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Abstract

The authors study the basic properties of Hankel operators and the structures of Hankel
algebras relative to ordered groups, providing a new class of C∗-algebras which are very useful
in general C∗-algebra theory.
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§0. Introduction

The classical version of Toeplitz theory on the unit circle T has been generalized in two

directions in the past two decades. One direction involves replacing the open unit disc and

its boundary T by a suitable domain in Cn with a nice boundary, and considering Toeplitz

operators with symbols defined on this boundary. By this generalization concerning with

function space theory and function theory on the domain, one obtains a series of deep

results in operator theory and operator algebra (see [9, 15, 17, 18]). In another direction,

its starting point is the fact that the group T is connected and its dual Z is ordered. This

point of view was taken by Douglas, Murphy and Parone in [6, 7, 8, 10]. The importance of

this generalization is that an interesting new class of C∗-algebras arises. This special class

of C∗-algebras has a certain universal property which is very useful in general C∗-algebra

theory, particular in K-theory.

It is well known in the classical version that Toeplitz operators and Hankel operators

are of the same status, and present different operators classes. Halmos[1] regarded Hankel

operators as an essential part of Toeplitz theory, and many authors studied Hankel operators

and their related problems in [1–5].

In this paper, we consider Hankel operators and the structures of Hankel algebras relative

to ordered groups, obtaining the new properties of Hankel operators, and providing a very

useful class of C∗-algebras-Hankel algebras.

The paper is organized as following: In §1, we establish the basic definitions and results

of Hankel operators over the connected groups. In §2, we discuss the structure of Hankel

algebra NG and show that NG is completely determined by its related ordered group G, i.e.,

Manuscript received June 23, 1995.

∗Institute of Mathematics, Fudan University, Shanghai 200433, China.

∗∗Project supported by the National Natural Science Foundation of China and China Postdoctoral

Science Foundation.



66 CHIN. ANN. OF MATH. Vol.19 Ser.B

the covariant functor G 7→ NG is full from the category of ordered groups to the category

of C∗-algebras. In this section, we also establish the exact sequences of Hankel algebras and

their commutator ideals.

§1. Basic Properties of Hankel Operators

We begin by recalling some definitions and results from [13]. An ordered group is a

pair (G,≼) consisting of an abelian group G and a linear order relation ≼ on G which is

translation-invariant, i.e., if x ≼ y then x+z ≼ y+z for x, y, z ∈ G. Ordered groups exist in

great abundance, for example, the additive subgroups of R with the order inherited from R.
Let G be any abelian group. It admits an order relation making it an ordered group if and

only if it is torsion-free, and if and only if its Pontryagin dual Ĝ is connected (see [13]). The

fact that an ordered group has a connected dual plays an important role in our analysis.

Let G be an ordered group, and denote by G+ its positive cone, i.e., the set of the elements

x ≽ 0. Denote by m the normalized Harr measure of Ĝ. If x ∈ G, the function

ϵx : Ĝ→ T, ϵx(γ) = γ(x) = ⟨x, γ⟩

is, of course, a homomorphism, and it is well known that the family of elements {ϵx|x ∈ G}
forms an orthogonal basis of the Hilbert space L2(Ĝ,m). The Hilbert subspace of L2(Ĝ,m)

having orthogonal basis {ϵx|x ∈ G+} is denoted byH2(Ĝ) and called the Hardy space related

to G. Therefore, the classical Hardy space H2(T) is relative to integer group Z. Denote by

P the orthogonal projection of L2(Ĝ,m) onto H2(Ĝ). For φ ∈ L∞(Ĝ,m), Toeplitz operator

Tφ on H2(Ĝ) is defined by

Tφ(f) = P (φf), f ∈ H2(Ĝ).

Let U denote the symmetric unitary operator on L2(Ĝ,m) defined by Uϵx = ϵ−x, x ∈ G.

For ψ ∈ L2(Ĝ,m), we define that ψ̃ = Uψ. Let φ belong to L∞(Ĝ,m). Hankel operator Hφ

on H2(Ĝ) is defined by

Hφf = PU(φf), f ∈ H2(Ĝ).

For Toeplitz operators relative to an ordered group, much work has been done in [6,7,8].

In this section, we consider Hankel operators relative to an ordered group. The following

theorem shows that a Hankel operator is completely characterized by its algebra equation.

Theorem 1.1. Let H ∈ B(H2(Ĝ)). Then H is a Hankel operator if and only if

T ∗
ϵxH = HTϵx , x ∈ G+. (1.1)

Proof. Let E0 denote the orthogonal projection from H2(Ĝ) onto {ϵ0}. For a Hankel

operator Hφ, using the relation PU = U(I − P ) + UE0U , we have

T ∗
ϵxHφ = PMϵ−x [U(I−P )+UE0U ]Mφ = PMϵ−xU(I−P )Mφ = PUMφϵx = HφTϵx , x ∈ G+.

In another direction, if H satisfies T ∗
ϵxH = HTϵx for all x ∈ G+, then the following is

obvious:

Tf̃H = HTf , ∀f ∈ H∞(Ĝ)(
△
= L∞(Ĝ,m) ∩H2(Ĝ)).

Writing Hϵ0 = g ∈ H2(Ĝ), we have

Hf = P (f̃ · g), ∀f ∈ H∞(Ĝ).
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Thus, for any f, h ∈ H2(Ĝ) satisfying f̃h ∈ H2(Ĝ), we have

⟨h,Hf⟩ = ⟨f̃h, g⟩. (1.2)

A linear functional F on the dense subspace H∞(Ĝ) of H1(Ĝ) is defined by

F (f) = ⟨f, g⟩, ∀f ∈ H∞(Ĝ).

Let ϵ > 0, and f ∈ H∞(Ĝ)., By [13], there is 0 < ϵf < ϵ such that f can be factorized as

f = αβ − ϵf ,

where α, β ∈ H2(Ĝ) and ∥α∥2 = ∥β∥2 ≤ ∥f∥+ ϵ. Therefore

|F (f)| ≤ |⟨αβ, g⟩|+ ϵ∥g∥ (1.2)
= |⟨β,Hα̃⟩|+ ϵ∥g∥

≤ ∥H∥∥α̃∥∥β∥+ ϵ∥H∥ ≤ ∥H∥∥f∥1 + 2ϵ∥H∥.
So

∥F (f)∥ ≤ ∥H∥∥f∥1,

i.e., F is a linear functional on H1(Ĝ) (because H∞(Ĝ) is dense in H1(Ĝ)) and ∥F∥ ≤ ∥H∥.
In fact, ∥F∥ = ∥H∥. This is done by the following reason:

∥H∥ = sup{|⟨β,Hα̃⟩||α, β ∈ H∞(Ĝ) with ∥α∥, ∥β∥ ≤ 1}

≤ sup{|F (αβ)| |α, β ∈ H∞(Ĝ), with ∥α∥, ∥β∥ ≤ 1} by (1.2)

≤ ∥F∥∥αβ∥1 ≤ ∥F∥.

Let F ′ be a continuous extension of F onto L1(Ĝ,m) and ∥F ′∥ = ∥F∥ = ∥H∥. Then there

exists a ψ ∈ L∞(Ĝ,m) such that

∥ψ∥∞ = ∥F ′∥ = ∥H∥ and F ′(h) =

∫
Ĝ

ψhdm, ∀h ∈ L1(Ĝ,m).

Thus, for f1, f2 ∈ H∞(Ĝ),

⟨f2,Hf1⟩
(1.2)
= ⟨f̃1f2, g⟩ = F (f̃1f2) = F ′(f̃1f2)

=

∫
Ĝ

ψf̃1f2dm = ⟨f2,Hψ̃
f1⟩.

This means that H = Hφ̃, i.e., H is a Hankel operator and ∥H∥ = ∥ψ∥∞ = ∥ψ̃∥∞.

As a corollary of the above proof, we get the following

Corollary 1.1. For φ ∈ L∞(Ĝ,m), we have

∥Hφ∥ = dist(φ,H∞
0 (Ĝ)),

where H∞
0 (Ĝ) is {f ∈ H∞(Ĝ)|f̂(0) =

∫
Ĝ
fdm = 0}.

Next we discuss the compactness of Hankel operators. The following Theorem 1.2 says

that the existence of nonzero compact Hankel operators depend on the existence of a least

positive element of G+.

Denote by A the set {φ ∈ L∞(Ĝ,m)|Hφ is compact}. A simple computation yields the

following relations

Hfg = HfTg + Tf̃Hg − Tf̃E0Hg, ∀f, g ∈ L∞(Ĝ,m). (1.3)

Immediately from the above relations, we know that A is a closed subalgebra of L∞(Ĝ,m),

containing H∞(Ĝ).
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Theorem 1.2. (1) A contains H∞(Ĝ) properly if and only if G admits a least positive

element.

(2) If G admits a least positive element e, denoted by Ce the algebra generated by the

polynomials of ϵe. Then

A = H∞(Ĝ) + Ce.

Proof. (1) We begin by establishing criteria for A to be equal to H∞(Ĝ). Let a < 0.

Since

H∗
ϵaHϵa = HϵaHϵa = I − TϵaTϵa + compact = Pa + compact, (1.4)

where Pa denotes the orthogonal projection from H2(Ĝ) onto the closed span of {ϵb|0 ≼
b ≺ a}, we get that the cardinal number of [0, a) is infinite, where [0, a) denotes the interval

{b|0 ≼ b ≺ a}.
In another direction, for any a > 0, if [0, a)’s cardinal number is infinite, then A = H∞(Ĝ).

In fact, if there exists φ ∈ L∞(Ĝ,m) and φ /∈ H∞(Ĝ) such that Hφ is compact, then we

claim that there is a > 0 such that Hϵa is compact. This is done by the following process.

For every t ∈ Ĝ, an operator Ut on L
2(Ĝ,m) is defined by

Ut : L
2(Ĝ,m) → L2(Ĝ,m), (Utf)(s) = f(ts), ∀f ∈ L2(Ĝ,m), s ∈ Ĝ.

Obviously

U∗
t HφUt = HU∗

t φ
= HUt−1φ. (1.5)

Let f belong to L∞(Ĝ,m) and H(f) denote the integral of f(t)HUt−1φ. By the compactness

of Ĝ, H(f) is compact, where

H(f) def.
=

∫
Ĝ

f(t)HUt−1φdm(t).

A simple computation shows that

H(f) = Hφ∗f . (1.6)

Because φ does not belong to H∞(Ĝ), there is a > 0 such that φ̂(−a) ̸= 0. Therefore

φ ∗ ϵa = φ̂(−a)ϵa ̸= 0. By (1.6), Hϵa is compact, the claim is proved. By (1.4), Pa is

compact. It follows that [0, a)’s cardinal number is finite. This contradicts our assumption.

Consequently, we obtain the following criteria for A to be equal to H∞(Ĝ).

(i) A = H∞(Ĝ) iff the cardinal number of [0, a) is infinite for any a > 0.

By (i), we obtain the following

(ii) A contains H∞(Ĝ) properly iff G admits a least positive element.

This completes the proof of (1).

(2) Let e be a least positive element of G and [H∞(Ĝ), ϵe] denote the closed subalgebra

of L∞(Ĝ,m) generated by H∞(Ĝ) and ϵe. Then we claim that the following relation is true:

A = [H∞(Ĝ), ϵe]. (1.7)

Clearly

A ⊇ [H∞(Ĝ), ϵe].

Write H2
e for the closed linear span of {ϵne|n ∈ Z+}, i.e., H2

e is a Hardy space relative to

Z, and H2
s for H2(Ĝ) ⊖ H2

e . Let φ ∈ A. For b ∈ G+ − Z+e, the proof of (1) leads to
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φ̂(−b)ϵb ∈ A. By (1.4), we know that φ̂(−b) = 0 for any b ∈ G+ − Z+e. Thus φ can be

written as

φ = h+
∞∑
n=0

anϵne ,

where h ∈ H2(Ĝ). By the above equation, we see that kerHφ contains H2
s . For every

positive integer m, there exists a function hm ∈ H2(Ĝ) and ∥hm∥ = 1 such that ∥Hφϵme
∥ =

∥Hφϵme hm∥. Write hm = fm + gm, where fm ∈ H2
e and gm ∈ H2

s . Then ϵme fm
w
−→ 0.

Therefore we get

∥Hφϵme
∥ = ∥Hφϵ

m
e hm∥ = ∥Hφϵ

m
e fm∥ → 0.

By the norm formula of Hankel operator (Corollary 1.1)

∥Hφϵme ∥ = dist(φϵme ,H
∞
0 (Ĝ)) = dist(φ, ϵme H

∞
0 (Ĝ)).

So φ ∈ [H∞(Ĝ), ϵe]. In this way we have

A = [H∞(Ĝ), ϵe],

completing the proof of claim (1.7).

Our next goal is to show that [H∞(Ĝ), ϵe] = H∞ + Ce, where Ce is the closed algebra

generated by the polynomials of ϵe.

Clearly, H∞(Ĝ) + Ce ⊆ [H∞(Ĝ), ϵe]. Take the dense subalgebra

Γ =
{ k∑
i=0

hiϵie|hi ∈ H∞(Ĝ), k ∈ Z+
}

of [H∞(Ĝ), ϵe], then

Γ ⊆ H∞(Ĝ) + Ce. (1.8)

This is because hiϵie has the form

hiϵie =
( i∑
j=0

ajϵ
j
e

)
ϵie +

∑
l≽ie

alϵl−ie. (1.9)

The above fact shows immediately that

A = H∞(Ĝ) + Ce. (1.10)

Therefore, what we do is to prove that H∞(Ĝ)+Ce is closed. It is obvious that H
∞(Ĝ)+Ce

is closed if and only if there exists a constant c, 1 < c <∞, such that

dist(g,H∞(Ĝ) ∩ Ce) ≤ cdist(g,H∞(Ĝ)), ∀g ∈ Ce. (1.11)

We write Ae for the algebra generated by analytic polynomials of ϵe, H
∞
e for the w∗-

closure of Ae. Then the following is true, whose proof is similar to the classical version (see

[16]).

dist(g,H∞(Ĝ) ∩ Ce) = dist(g,Ae) = dist(g,H∞
e ). (1.12)

Since by Corollary 1.1,

dist(g,H∞
e ) = dist(gϵe, ϵeH

∞
e ) = ∥H(e)

gϵe∥,
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where H
(e)
gϵe is a Hankel operator (relative to an ordered group Ze), if there is not a constant

c such that (1.11) is true, then we can choose {gn} ⊂ Ce such that

∥H(e)
gnϵe∥ = 1, ∥Hgnϵe∥ → 0. (1.13)

It follows that there exists h
(e)
n ∈ H2

e with ∥h(e)n ∥ = 1 such that

∥H(e)
gnϵeh

(e)
n ∥ = 1. (1.14)

But

∥Hgnϵe∥ ≥ ∥Hgnϵeh
(e)
n ∥ ≥ ∥H(e)

gnϵeh
(e)
n ∥ = 1. (1.15)

We get a contradiction by (1.13) and (1.15). Consequently, there is a positive constant c such

that (1.11) is true. H∞(Ĝ) +Ce is then closed, and the proof of Theorem 1.2 is completed.

We say that ordered groups G1, G2 are ordered isomorphic if there is a group isomorphism

φ : G1 → G2 and φ(G+
1 ) ⊆ G+

2 . From the proof of Theorem 1.2, it is obvious that

A = H∞(Ĝ)+C(Ĝ) iff G is order-isomorphic to Z, where C(Ĝ) are all continuous functions
over Ĝ.

Remark 1.1. For an ordered group G, then H∞(Ĝ) + C(Ĝ) is a closed subspace of

L∞(Ĝ,m), but is an algebra only when G is order-isomorphic to Z (see [11]).

Example 1.1. Let R0 be an ordered subgroup of R. Then there exist nonzero compact

Hankel operators on H2(R̂0) iff R0 = cZ, where c is a constant.

Example 1.2. Let α be an irrational number, and take G = Z× Z,

G+ = {(m,n) ∈ Z× Z|αm+ n ≥ 0}.

Then H2(Ĝ) is equal to the closed linear span of {ei(mθ1+nθ2)|αm+n ≥ 0}, a closed subspace

of L2(T× T). By Theorem 1.2, there is not a nonzero compact Hankel operator on H2(G).

Take G = Z × Z, G+ = {(m,n) ∈ Z × Z|m > 0 or (m = 0 and n ≥ 0)}. Then G has a

least positive element (0,1). Consequently

A = H∞(Ĝ) + C(0,1).

§2. Structure of Hankel Algebra

From [6], Toeplitz algebra associated to an ordered group has a nice structure, i.e., it has

a Coburn exact sequence and its commutator ideal presents simplicity in some sense. At

the time, we know that the structure of Toeplitz algebra in this context is closely related

to the structure of an ordered group. In this section, our aim is to consider Hankel algebra

associated to an ordered group. Finally, we find that Hankel algebra is a new class of

C∗-algebras completely different from Toeplitz algebra. We first state some notations and

definitions.

Let G be an ordered group. The C∗-algebra generated by Toeplitz operators with contin-

uous symbols on Hardy space H2(Ĝ) is called the Toeplitz algebra over G and is denoted by

TG. The C∗-algebra generated by Hankel operators with continuous symbols is called the

small Hankel algebra over G and is denoted by HG. The C∗-algebra generated by Toeplitz

operators and Hankel operators with continuous symbols is called the Hankel algebra and

is denoted by NG, i.e., NG is generated by TG and HG. The following theorem is the main

result in this section.
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Theorem 2.1. The commutator ideal of NG is equal to HG. Denote {Tφ|φ ∈ C(Ĝ)} by

T , then NG = T +HG and the sum is direct. Consequently, the following sequence is exact

0 −→ HG −→ NG −→ C(Ĝ) −→ 0. (2.1)

Proof. We first show that the following inequality is true:

∥Tφ∥ ≤ inf{∥Tφ + S∥|S ∈ HG}, ∀φ ∈ L∞(Ĝ,m). (2.2)

In fact, because C(Ĝ) is equal to the closed linear span of {ϵaϵb|a, b ∈ G+}, we only need

to consider a dense subalgebra

{
n∑
i=1

mi∏
j=1

Hϵaij
ϵbi,j

∣∣∣∣∣ aij , bij ∈ G+, n,mi ∈ Z+

}
of HG. Let S

be equal to
n∑
i=1

mi∏
j=1

Hϵaij
ϵbij

, and put u = ϵa0
n∏
i=1

ϵbimi , where a0 < 0. Then STu = 0. Thus

∥Tφ∥ = ∥φ∥∞ = ∥φu∥∞ = ∥Tφu∥ = ∥TφTu∥ = ∥(Tφ + S)Tu∥ ≤ ∥Tφ + S∥.

This shows that (2.2) is true. By (2.2) we know that the sum T +HG is direct.

What we next to do is the following:

(1) HG contains all compact operators.

(2) Let φ1, φ2 ∈ C(Ĝ). Then Tφ1Hφ2 ∈ HG.

(3) HG contains the semicommutator ideal of TG, i.e., the ideal of T G generated by the

semicommutators {Tφ1φ2 − Tφ1Tφ2 |φ1, φ2 ∈ C(Ĝ)}.
If the proofs of (1), (2) and (3) are completed, then we can prove that NG = T ⊕HG.

Proof of (1). Because HG contains compact operators (in fact, Hϵ0 ∈ HG and the rank

of Hϵ0 is equal to 1), what we shall do is to prove that HG is irreducible. Suppose that

there exists a projection P0 such that

P0A = AP0. all A ∈ HG. (2.3)

By the equality

HfHg = Tf̃g − Tf̃Tg + Tf̃E0Tg, (2.4)

we see that

Hϵ0Hϵah = ĥ(a)ϵ0, ∀a ∈ G+, h ∈ H2(Ĝ). (2.5)

Write Ea for Hϵ0Hϵa . Then

P0Ea = EaP0. (2.6)

So

P0Ea(ϵa) = P0 ϵ0 = Ea(P0ϵa) and EaP0Eb = 0, a ̸= b. (2.7)

It follows that P0ϵ0 is a constant (writing c for P0ϵ0) and P0 ϵa = cϵa for a ∈ G+. Since P0

is a projection, we see that

P0 = 0 or P0 = I.

This shows that HG is irreducible, completing the proof of (1).

Proof of (2). Because the linear span of {ϵaϵb|a, b ∈ G+} is a dense subalgebra of C(Ĝ),

we may take φ1 = ϵaϵb, φ2 = ϵa′ϵb′ (a
′ ≽ 0). A simple computation shows that the following

are true:

Tφ1Hφ2 = Tφ1Hφ2H
∗
φ2
Hφ2 (2.8)
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and

Tφ1Hφ2 = Hφ̃1φ2 −Hφ̃1Tφ2 +Hφ̃1E0Tφ2 . (2.9)

So

Tφ1Hφ2 = Hφ̃1H
∗
φ2
Hφ2 −Hφ̃1Tφ2H

∗
φ2
Hφ2 +Hφ̃1E0Tφ2H

∗
φ2
Hφ2 . (2.10)

Immediately from (1) and (2.10), what is proved is that Tφ2H
∗
φ2

belongs to HG. Since

Tφ2H
∗
φ2

= Tϵa′−b′Hϵa′−b′ ,

we see that Tφ2H
∗
φ2

is compact in case a′ ≽ b′ and by Theorem 1.1, Tφ2T
∗
φ2

is equal to

Hϵa′−b′Tϵa′−b′ in case a′ ≼ b′. The above fact leads then to Tφ2H
∗
φ2

belonging to HG by (1).

This completes the proof of (2).

Proof of (3). Note the relations

Tfg − TfTg = Hf̃Hg − TfE0Tg (2.11)

and (1) and (2). We see that HG contains the semicommutator ideal of TG, completing the

proof of (3).

By (1), (2) and (3) and [6], we obtain the following

NG = T ⊕HG. (2.12)

We next prove that HG = commNG. Obviously, commNG contains all compact opera-

tors. By the relations

H∗
φHφ = Tφ̃φ − Tφ̃Tφ + Tφ̃E0Tφ (2.13)

and [6], we see that Ĥ∗
φĤφ = 0, where Ĥφ is the image of Hφ in NG/commNG. This shows

that commNG = HG. Consequently, from (2.12) we have the following exact sequence

0 −→ HG −→ NG −→ C(Ĝ) −→ 0.

This completes the proof of Theorem 2.1.

Finally, we give a corollary of Theorem 2.1, which says that Hankel algebra determines

the ordered group.

Theorem 2.2 If G1, G2 are two ordered groups, then NG1 and NG2 are isomorphic

C∗-algebras iff G1 and G2 are order-isomorphic, i.e., the covariant functor G 7→ NG is full

from the category of ordered groups to the category of C∗-algebras.

Proof. Sufficiency. A unitary operator V : L2(Ĝ1,m1) → L2(Ĝ2,m2) is defined by

V ϵ
(1)
a = ϵ

(2)
φ(a) for a ∈ G1, where φ is the order isomorphism of G1 to G2. {ϵ(i)t } is the

canonical orthogonal bases of L2(Gi,mi)’s. Write Pi to be the orthogonal projection of

L2(Ĝi,mi) onto H
2(Ĝi) (i = 1, 2) and Ui for the symmetric unitary operator on L2(Gi,mi)

(i = 1, 2). Then the following equations are obvious:

V P1 = P2V, V M
(1)
f1
V ∗ =M

(2)
V f , V U1 = U2V. (2.14)

So

V T
(1)
f V ∗ = T

(2)
V f , V H

(1)
f V ∗ = H

(2)
V f , (2.15)

where T
(i)
∗ and H

(i)
∗ denote Toeplitz operators and Hankel operators, respectively on H2(Ĝi)

(i = 1, 2). The equations (2.15) say that NG1 and NG2 are isomorphic C∗-algebras.
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Necessity. Let π be an isomorphism from NG1 to NG2 . We have thus that π induces

an isomorphism between NG1/commNG1 and NG2/commNG2 . It follows that C(Ĝ1) is

isomorphic to C(Ĝ2) by Theorem 2.1.

A result of van Kampen (see [14]) implies that each component of the groups of invertible

elements in C(Ĝ1) and C(Ĝ2) contains respectively a characteristic function and hence we

obtain an isomorphism π∗ between G1 and G2. Moreover, since a ∈ G+
1 iff some element in

the coset Tϵa +HG1 has a left inverse, and the latter property is preserved by π, it follows

that π∗ is the order isomorphism of G1 to G2. The proof is completed.

Example 2.1. Let α, β be irrational numbers, and take the ordered subgroups Rα, Rβ
of R as the following

Rα = {m+ nα|m,n ∈ Z}, Rβ = {m+ nβ|m,n ∈ Z}.

Then NRα is isomorphic to NRβ iff there are integers i, j, k and l such that(
i j
k l

)(
1
α

)
=

(
1
β

)
and il − jk = 1.

By the above fact, we see that NR√
2 and NR√

5 are not isomorphic.

Remark 2.1. From the process of Theorem 2.2’s proof and [6], we can prove that TG1

is isomorphic to TG2 iff G1 is order-isomorphic to G2 and they are order-isomorphic to Z.
Thus Toeplitz algebra is completely different from Hankel algebra.

We are now ready to study the structure of HG, i.e., the commutator ideal of Hankel

algebra NG. From [6], we know that the commutator ideal of Toeplitz algebra T G has a

nice structure. However, HG ⊇ commTG, thus our technique is that commTG is separated

from HG by direct sum. What we use is the odd-even decomposition of a C∗-algebra

associated with its generators (see [3]). The following concepts are needed. Let H be a

Hilbert space. For F ⊂ B(H), C∗(F) denotes the C∗-algebra generated by F, and C∗
e (F)

(resp. C∗
0 (F)) denotes the closed linear span of operators of the form F1F2 · · ·Fn, where

Fi ∈ F∪F∗(i = 1, 2, · · · , n) and n is even (resp. odd). Then C∗
e (F) +C∗

o (F) is closed and so

equal to C∗(F) (see [3]). In our context, take

F = {Hf |f ∈ C(Ĝ)}.

Then F is a self-adjoint operator space. By the above state, we have

HG = C∗
e (F) + C∗

o (F). (2.18)

It is natural to consider what C∗
e (F) and C

∗
o (F) are, respectively.

Lemma 2.1. Let K be the compact ideal of B(H2(Ĝ)). Then

C∗
e (F) +K = commTG +K.

Proof. Repeating the proofs of (2) and (3) of Theorem 2.1, we have C∗
e (F) + K =

the semicommutator ideal of TG+K. By [6], the semicommutator ideal of TG = commTG,

and thus

C∗
e (F) +K = commTG +K.

Lemma 2.2. K ⊂ C∗
o (F).

Proof. It is obvious that C∗
e (F) ∩ C∗

o (F) is an ideal of C∗-algebra C∗
e (F) and

H1 = H2
1 = E0 ∈ C∗

e (F) ∩ C∗
o (F).
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The remainder is an exact analogue of (3) of Theorem 2.1.

Denote by SG the self-adjoint operator space of C∗
0 (F) (i.e., the closed linear span of all

operators of the form Hf1Hf2 · · ·Hfn where n is odd), and call it the singular part of small

Hankel algebra HG. By Lemmas 2.1, 2.2 and (2.18), we get

HG = commTG + SG (2.19)

and SG · commTG ⊂ SG , commTG · SG ⊂ SG, i.e., SG is a C∗-bimodule over commTG.

What we pay attention to is when sum (2.19) is direct, i.e, when commTG is separated

from HG.

Our methods are closely related to the study of the Weyl commutation relations and

Hankel commutation relations associated with group G. For each ξ ∈ Ĝ, we consider the

unitary operator

Uξ = S ◦ T − lim
b∈G+

∑
a≼b

⟨ξ, a⟩Pa,

where G+ is regarded as a net. Pa is the orthogonal projection of H2(Ĝ) onto {ϵa}.
A simple computation yields the following Weyl commutation’s relations and Hankel

commutation relations:

TϵaUξ = ⟨ξ, a⟩UξTϵa , a ∈ G, ξ ∈ Ĝ, (2.20)

and

HϵaUξ = ⟨ξ, a⟩U∗
ξHϵa , a ∈ G, ξ ∈ Ĝ. (2.21)

Let ξ ∈ Ĝ. The operator αξ is defined from HG to B(H2(Ĝ)) by αξ(S) = U∗
ξ SUξ for

S ∈ HG. We consider the bounded mean of ρ defined on HG by the following

ρ(s) =

∫
Ĝ

αξ(S)dm(S).

Then ρ has the following properties:

(1) If S > 0, then ρ(S) > 0.

(2) ρ(commTG) ⊂ commTG.

(3) ρ(SG) ⊂ K.

Proof of (1). Obviously, ρ(S) ≥ 0. If ρ(S) = 0, then

⟨ρ(S)ϵa, ϵa⟩ =
∫
Ĝ

⟨αξ(S)ϵa, ϵa⟩dm(S) =

∫
Ĝ

|⟨ξ, a⟩|2⟨Sϵa, ϵa⟩dm(S)

=

∫
Ĝ

∥
√
Sϵa∥2dm(S) = ∥

√
Sϵa∥2

for a ∈ G+. Thus we have S = 0, completing the proof of (1).

Proof of (2). Note that the linear span of the finite products of the operators of the

form Tϵa3
(Tϵa1+a2

− Tϵa1
Tϵa2

)Tϵa4
is dense in commTG and

αξ(Tϵa3
(Tϵa1+a2

− Tϵa1
Tϵa2

)Tϵa4
) = ⟨ξ, a1 + a2 + a3 + a4⟩Tϵa3

(Tϵa1+a2
− Tϵa1

Tϵa2
)Tϵa4

,

where ai’s are in G.

Since ρ is continuous, we see that (2) is true.

Proof of (3). By induction, for the case that n is odd, αξ(Hϵa1
Hϵa2

· · ·Hϵan
) has the
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form ⟨ξ, bn⟩U∗2
ξ Hϵa1

Hϵa2
· · ·Hϵan

where a1, a2, · · · , an and bn are in G. Since∫
Ĝ

⟨ξ, bn⟩U∗2
ξ Hϵa1

Hϵa2
· · ·Hϵan

dm(s)

=

{
PaHϵ0 · · ·Hϵan

, if there exists a ∈ G+ such that 2a = bn,
0, otherwise,

and P is continuous, we see that (3) is true.

Lemma 2.3. Let J be a nontrivial ideal of TG. Then there exists an ideal I of G such

that the ideal FI generated by {I − TϵxTϵx |x ∈ I+} is contained in J .

Proof. By [6], we have the canonical homomorphism β : TG → TG/J by β(Tϵx) =

Tϵx + J . Since J ̸= {0}, β is not injective. Hence the set I+ = {x ∈ G+|β(Tϵx) is unitary}
is nontrivial. Denote by I the ideal of G, generated by I+. Then it is obvious that FI ⊂ J .

Remark 2.1. K ⊂ TG iff G has a least positive element by Lemma 2.3.

Theorem 2.3. HG = commTG + SG. The sum is direct iff G has not a least positive

element.

Proof. Necessary is obvious by Lemma 2.2 and the remark of Lemma 2.3.

Sufficiency. Assume that commTG∩SG is nontrivial. Then commTG∩SG is a nontrivial

ideal of commTG. Taking a positive element S of commTG ∩ SG, we have ρ(S) > 0,

ρ(S) ∈ commTG and ρ(S) ∈ K by the properties (1), (2) and (3) of ρ. It follows that

commTG contains K since commTG is irreducible. So G has a least positive element by the

remark of Lemma 2.3. Thus, if G has not a least positive element, then the sum is direct.

The proof is completed.

At the same time, in the case that G has not a least positive element, by Theorems 2.1

and 2.3 and the remark of Lemma 2.3, we have the following

Theorem 2.4. If G has not a least positive element, then NG = TG ⊕ SG. In other

words, if the above sum is direct, then G has not a least positive element.

Remark 2.2. Note that NG, TG and SG are C∗-bimodules over commTG. By Theorems

2.3 and 2.4, when G has not a least positive element, we have the following C∗-bimodules

over commTG exact sequences

0 −→ commTG −→ HG −→ SG −→ 0,

0 −→ TG −→ NG −→ SG −→ 0.
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