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Abstract

The authors study the existence of almost periodic solutions to differential equations with
piecewise constant arguments which found applications in certain biomedical problems.
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§1. Introduction

This note continues the investigation of differential equations with piecewise constant

argument (EPCA) originated by K. L. Cooke and J. Wiener[4], and S. M. Shah and J.

Wiener[7]. These equations describe hybrid dynamical systems (a combination of continuous

and discrete) and therefore combine properties of both differential and difference equations.

In [5], K. L. Cooke and J.Wiener gave a survey of the present status of this research. From

this, we know that all of the work that has been done on the differential equations concerns

the stability, the oscillation, and the existence of periodic solution. In present paper, we will

investigate the existence of almost periodic solutions for differential equations with piecewise

constant argument.

In what follows we denote by | · | the Euclidean norm and by [·] the greatest integer

function.

We consider the delay differential equations with piecewise constant argument of the form

x′(t) = ax(t) + a0x([t]) + a1x([t− 1]) + f(t), (1.1)

where a, a0, a1 are constant numbers, and f : R → R is an almost periodic function, that is,

for any ϵ > 0, the ϵ-translation set of f

T (f, ϵ) = {τ | |f(t+ τ)− f(t)| < ϵ, t ∈ R}

is a relatively dense set in R (τ is called ϵ-period for f ).
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Following [1–5], we say that a function x : R → R is a solution of Equation (1.1) if the

following conditions are satisfied:

(i) x is continuous on R.

(ii) The derivative x′(t) of x(t) exists everywhere, with possible exception of the point [t],

where one-sided derivatives exist.

(iii) x satisfies Equation (1.1) on each interval [n, n+ 1], with integer n.

We also consider the differential equation alternately of retarded and advanced type

x′(t) = bx(t) + b0x(2[(t+ 1)/2]) + g(t), (1.2)

where b, b0 are constant numbers, and g : R → R is an almost periodic function. The

argument deviation

T (t) = t− 2[(t+ 1)/2]

is negative for 2n − 1 ≤ t < 2n (Equation (1.2) is of advanced type), and positive for

2n < t < 2n + 1 (Equation (1.2) is of retarded type), where n is an integer. Similarly, we

can also define the solution to Equation (1.2).

§2. Main Results

Theorem 2.1. Suppose

a1 > − [aea + (ea − 1)a0]
2

4a(ea − 1)
, a1 ̸= 0

and

a1 ̸= a0 − a, a ̸= 0.

If f(t) is an almost periodic function, then Equation (1.1) possesses an almost periodic

solution. Furthermore, if f(t) is ω-periodic, then the following results hold:

(1) If ω = n0 ∈ Z+, then Equation (1.1) possesses an ω-periodic solution (called harmonic

solution).

(2) If ω = n0

m0
, n0,m0 ∈ Z+, n0 and m0 are mutually prime, then Equation (1.1) possesses

an m0ω-periodic solution (called subharmonic solution).

Theorem 2.2. Suppose 
b ̸= 0, b0 ̸= 0,

b0 ̸= −b,

b0 ̸= − b[eb + e−b]

e−b + eb − 2
.

If g(t) is an almost periodic function, then Equation (1.2) possesses an almost periodic

solution. Furthermore, if g(t) is ω-periodic, then the following results hold:

(1) If ω = n0 ∈ Z+, then Eq.(2) possesses an 2ω-periodic solution.

(2) If ω = n0

m0
, n0,m0 ∈ Z+, n0 and m0 are mutually prime, then Equation (1.2) possesses

an m0ω-periodic solution.

§3. Proofs of Theorems

First of all, we give a definition and show some lemmas.
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Definition 3.1.[6,8] A sequence x : Z → Rq is called an almost periodic sequence if the

ϵ-translation set of x

T (x, ϵ) := {τ ∈ Z| |x(n+ τ)− x(n)| < ϵ for all n ∈ Z}

is a relatively dense set in Z. τ is called the ϵ-period for x.

Lemma 3.1.[6,8] Suppose that {x(n)}n∈Z is an almost periodic sequence and f(t) is an

almost periodic function. Then the sets T (f, ϵ) ∩ Z, T (x, ϵ) ∩ T (f, ϵ) are relatively dense.

Lemma 3.2.[6] If f(t) is an almost periodic function, then {f(n)} is an almost periodic

sequence.

Lemma 3.3. If f(t) is an almost periodic function, then the sequence

{hn}n∈Z =

{∫ n+1

n

ea(n+1−s)f(s)ds

}
n∈Z

(3.1)

is an almost periodic sequence.

Proof. Let τ ∈ T (f, ϵ) ∩ Z. Then we have

hn+τ − hn =

∫ n+τ+1

n+τ

ea(n+τ+1−s)f(s)ds−
∫ n+1

n

ea(n+1−s)f(s)ds

=

∫ n+1

n

ea(n+1−s)[f(s+ τ)− f(s)]ds.

This implies

|hn+τ − hn| ≤ max{ea, 1}ϵ.

From definition, it follows that {hn}n∈Z is an almost periodic sequence.

Proof of Theorem 2.1.

(1) If x(t) is a soluiton of Equation (1.1) on R, then we have

x(t) =
{
ea(t−n) + [ea(t−n) − 1]a−1a0

}
cn + [ea(t−n) − 1]a−1a1cn−1

+

∫ t

n

ea(t−s)f(s)ds, n ≤ t < n+ 1, n ∈ Z,
(3.2)

where cn = x(n), n ∈ Z. Obviously, the following relations hold:

cn+1 = [ea + (ea − 1)a−1a0]cn + [ea − 1]a−1a1cn−1

+

∫ n+1

n

ea(n+1−s)f(s)ds, n ∈ Z. (3.3)

Let

B0 = ea + (ea − 1)a−1a0,

B1 = (ea − 1)a−1a1,

hn =

∫ n+1

n

ea(n+1−s)f(s)ds.

Then we can rewrite the inhomogeneous difference Equation (3.3) as

cn+1 = B0cn +B1cn−1 + hn. (3.4)

The corresponding homogeneous difference equation is

cn+1 = B0cn +B1cn−1. (3.5)
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Clearly, if x(t) is the almost periodic solution for Equation (1.1), then we know that {x(n)}
should be an almost periodic sequence by using Lemma 3.2. In the following, we want to

show that difference equation (3.4) possesses an almost periodic sequence solution.

(2) Following [2,5], we can seek the particular solutions as cn = λn for homogeneous

difference equation (3.5). Thus, λ satisfies

λ2 −B0λ−B1 = 0. (3.6)

Equation (3.6) has two roots

λ1,2 =
B0 ±

√
B2

0 + 4B1

2
.

At this time,

{cn} = {k1λn
1 + k2λ

n
2}

is the solution for difference Equation (3.5), where k1, k2 are constants. Under the conditions

of Theorem 2.1 , we can know that B2
0 + 4B1 > 0 and λ1,2 ̸= ±1.

(3) We define a sequence

cn =



k1
∑

m≤n−1

λ
n−(m+1)
1 hm + k2

∑
m≤n−1

λ
n−(m+1)
2 hm, |λ1| < 1, |λ2| < 1,

k1
∑

m≤n−1

λ
n−(m+1)
1 hm + k2

∑
m≥n

λ
n−(m+1)
2 hm, |λ1| < 1, |λ2| > 1,

k1
∑

m≥n

λ
n−(m+1)
1 hm + k2

∑
m≤n−1

λ
n−(m+1)
2 hm, |λ1| > 1, |λ2| < 1,

k1
∑

m≥n

λ
n−(m+1)
1 hm + k2

∑
m≥n

λ
n−(m+1)
2 hm, |λ1| > 1, |λ2| > 1,

(3.7)

where k1, k2 are defined later. We prove that there exist constants k1, k2 such that {cn} is a

sequence solution of difference Equation (3.4). In fact, for |λ1| < 1, |λ2| < 1, we put cn into

Equation (3.4). Then we obtain {
k1λ1 + k2λ2 = B0,

k1 + k2 = 1.

Solving this equation, we have 
k1 =

λ2 −B0

λ2 − λ1
,

k2 =
B0 − λ1

λ2 − λ1
.

Hence, when |λ1| < 1 and |λ2| < 1, we obtain a sequence solution for difference Equation

(3.4):

cn =
λ2 −B0

λ2 − λ1

∑
m≤n−1

λ
n−(m+1)
1 hm +

B0 − λ1

λ2 − λ1

∑
m≤n−1

λ
n−(m+1)
2 hm. (3.8)

For other cases, we can similarly write out an expression to the solution of Equation (3.4).

(4) Since f is almost periodic, it follows from Lemma 3.3 that {hn}n∈Z is also almost

periodic. Without loss of generality, we only consider the case: |λ1| < 1, |λ2| < 1. For
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τ ∈ T (h, ϵ), we have

|cn+τ − cn|

=
∣∣∣λ2 −B0

λ2 − λ1

∑
m≤n+τ−1

λ
n+τ−(m+1)
1 hm +

B0 − λ1

λ2 − λ1

∑
m≤n+τ−1

λ
n+τ−(m+1)
2 hm

− λ2 −B0

λ2 − λ1

∑
m≤n−1

λ
n−(m+1)
1 hm − B0 − λ1

λ2 − λ1

∑
m≤n−1

λ
n−(m+1)
2 hm

∣∣∣
=

∣∣∣λ2 −B0

λ2 − λ1

∑
m≤n−1

λ
n−(m+1)
1 hm+τ +

B0 − λ1

λ2 − λ1

∑
m≤n−1

λ
n−(m+1)
2 hm+τ

(by setting m = m′ + τ , then replacing m′ by m)

− λ2 −B0

λ2 − λ1

∑
m≤n−1

λ
n−(m+1)
1 hm − B0 − λ1

λ2 − λ1

∑
m≤n−1

λ
n−(m+1)
2 hm

∣∣∣
=

∣∣∣λ2 −B0

λ2 − λ1

∑
m≤n−1

λ
n−(m+1)
1 (hm+τ − hm) +

B0 − λ1

λ2 − λ1

∑
m≤n−1

λ
n−(m+1)
2 (hm+τ − hm)

∣∣∣
≤

[ ∣∣∣∣λ2 −B0

λ2 − λ1

∣∣∣ 1

1− |λ1|
+
∣∣∣B0 − λ1

λ2 − λ1

∣∣∣∣ 1

1− |λ2|

]
ϵ.

From definition, we know that {cn} is an almost periodic sequence.

(5) For the above mentioned almost periodic sequence {cn}n∈Z , we can obtain a solution

to Equation (1.1) by using (3.2). Now, we want to show that the solution defined by (3.2)

is an almost periodic solution. In fact, for τ ∈ T (c, ϵ) ∩ T (f, ϵ), we have

|x(t+ τ)− x(t)|

= |{ea(t−n) + [ea(t−n) − 1]a−1a0}(cn+τ − cn) + [ea(t−n) − 1]a−1a1(cn+τ−1 − cn−1)

+

∫ t

n

ea(t−s)[f(s+ τ)− f(s)]ds| (n ≤ t < n+ 1, n ∈ Z)

≤ [max(ea, 1) + 1](|a−1a0|+ |a−1a1|+ 2)ϵ.

It follows from definition that x(t) is almost periodic.

(6) If f(t) is ω-periodic and ω = n0 ∈ Z+, then we can see that the sequence {hn}n∈Z

defined by (3.1) is an ω-periodic sequence, that is, hn+ω = hn, for all n ∈ Z. At this time,

the sequence {cn} defined by (3.8) is also an ω-periodic sequence. Hence, the solution x(t)

defined by (3.2) is an ω-periodic solution.

(7) If f(t) is ω-periodic and ω = n0

m0
, n0,m0 ∈ Z+, then the sequence {hn}n∈Z defined

by (3.1) is an m0ω-periodic sequence. At this time, the sequence {cn} defined by (3.8) is

also an m0ω-periodic sequence. Hence, the solution x(t) defined by (3.2) is an m0ω-periodic

solution. This completes the proof of Theorem 2.1.

Proof of Theorem 2.2. Assuming that xn(t) is a solution of Equation (1.2) on the

interval 2n− 1 ≤ t < 2n+ 1, with the condition xn(2n) = c2n, we have

xn(t) = [eb(t−2n) + b−1b0(e
b(t−2n) − 1)]c2n +

∫ t

2n

eb(t−s)g(s)ds, 2n− 1 ≤ t < 2n+ 1.

Let

µ(t) = ebt + b−1b0(e
bt − 1), µ1 = µ(1), µ−1 = µ(−1).
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For t = 2n− 1, we have

xn(2n− 1) = c2n−1 = µ−1c2n + h(1)
n ,

and for t = 2n+ 1,

xn(2n+ 1) = c2n+1 = µ1c2n + h(2)
n ,

where

h(1)
n =−

∫ 2n

2n−1

eb(2n−1−s)g(s)ds,

h(2)
n =

∫ 2n+1

2n

eb(2n+1−s)g(s)ds.

This implies

c2n+2 =
µ1

µ−1
c2n +

1

µ−1
[h(2)

n − h
(1)
n+1]. (3.9)

From the conditions of Theorem 1.2, it follows that
∣∣∣ µ1

µ−1

∣∣∣ ̸= 1. We define a sequence {cn}
as follows:

c2n =


∑

m≤n−1

(
µ1

µ−1

)n−(m+1)
1

µ−1
(h

(2)
m − h

(1)
m+1),

∣∣∣ µ1

µ−1

∣∣∣ < 1,

∑
m≥n

(
µ1

µ−1

)n−(m+1)
1

µ−1
(h

(2)
m − h

(1)
m+1),

∣∣∣ µ1

µ−1

∣∣∣ > 1.

Using the same argument as in the proof of Theorem 1.1, we know that {c2n} is an almost

periodic sequence solution for Equation (3.8). At this time, we then imply that x(t) =

xn(t), 2n− 1 ≤ t < 2n+ 1, is an almost periodic solution to Equation (1.2).

When g(t) is an ω-periodic function, we know that Equation (1.2) possesses a 2ω (or

2m0ω)-periodic solution if ω = n0 ∈ Z+ (or ω = n0

m0
, n0,m0 ∈ Z+), by using the same

argument as in (3.4) and (3.5). This completes the proof of Theorem 2.2.
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