cf. [5] for a1 and [11]
for a =1).

Guilini and Medal® have studied the oscillating multipliers 7, u,b on noncompact Riemann-
ian symmetric spaces of rank one. The values a = 1 and a = 2 are of particular interest, since
the operators 77, and 75, are closely related to the wave and the Schrodinger equations.
Recently, Alexopoulos!!! generalizes these results to the connected Lie groups of polynomial
growth and Riemannian manifolds of nonnegative Ricci curvature. In presente paper we
extend the results of [6] to Riemannian symmetric space SL(3,1H)/Sp(3). More precisely,
we shall prove

Theorem. For Riemannian symmetric space M = SL(3,1IH)/Sp(3), the convolutive
operators T, ;, associated with the oscillating multipliers mq , have the properties:

(1) when a > 1, T, p is bounded on LP(M) if and only if p = 2;

(2) when a =1, T, is bounded on LP(M) if |2 — L|<Beb. 'n = dim M = 14;

p 2= (n—-1)
(3) when a < 1, Ty is bounded on LP(M) if \1% — 1|<Beb
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¢1. Preliminlaries

1.1. Let H be the division ring of quaternions and sl(3, IH) be the real simple Lie algebra
(which is written as g) of all matrices of order 3 over IH, with imaginary trace. With respect
to Cartan involution 6 defined by 6(Z) = ftf,Zeg, we have the Cartan decomposition
g = k®p. The set a(Cp) formed by all real diagonal matrices is a maximal abelian subspace
of p. Each Hea can be presented as H = Hy = H(y, 4,.1,) With t1 + 12 +t3 = 0. We take a
positive Weyl chamber a™ = {H;€alt; > to > t3}. Then the set of positive roots of (g,a) is
AT ={a, 8,7}, where a(H;) = t1 — to, B(Hy) = ta — t3, v(Hy) = t1 — t3. For each (AT,
let g¢ = {weg|[H, X] = £(H)X,VHea} be the root subspace of {. Then m¢ = dimg® = 4.

The half-sum of the positive roots is p = 3 3> meé =2(a+ B+ 7) = 47 (see [8]).
et

1.2. Let a* be the real dual of a and af, be the complexification of a¢*. The Kiling form
B of the Lie algebra g induces an inner product (.,.) and a norm ||.|| on p, which are defined
respectively by (X,Y) = —B(X,0Y) and || X||* = (X, X),VX,Yep. For each Aea*, let H)y
be unique element €a such that A(H) = (H, H) for every H€a. The inner product and the
norm on a* are defined respectively by (A, u) = (Hy, H,) and [|\||? = ||H,||? for A, p€a*;
these inner product and norm are extented complexificaly to af.

The Weyl group W of (g, a) is identified to the permutation group of order 3 by setting
OH 1y ts.t5) = H(ty 1)ty tosy) 0T Hty 1,15 €a and c€W. The action of o(€W) on A€a™ (or
€ay,) is given by duality, oA(H) = Ao ™1 H) (see [8]).

1.3. Let n = > ¢°. Denote by K, A, and N the analytic subgroups of G, having
cent
respectively the Lie algebra k, a, n. Then G = KAN is an Iwasawa decomposition of G.

Vz€G, the Iwasawa projection H(z) of z is a unique element €a such that reKel @ N,
The elementary spherical functions ¢y () are defined asl”!

pa(z) = / eP=PHER) g Neap..
K

1.4. Let C°(G//K) be the space of all bi-K-invariant smooth functions on G with a
compact support. The spherical Fourier transform is defined by

fo) = /G f@)p s(@)dz, Aeah, [ECT(G//K).

The Abel transform of f is given byl®l Af(H) = er(H(®) Iy f(e@n)dn. We know that
the spherical Fourier transform ~is the composition of the Abel transform A and of the
Euclidean Fourier transform F: f (A) = FASf(N), Aeag. Conversely, if there exists the inverse
Abel transform A~!, then the following inverse spherical Fourier transform holds!®!:

fey=ATTF f(eM), Hea, (L1)

where F~! is the inverse Euclidean Fourier transform on a¢*. It is also valid that
£ = [ Fyer(eletn] i, (12)

where c¢(\) is the Harish-Chandra’s c-function.

1.5. The inverse Abel transform for Riemannian symmetric space M = SL(3,TH)/Sp(3)
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. for every regular Hea and feC®(G//K),
=c ] sinh*Qg(H){agaazﬂagw — 3" |JalPcotha(H)dp, 8%, 0%

LeAT o, By

+ Z ||oz\|2||ﬁ||QCothoz(H)cothﬁ(H)@Ha3Hﬁ<91%1W - [ H ||€]|*cothé (H)

@B,y et
1 - —17
+5 T lgliPsinn"6(H) | 0w, 011, 0 AF* F(1D) (1.3)
feAt
where Op, (f)(H) = ].IH(I) 1[f(H 4 cHe) — f(H)], > stands for the sum for all cyclic
E— o, B,y

permutations of «, 3,7, for example

Z |‘04||200JChOé(I‘I)aHQ812%381%17 = ||a||2(:Othoz(ff)8Ha{)Igfﬁc‘aihY + ||5||200th5(H)0%1a8Hﬁ8%u
a, B,y
+ nlIPcothy(h) 0%, 0%, Om.,

The elementary spherical functions oy of the group G = SL(3,H) arel”]

et = {0, &) ({p, &) +11&%) 473 et
e 5£[+[<M,£>(<A,£>2+|g||4) sinh2¢( }Z t

X { H ((iwA, &) — ||¢][Pcoth &(H)) _% H ||§||281nh*1§(H):|eiw)\(H)_
gent ceAr (1.4)

The measures on K and on a are normalized in a way such that!"!

/ f(z da:—c/ dk/f ) [] sinh*¢(H)dH, VfeCX(G//K). (1.5)

feAt

We know that!®] [ = dima = 2 is the rank of M = SL(3,TH)/Sp(3). If denotem = 3 mge =
feAt
12, then it is clear that n =dim M =m + [ = 14.

1.6. A convolutive operator on a noncompact Riemannian symmetric space G/K is an
operator T on the space LP(G/K), which commutes with the left G-translations. By the
spherical Plancherel theorem, for each convolutive operator T' on L?(G/K), there exists a
W-invariant function  on af, such that (T'f)~(\) = 1 f()\). Conversely, certain functions
1 on af, the so called multipliers, correspond to convolutive operators T" on LP(G/K).
The purpose of the present paper is to study the multipliers mg, 5(A) and their associated
convolutive operators Ty ;, on Riemannian symmetric space M = SL(3,IH)/Sp(3) (see [6]):
Topf(2) = [,. map(N) frpale(N)|2dA.

§2. Basic Facts and the Case a>1

In this section we set down some basic facts concerning the multipliers m, ; and their
associated convolutive operators T,;. Then we treat the most trivial case a > 1. Since

rt = > 0(5_1)6_”“6&7,1" > 0, we get

+oo
Topf(z) = F(lb) /0 g(g—l)f*qgﬁa(x)da, (2.1)
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where
i—o 2 2y 5 _
qm(x):/ =) AN+ # ) (1 [e(A)[~2dA. (2.2)

By spherical Plancherel formulai

| F*Goal L2y <e 171 fll L2y (2.3)
thus 7,5 extends to a bounded operator on L?*(G/K) for every admissible a and b. Let
rqp be the radial distribution on G/K such that 7y, = mgyp, then Ty pf = f*rg . Let Ty,
denote the adjoint operator of 1, ;. Then 17 1, corresponds to the multiplier

(N = (I + [1l|?) 2o NP - Repb>0, o> 0.

Therefore, when dealing with the L? boundedness of Tj, ,, we can restrict ourselves to the
case 1 < p < 2. Firstly we establish an orthonormal basis of a.

_ H, _ _H, 2Hp :
Lemma 2.1. Let H; = HQWHQ = Al + NI Then (Hy, Hs) is an orthonormal

basis of a.

52,

<Ht, Z 2m§£ Ht)f( ) = 24(2t181 + 2t980 + t180 + tgsl),
EeAT

hence ||Hy||? = 48(17 + t3 + t1ts). Let H, = H(a1, a2, —a1 — ag), with a1, a;€R. Then
tl — tQ = Oé(Ht) = <Ht, Ha> = 24(2t1a1 —+ 2t2a2 + tlag + tgal),

Proof. For every pair Hy = H, tg,—t1—ta)s Hs = H(g, sy, — s, —s5)€Q, it is well know that

so H, H(2 —L0) The same argument gives

B_ (0’24’ %)’ (214’07 24)
From these expressions we obtain easily
1 1
2 2 2
p— — — = = = . 2.4
o2 = 1812 = 112 = 5. —{asB) = (8,7 = (v, = o (2.4

Using these equalities we can verify that (Hy, Hy) is an orthonormal basis of a.
Take A1, Ao€a* such that A\;(H;) = 0;;,1<¢,7<2. Then (A1, A2) constitutes an orthonor-

2
mal basis of a* and of af.. Therefore, every A€a} can be written uniquely as A = > 7,
j=1

2
with r;€C. By the same reason, we have p = Y p;); with p;€IR". Hence
j=1

b 2 a

Map(N) = [22:(7“]2 + p?)] E expi[Z(T? + P?)] i
— ;

J= Jj=1
Denote by S. the domain {A€af|, |[ImA;| < ep;},0 < e < 1, then we have
Lemma 2.2. When a > 1, mq,(N) is not bounded in Sy.

2
Proof. Writing A = )" (0, + i), with 0 = >~ 0,;A;€a*, we have

Jj=1

|||A||2+||p||2|={ia 05— 7) +4[Z2:0mr} ,
j=1 j=1

Nl

and

arg (|| + ||pl|?) = aI‘Ctan{[Qi:O’jTj} {22: a +p] — )}’1}.
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It is not difficult to see that
Imap (M| = [[IAZ +[]pl P2
If @ > 1, then we have

AP+ (9.5)

EQ:JJ'TJ". (2.6)

=1

HIAIIZ =+ [lol*[2

. a 3
sin (Garg(IIA + [1ol|) [ ZellIAN2 + 1121

If 0;(1<j<2) are sufficently large,

Sz +a[Son] <2 X od) (Lt 42y ) <a[ o]

Jj=1 j=1 Jj=

._.
<
I
—
<.
I
—
<
I
—

hence
2 1 2 2 1
2 2
ol NE+ 1l 2| S om| 22002 (2.7
j=1 j=1 j=1

In view of (2.6), (2.7) and (2.5), we are ready to draw our assertion.
Proof of Part (1) of Theorem. The combination of Lemma 2.2 and Theorem 1 in [3]
implies immediately this result.

63. The Case a=1

Set ¢» = g, and let Ty, be the associated convolutive operator. Then from (2.1)

T et :L " o0 eMdo
1,bf( ) F(b) 0 qu( )

hence

| ! /+ (>-1) || || d
1 g,
F(b) 0 95 11(p,p)

where |[.||(,,») stands for the operator norm on the space L?(G/K).
In view of (1.1), (1.2) and (2.2), if denote z =i — o, then

do(e") = (2 IHIPHIPIN 2y gy = A1 F =1 (2P +HI 2y (),

Lemma 3.1. F'4,(H) = cz(\/||H|]? + 22)~ HlKHl(\/HHHQ—i—zg), where K, is the

second kind modified Bessel function (see [10, p. 66]).
Proof. We know that g, (\) = e*VINPHIPI?  while (see [10, p. 73])

z 2 3
VIAPHIAR = = =2y (= 2/ + T1o12) (VIIA + T101)?
is a radial function on g¢*, the Theorem 3.3 of [14] gives
[V PTETnas — a2 [T -2k (e TR T

1
X (VI + 112112 2 Tz (INHIDIA AL
where J, is the Bessel function of order v. Then from [10, p. 104] we get

VIR0 5 = o TP 5 22) % K s (ol THTP +2).

In the last step we have used the property K_,(u) = K, (u) (see [10, p. 67]).
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Lemma 3.2. For each EEA™, we have

O AA o (H)} = —c2(/[HIP +22) 5 VK s (lol|VITHIP + 22)e(H

Proof. We know that (see [10, p. 87]) [u K, (u)]' = —u~Y K, +1(u), and by the definition
1
O (1HI) = lim L((H 4 <H, 1 4 <) — (H, 1)) = 26(H),

hence dg, (||H||) = £(H)||H||~". Then the chain rule gives the desired rusult.
Now, with the help of Lemma 3.2, we can draw step by step the inverse Abel transform
of F~14,(H). For the sake of brevity we denote from now on

ko (H) = (VIHIP? 4+ 22) " Ko (el VI HI]? + 22).
Hence Lemma 3.2 can be written as Op, {CZk(HTl)(H)} = —czk(HTlH)(H)g(H).

Lamma 3.3. If denote g(H) = [] &(H) = a(H)B(H)v(H), then it is valid that
feAt

O, 0n, 0, {F 4o }(H) = —CZk(lilJrg)(H)g(H)-
Proof. By Lemma 3.3 we get Oy {F o }(H) = czk(z+1+1)(H)7(H),
On, O AF 1o} (H) = cx{krss o) (H)B(H)y(H) — ) H){(B, 1)},
O, Or, Or, {F 140 }(H) = cx{ =k ya) (H)g(H )+k(l+1+2)< (e, B)v(H)
+ (8,7 a(H) + (v, ) B(H)]},

but in view of (2.4) and of the fact that v(H) = a(H) + S(H), the second term of the right
hand side of last equation is zero, so our assertion is valid. Again by Lemma 3.2,

On, On, 0fy {F G }(H) = ca{krsr gy (H)g(H)Y(H) — k11 ) (H) (9, 9) (H)}

1

S DL )
=0

where Ay 9;42(H) is a (2j +2) degree homogeneous polynomial of H (abbrivated to (2j+2)-
deg.h.p. of H ) with the coefficients depending on ~. Similarly we have

O, O3y, 0 {F i} (H) = c2{—k 11, (H)g(H)B(H)y(H)
ks (D [B(H) (911, 9) (H) +7(H)(9r1,9) ()] — k151 5 (H) (911,011, 9) (H)}

2

=cz Z ks gy (H)Bg 2501 (H),
j=0

where Bg ~ 2j4+1 is a (2j 4+ 1)-deg.h.p. of H with the coefficients depending on 3, 7.
Finally, if consider (a, 8)v(H) + (8, v)a(H) + (v, ),B(H) =0, we have

O, 03, 0% {F 4o} (H) = cx{ksr o) (H)g(H)? = Ksr y5) > BUH)Y(H) (01, 9)(H)
a,Byy
ks gy () S [a(H) (01,00, 9)(H) + (o, 8) (9, 9) ()]
By
~ Kt oy (H) (911, 01, 011,9) (H) }

3

= Ccz Z k(%_‘_g_;'_j) (H)C2] (H)’

Jj=0
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where Cy;(H) is a 2j-deg.h.p. of H with the coefficients which are the symmetric functions
of a, B,7, and in particular Cg(H) = [g(H)]?.

Substituting these expressions of 8110; 8%} a}’;w, where 1<j,, j3, j,<2, into (1.3), we obtain
the explicite expression of ¢, (ef?), i.e.,

3
)=rcz H sinh™2¢(H {Zk l+1+3+3) H)Cy;(H)
7=0

LeAT

=Y ketgrpar)(H) Y llolPeotha(H) By y 541 (H)
j= B,y

1
+ 3 Ky 3 P18 cotha(H)eothd () Ay aq+5(H)

j=0 By

etz [ TT NiPeothe(an) + 5 TT lielPsinh~e()] bo(a).

geat N (3.1)

With the aid of (3.1), we can estimate the L'-norm of ¢,. But for this purpose we yet
need an auxilary fact, i.e., the following

Lemma 3.4. Ify is a fized vector in R™ and f is a radial function in L*(IR"),n>2, then

n—2 +OO
| s@evds =il % [ (el g2 lulliel)
R™ 0

where I, is the first kind modified Bessel function (see [10, p. 66]).

Proof. It is sufficient to replace —izy by xy in the proof of Theorem 3.3 in [14] and
consider the definition of I, (see [10, p. 66]).

Lemma 3.5. The following estimation is valid:

o, if o>1,
lgollLrc/r) = ||Ta|(1,1)§c{ (LHYy*=", if o< 1.
Proof. We know that (see [10, p. 66, p. 139])

L0) (my=v if 40 by (5)7,if w0,
KV(’U,)N { ( )u ’ ’ and IV(U)N { F(l) Zu if U——+00
2u V2um ’ ’

e ", if u—+o0o,
(1) 0>1,||H||>1. From above asymptotic expansion, there exists a ¢ > 0 such that
ke <ell NH|? + Z2|7(%+j)6*\lp\llvHHH2+Z2\<C||H||f(¥+j)6*||pll\\HH. (3.2)
2 1) -
We see that the leading term in (3.1) is l<:(z+71_~_6)(H)C’G(H)7 so by (3.2) and Lemma 3.4

+oo
/ 1y [ siobe(m)|dH<co / (E| =7 W o (ol L]
. cenr !

while from the asymptotic expansion of I,,, there exists a constant ¢ > 0 such that
o([lpllI| H I <el | H|| =2 ellPIF ) H[>1, (3.3)

hence

/IH>1

+oo
1) T sinbe( |dH<ca/ \|H|[~ % d||H|| < co.
cen+ 1
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(2) 0>1,||H|| < 1. In this case, (3.2) remains valid, while |Io(||p||||H|])|<c, V|| H]| < 1.

We observe that each term in (3.1) does not exceed k(lJrTl y(H), so

+6

1
/ )y T sinh*( \dH<co/ e WHEI | 7|2 d]|H|| < co.
||H||<1 ceAt 0

(3) o < 1,||H]|| > 1. This time, (3.2) and (3.3) are also valid, while |z| = |i — o] < ¢. The

same argument as in (1) implies that [ |g,(e) [] sinh*¢(H)|dH < c.
[|H[|>1 fent
(4) o < 1,||H|| < 1. From the asymptotic expression of K, there exists a constant ¢ > 0

such that
ki y g (HDI<elVI[HI]? + 22|12 — (|| H|? + 02 — 1) + 4023012 (3.4)
For ||H|| < 1, we have VE€A™, | coth &(H)|<c||H||~!. Therefore,
| cotha(H) Bg,y,142j (H)|<cl[H||*,  0<5<2;

| coth (H)cothB(H) A a0 (H)|<c||[H|[¥, 0<j<1;

[ TT lelPeothe(ny + 5 TT lelPsinhe(a)] o()<c.

feAt EeAt

Hence we get

-/IH 1 H) ] sinn'e( |dH<CZ/ =P [ sinb’¢(H)dH.
<

ceAt \|<1 cent
[l H]|

Due to (3.4), the last integral <c fo
[(I[H[]P+02=1)%+402]

s d||H]|. Change the variable u =

LH|®+0?~1

% , SO

o

! 0 ISl du 1\ "7
/ 2 2” : ntl dlIH| = (7> 2 / 2)"5+ <c(7> -
o [(||H||?+0%—-1)2+40?%] = o L (1+wu?)2 o

This completes the proof of Lemma 3.5.
Proof of Part (2) of Theorem. Lemma 3.5 signifies that

o, if o>1,
Ty iy = ||qa||L1<G/K)gc{ o

7, if o< 1.

On the other hand, (2.3) means that ||g,||(,2)<e7!l°Il.
By the interpalation theorem, if 1 < p < 2, there exists a constant d,, > 0 such that
—d, o .
e %7, if o>1,
ullonzef (g i oo,
Thus

IN
”\
o

[eawy (s ) / o BTy || (ppydo

1 / [Reb—1+(n—1)(1—1)] /+°° (Reb—1) —d
< — ¢ n wNdo + o(Reb=1) g=dpo gy
(b { . }

Weseethatwhen1<p<2and5—%<Efl{, )y < +o0. For 2 < p < +o0, the

duality deduces the same conclusion. So we obtain Part (2) of Theorem.
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t4. The Case a<1

In this section we deal with the part (3) of Theorem; our techniques are similar to that
in [3] and in [13]. Let ¥ be a smooth radial function on M such that 0<y<1, (ef) =1
for ||H||<vV/Ro and ¥(efl) = 0 for ||H||>Ry, where Ry is a suitable number > 1. We write
Tap = YTap+ (L =P)rap =74, + 72, and define TJ , by T bf fx ra pJ = 1,2. First, we
deal with T7 .

Lemma 4.1. For0<a <1, o +it€S., N = N1 + Ns, we have

1021922 {map (o +iT)} <co (1 + ||o|[)~RebHN (a1,

Proof. When 0 < a < 1, it is valid that

2
al . a _1
A2+ 11o121% | sin (Sarg(INIZ + lloll2)) |<e| S oms [HIAE + 1o},
j=1
, & 2 2 294 3
L 2
but NP+l = {[ Y2 o2 =] +4(Xam) } > (D)
j=1 j=1 j=1

50 A7+ [1pll?/%

sin (Sarg(INI2 + ]2 )\<c(§2) n) <e

Jj=1
From last inequality and (2.5), it is obvious that, for 0 < a < 1,

[ma(o +ir)|<c (I + 1ol ™5 <eo(1+ [la]]) 7 <P,
The direct computation gives

8N18N2{ma p(o+im)}=(i

Reb

(Il +r][* + |[pl[*)E=DN

w™
2
H oj +1i7;)Vimg p (o + iT) + the terms of lower order.

2
Since | [] (o + i7;)Ni|<c(1 + ||o||)™, we reach immediately the desired conclusion.

Lemma 4.2. We have

rg,b(eH) = H sinh™ § / Map(A .P(3+j)()\7H)ei/\(H)dH7
cent

where Ps(\ H) = H </\’f>2a

feAt

PO\ H) = (0 a)* (0 B2 () Iy [Peothy (H),
a,B,y

PyAH) = > (0 a)* (N BY O IBIPII[PeothB(H )cothy(H),
a,Byy
Py H) = { TT lleliPeothe(n) + 3 T s} TT .60
EeAT 5€A+ EeEAT
Proof. From the definition of rg,b and the formula (1.2),

rale) = (L= 0)(e) [ ma(one) s (11)
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We know that®l [c(A)[2 = c(A)e(—A), and for g = si(3,H) (see [7]),

11 e &8 +IEIP)
W= 11 Gxaimater:

Substituting this expression of c(\) and the expression (1.4) of ) into (4.1), we have

27b(eH) H sinh™ § /mab H — i\ &) Zdetw

feATt

.
et et weW
X { [T Gwr &) — 3 (wh a)(iwA, 8| cothy(H)
fent o, B,y
+ Y (iw,a)[|B]1%|7]|*cothB(H)cothy (H)
a,B,y
[ TI NelPeotnecry + 5 H €][2sinh=2¢(H) | fe X ax,
geAt
Change the variable N = w=!\. Since [] (- z/\’,§> =detw [ (—14\E), asin [12], if
EeAT feAt
denote by |W| the cardinality of the Weyl group W, we obtain
12 (M) = (L= )W [] sinb%¢(H / mas) [T 0.9
EEAT £€A+
x { [T e +i 3 (na)d B)liliPcothy ()
fent a,B,y
= > (A a)BIP]IV[PeothB(H)cothy(H)
o, B,y
1 .
. 2 1 2. 1 -1 iA(H)
il TI llelPeother) + 5 TT liglPsinh ()] fe* ™,
EeEAT EeAT

which is the desired result.

By the same argument as in Lemma 4 in [3], we have for every NeIN,

ety P m - , iAH)
r2ale™) = (1= o) H)E€HA+sinh2€(H) f.ev] “’b(A);}P(“““’H)] D

where D, is the directional derivative along p.
3
Since the function D} [Map(.) Zo Pi45)(, H)|(A) is holomorphic for A€S;, we may
J:
change the contour of integral to a* 4 i(1 — €)p, so
p(e) "
[1 sinh®¢(H)

geA+

r2,(ef) = c(1 — )2 ()

a,

6_(1_E)p(H)U€(H),

where
3
U(H)=(1- Qp)%(h)/ Df)v {ma,b(-) Z P(3+j)(', H)] (o +i(1— s)p)ew(H)da.
a* =0

Lemma 4.3. We have f |U.(H)|?dH < c..



No.1 Zhu, F. L. OSCILLATING MULTIPLIERS ON RIEMANNIAN SPACE

31

Proof. Denote U.(H) =

HPﬂw
&

3+j.e(H), where

UG,E(H) = % / mab H <’£>2} (0’+Z‘(175)p)€i0(H)d0,

geAt

Us(H) = (1—4)2(H) > ||y][*cothy(H)

g / DY [mas() (@), BY (e + (1 = )p)e” Pdo,
Use(H)=(1—-1)2( [H ||§H2C0th£( )+ 3 H ||§||2smh 5( )

ceAt cent

< [ D5 [mas) TT 670 i1 e
< gent

By Euclidean Plancherel formula,

[ Woctmpar < [ { [ DY [mast) T 0]+ i1 ==y an

cen+

/’D Map(: <~,§>2}(J+i(lf€)p)’2d0.

When ||H||>v/Ro, (1 — )2 () = 0, and VEEAT, coth &(H) is bounded, so

[ mpars 5 [ 1 a0 82+ i - )P

afy e

The same argument gives

/ Use(ED)PdH < 3 / DN 1m0 () @) B) (M (o + (1 — £)p) o,

a,By =
/\Ugs P < 3 [ 0¥ maal) I] o +i1 - )
a8,y e cEAT

It is clear that D, is a linear combination of d, and Jg, hence a linear combination of 0;

and Jo. So in view of Lemma 4.1, we have

DX [mas() T -8°] (0 +i(1—2)p)
geAt
N
SZ’%[DN ")y 11 ¢ } +i(1—s)p)\
LeAT
< o1+ [l DO R <6 (14 |l (O+H oDV,

Taking N = [ ] 1, we have

+oo
/IUG,E(H)IQdHSca/ (1 +||o||) 22— DNF= gl|g|| < +oo.
a 0
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N

Since D () 0)2, 7 (N0 + (1~ e)p)|<ee D1+ o] )EHa DN,
k=0

we see that f |Us.-.(H 2dH < f |Use ( | dH, the same argument gives analogous inequalites

for U3+j,E(I;T)j = 0, 1. Hence we obtain J|U-(H)|*dH<c [ |Us . (H)|*dH <+oc.

Lemma 4.4. Forl < p < 2, Tg’b is a convolutive og)emtor on LP(M), more precisely

178 Ml = 1172,
Proof. In view of (2.5),

-N
% e~ (- s)PP(H)UP H sinh*&(
5EHA+ sinh“¢(H) ceAt

< {/lHZmU;“(HMidH}

x {/ Y7 T sinh®2 e (e 0wt |75 ap |
1|12V ciar

2l ooy < [
e D = s vRy

2—p
2

When e < 2(1— f) the second factor of the right-hand side of above inequality is finite, the
first factor is also finite by Lemma 4.3. Hence we reach the desired conclusion.

In order to deal with the part near the origin of r,_j, we have to use the following statement
of Coifman and Weiss[4:

Let r be a compactly supported bi-K-invariant function on G/K. If the convolution with

[T sinh™¢¢(H)r(ef) is a bounded operator on LP(a), then the convolution with r is a
feAt

bounded operator on L?(G/K). Therefore, it is sufficient to prove that [] sinh*¢(H )T s
EeAT

-(efl) is a convolutive operator on LP(a). For this purpose, we only need to check that the
so-called Mikhlin condition[ is satisfied:

Let r be a tempered distribution on IR™ and m = Fr its Fourier transform. If m satisfies
certain symbol estimates, e.g., sup M7 MmN < +00,0<i<[2] + 1, then T'f = f =7 is

a bounded operator on L”(IR”) for 1 <p< +oo.
Lemma 4.5. If Reb>—%a(= —7a), there exists functions ro, o, such that

H sinh*¢(H)r} ,(e") = ro(H) + eo(H),
feat

) and ro(H) satisfies ‘D% fge—iu(H)ro(H)dngcj(1+|\u||)—j,0§j§2,

in other words, ro satisfies the Mikhlin condition.

where go(H) is in L'(a

Proof. Similar to the proof of Lemma 4.3, we have

[T sin*e(ryrt o) = wie™) ] sinh2( / mas) [T (-0

EEAT cent §€A+
) 1 : - Lw
x 3 detw] TT (Giw,€) — llelcothe(r)) — o TT IlelPsinh"e(H) e ax
weWw gent cent

3
Z cj Q) (H
7=0
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where Qo(H) = (™) ] sinh¢( / map(N) J] X&)% an,
EeAT feA+
Qs(H Z sinh? af smh B(H)sinh2+y(H)
B,y

X/ map (M)A @)* (A, B)° (A, 7)e*d,

Q4(H) = w(e;{) Z sinh?a(H)sinh23(H )sinh2~(H)

a, By

X/ ma,b()\)<x\,a>2</\’ﬁ><)\77>ez‘>\(1{)d/\’

Qs(H) = w(e™)| TT NelPsinn2e(rn) + 5 TT llelsinbe()

Eent feNTt

a* cEAT
Since sinh?z = i [ﬂr+2 i g Z —, a2 €R
—Ll@2n+ 1l om0t (2m + 1)N(2n+!)! agn’ ’
we have
[[sen={ Y+ Y erUDSuETmn
cea+ 6<2(mAntk) <N 2(m4n+k)>(N+1) 2m@2n 02k

where, N = [ﬁ] + 1

According to this decomposition of [] sinh®¢(H), Qg(H) is also decomposed into two
EEAT
parts: Q¢(H) = X(H) + Y (H), where

a2m 2n 2k
Xm= 3 e / HFEYZH) oy T e2ema

A2m A2n A2k

6<2(mtntk)<N ceAt
H)p*"(H)vy** (H) ;
V(H) =) Y / DPZ D) ) TT (080220 an
2mtntk)>N a* 2mU2n A2k CeAT
2(mAntk)>N anaQ"a%

For 2(m +n + k) > N, the same reason as in the proof of Lemma 4.3 shows that
/ 0205 02F map(\) [ M O?I1PdA < ¢ < +00,
@ gent

where the constant ¢ does not depend on {m, n, k}. Then, again due to Euclidean Planchere
Formula, we get

[wunans > (]

a A2pnQ
2mAntk)>N 2mU2nt2n

<c Z ¥<+oo.

Qa a9y Q
2Amtntk)>N 2mU2n A2k

o202 [may(V) TT (0,©] ’2d>\)%

EeAT
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As in [13], in order to prove that FX satisfies the Mikhlin condition, it is sufficient to
prove that, for every {m,n, k} such that 6<(m +n + k)<N,
By = 9270802 [mas(V) T] (A)°]
fent

also satisfies this condition. Lemma 4.1 implies that, when 1>7, 9'( [] (\,€)%) = 0. Then,
feAt

ifm +n' +k +m4n+k=2m+n+k),

ooy o masn) I 67| < S o 95 8 ma() < oropot( T ».9?)]

cent =0 cent
< C(l—|— |‘/\||)[67l77a+(a71)(2(m+n+k)fl)] < C(l—|— ||/\H)(6fl+(a71)(67l)77a) < +00.

The same argument showes that for 6<2(m + n + k)<N, and j1 + j2 + jzs = 1,2,
ol 822 6,Jy'3 E(m k) (A) is also bounded. We can use the analogous methods to treat the func-
tions Q345 (H) with 0<j<2. This completes the proof of Lemma 4.5.

Proof of Part (3) of Theorem. Lemmas 4.4 and 4.5 deduce that for 1 < p < 2,
[T, ~ 2 aviw|l(p.p) = [ITa,— 2 atiw||r(ar) <c(w), while (2.1) and (2.3) give [Ty iw||(2,2)<c(w’).
If b = by + iby with 0 < by < Za, then there exists a t€(0,1) such that b = t(Za + iw) +
’L(bg — wt).

The Stein complex interpolation theorem gives us ||T4 5 || ) <c(t, w), where 1% =1ty
%, hence ﬁ—% = (%—1)% = (%—1)}2‘3&1’. Since 0 < (% —1) <1, we have 0 < (ﬁ — 1) < Beb,

If Reb = by > Fa, then mqp(N) = ma’%aJriImb()\)m(bl,%a)()\)7 where m(bl,%a)()\) =
(JIN24|p|[2) "2~ 29), Note that m-(A\) with Rey > 0 is a bounded multiplier on L (G/K)
for 1 < p < 400, which is assured by Theoreml of [1], so the full results follow from this
remark.
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