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Abstract

The author introduces a notion of subordination for symmetric Dirichlet forms and proves
that the subordination is actually equivalent to the killing transformation by multiplicative

functionals in the theory of symmetric Markov processes. This also gives a way to characterize
bivariate smooth measures.
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§1. Introduction

Most definitions in this section will be taken from [3] and [2]. Let E be a Hausdorff topo-

logical space and B(E) the Borel σ-algebra on E, which is generated by all open subsets of

E. Let m be a σ-finite measure on (E,B(E)), and L2(m) the usual L2-space on (E,B(E),m)

with inner product denoted by (·, ·). A bilinear form E , together with its domain D ⊂ L2(m),

is called a symmetric nonnegative definite form on L2(m) if

(1.1a) D is dense in L2(m);

(1.1b) E is symmetric, i.e., E(u, v) = E(v, u) for u, v ∈ D;

(1.1c) E is nonnegative definite, i.e., E(u, u) ≥ 0 for u ∈ D.

For q > 0, let Eq(·, ·) := E(·, ·) + q(·, ·). Then Eq is an inner product on D. We use the

same notation for the norm Eq(u) := Eq(u, u)
1
2 for u ∈ D, which is surely equivalent to E1.

This class of equivalent norms is called E-norm on D. A symmetric nonnegative definite

form (E ,D) is called a Dirichlet form on L2(m) if, in addition, it satisfies

(1.1d) D is complete with respect to E-norm;

(1.1e) (E ,D) is Markovian, i.e., for any u ∈ D, 0∨ u∧ 1 ∈ D and E(0∨ u∧ 1, 0∨ u∧ 1) ≤
E(u, u).

The condition (1.1e) is equivalent to one seemingly stricter: if ϕ is a contraction on R,
namely, |ϕ(t)| ≤ t, t ∈ R and |ϕ(t) − ϕ(s)| ≤ |t − s|, t, s ∈ R, then for any u ∈ D we have

ϕ(u) ∈ D and E(ϕ(u), ϕ(u)) ≤ E(u, u). For example |t| and 0∨ t are contractions on R. It is
known that for a Dirichlet form (E ,D) on L2(m) there exists a unique strongly continuous
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Markovian resolvent (Gq)q>0 on L2(m) such that Gq(L
2(m)) ⊂ D and Eq(Gqf, u) = (f, u)

for all f ∈ L2(m), u ∈ D and q > 0.

Assume that (E ,D) is a Dirichlet form on L2(m). We now define a capacity on E. For

any open subset G ⊂ E let LG := {u ∈ D : u ≥ 1 a.e. on G}. Then there exists hG ∈ D
such that hG minimizes E1 on LG or E1(hG, hG) = inf{E1(u, u) : u ∈ LG}. For B ⊂ E

define C1(B) := inf{E1(hG, hG) : G open and B ⊂ G}. The set function C1 is called E1-
capacity on E. Obviously C1 ≥ m on B(E). A subset B ⊂ E is said to be (E-)exceptional
if C1(B) = 0. An increasing sequence {En} of compact subsets of E is an E-nest if

∩
n
Ec

n

is E-exceptional. A property of points on E holds quasi-everywhere (q.e. in abbrev.) if it

holds off an exceptional set. For B ⊂ E let DB := {u ∈ D : u = 0 q.e. on Bc}. Then an

increasing sequence {En} of compact subsets is E-nest if and only if ∪nDEn is dense in D
with respect to E-norm. A function f on E is called (E-)quasi-continuous if there exists an

E-nest {En} such that f ∈ C({En}) where C({En}) := {u : u is continuous on all En}. We

say that f has a quasi-continuous version if there exists a quasi-continuous function f̃ such

that f = f̃ a.e. m, in which case the ‘̃ ’ is always used to mark the version.

Definition 1.1. A Dirichlet form (E ,D) on L2(m) is quasi-regular (on E) if

(1.2a) there exists an E-nest {En};
(1.2b) each element in D has a quasi-continuous version;

(1.2c) there exist {un : n ∈ N} ⊂ D and an exceptional set N ⊂ E such that {ũn : n ∈ N}
separates the points of E \N .

Recall the Fukushima’s definition of regularity: (E ,D) is regular (on E) if E is a locally

compact metrizable space, m is a Radon measure and D ∩ Cc(E) is dense in Cc(E) with

uniform norm, in D with E-norm. Fukushima showed that every Dirichlet form has a regular

representation and every regular Dirichlet form associates to a symmetric Hunt process.

The quasi-regularity is certainly weaker than regularity. The recent works of Albeverio, Ma,

Röckner, and others showed that a Dirichlet form on L2(m) is quasi-regular on E if and only

if it associates a symmetric Borel right process X with state space E, namely, if (Uq) is the

resolvent of X, then Uqf is a quasi-continuous version of Gqf for each f ∈ B(E) ∩ L2(m)

and q > 0.

Though a large class of Dirichlet forms is accessible to quasi-regularity but not to regu-

larity, (e.g., when E is an infinite dimemsional space,) it is also shown by Ma, Rockner, and

others that each quasi-regular Dirichlet form has a regular homeomorphism and almost all

results for regularity can be immediately transferred to those for quasi-regularity through

this homeomorphism. Hence we will use the applicable results in [3] and [2] without further

explanation.

In this article we are going to characterize the so-called killing transform in the theory of

Markov processes in terms of the theory of Dirichlet forms. This problem is closely related

to the perturbation theory of Dirichlet forms on which many authors (see [2] or [3] for

bibliography) have worked. The notions and main results will be given in §2 while §3 will

be dedicated to a characterization for bivariate Revuz measures.

Conventions. Given a class of functions F , we use bF and pF to denote subclasses of

bounded functions and nonnegative functions in F respectively.
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§2. Subordination

In this section we fix X = (Ω,F ,Ft, Xt, θt, P
x) which is a symmetric Borel right process

on (E,B(E)) associated with a quasi-regular symmetric Dirichlet form (EX ,DX). A subset

of E is exceptional if and only if it is m-polar in language of X; namely it can never be

reached by (Xt) a.e. Pm. Let us now introduce the notion of subordination in Dirichlet

forms.

Definition 2.1. Let (E1,D1) and (E2,D2) be two Dirichlet forms on L2(m). The form

(E2,D2) is said to be subordinate to (E1,D1), denoted by (E2,D2) < (E1,D1), if D2 ⊂ D1 and

E1(u, v) ≤ E2(u, v) for u, v ∈ pD2, and strongly subordinate, denoted by (E2,D2) ≪ (E1,D1)

if, in addition, D2 is dense in D1 with respect to E1-norm.

Clearly the relation “<” is a partial order for Dirichlet forms on L2(m), but it is not so

clear whether “≪” is also a partial order. In order to give the definition of killing transform,

we need to introduce multiplicative functionals for symmetric Markov processes.

Definition 2.2. A family M = (Mt)t≥0 of [0, 1]-valued random variables on Ω is said to

be a multiplicative functional of X if

(i) M is adapted to (Ft);

(ii) there exists a defining set Λ ∈ F and an exceptional (m-polar) set N ⊂ E such

that P x(Λ) = 1 for all x ∈ N c, θtΛ ⊂ Λ for all t > 0 and for each ω ∈ Ω, Mt+s(ω) =

Mt(ω) ·Ms(θtω) for all s, t > 0.

Let EM := {x ∈ E : P x(M0 = 1) = 1}, which is the permanent set of M unique up to

an m-polar set, and

V qf(x) := P x

[∫ ∞

0

e−qtMtf(Xt)dt

]
, f ∈ bB(E), q > 0, x ∈ E \N. (2.1)

Then there exists a right Markov process Y with state space EM and resolvent (V q)q>0.

We call Y the subprocess of X killed by M and M symmetric if (V q) is symmetric. Let

sMF(X) be the totality of the symmetric multiplicative functionals of X with E as their

permanent set. A right process Y with state space (E,B(E)) and resolvent (V q) is said to

be a subprocess of X, denoted by Y ≺ X, if there exists M ∈ sMF(X) with N as exceptional

set such that (V q) is given by (2.1). Define the bivariate Revuz measure of M ∈ sMF(X)

(relative to m) as

νM (F ) :=↑ lim
t↓0

1

t
Pm

[∫ t

0

F (Xs−, Xs)d(−Ms)

]
, F ∈ pB(E × E). (2.2)

Then νM is symmetric, i.e., νM (dx ⊗ dy) = νM (dy ⊗ dx). Let ν̄M := νM (· ⊗ 1) be the

marginal measure of νM .

Theorem 2.1. If Y is a symmetric right process on (E,B(E)) associated with its Dirich-

let form (EY ,DY ) and Y ≺ X, then (EY ,DY ) is quasi-regular and strongly subordinate to

(EX ,DX).

Proof. It was shown in [4] that (EY ,DY ) is given by

DY = DX ∩ L2(E, ν̄M );

EY (u, v) = EX(u, v) + νM (u⊗ v), u, v ∈ DY .
(2.3)

Hence (EY ,DY ) < (EX ,DX). We now need only to check that (EY ,DY ) is quasi-regular and

DY is dense in DX with EX -norm. Firstly we claim that each EX -nest is an EY -nest. In fact
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assume that {En} is an EX -nest. Let Tn := TEc
n
, the first exit time from En, T := lim

n
Tn

and

V 1
n f := P ·

[∫ Tn

0

e−tMtf(Xt)dt

]
, f ∈ pB(E)

∩
L2(m).

By Lemma (IV.4.5) of [3] we have V 1
n f −→ V 1f q.e. On the other hand V 1

n f is nothing but

the orthogonal projection of V 1f on DY
En

in the Hilbert space (DY , EY
1 ). Hence

EY
1 (V 1f − V 1

n f, V
1f − V 1

n f) = EY
1 (V 1f, V 1f − V 1

n f) = (f, V 1f − V 1
n f) −→ 0,

namely
∪
n
DY

En
is dense in V 1(L2(m)) and therefore in DY with respect to EY -norm. It

follows that (EY ,DY ) satisfies the quasi-regularity condition (1.2a) and (1.2b). Secondly for

condition (1.2c) we choose {fn : n ∈ N} ⊂ Cc(E) such that B(E) = σ({fn : n ∈ N}). Let

N be an exceptional set of M . We set for n ∈ N,

fn,m(x) :=

{
mV mfn(x), x ∈ E \N ;

fn(x), x ∈ N.

Then fn,m(x) −→ fn(x) as m −→ ∞ for all x ∈ E. Clearly B0 := {fn,m : n,m ∈ N} is

a set of EY -quasi-continuous functions in DY and σ(B0) = B(E). Hence (EY ,DY ) satisfies

(1.2c) and is quasi-regular.

Finally we will show that DY is dense in DX . Fix f ∈ B(E) with 0 < f ≤ 1 and

m(f) < ∞. By the generalized Revuz formula we have

ν̄M (V 1f) = νM (V 1f ⊗ 1) =
(
f, P ·

∫ ∞

0

d(−Mt)
)
≤ m(f) < ∞.

Set Fn := {x : V 1f(x) ≥ 1
n}, which is q.e. finely closed for each n. Since V 1f > 0 q.e., Fn

increases to E q.e. Now for g ∈ pbB(E) ∩ L2(m), let Tn := TF c
n
,

un := P ·
∫ Tn

0

e−tg(Xt)dt and u := P ·
∫ ζ

0

e−tg(Xt)dt.

Then un = 0 q.e. on F c
n and

ν̄M (u2
n) = ν̄M (un · 1Fn) ≤ ||g||2∞ν̄M (nV 1f) ≤ n · ||g||2∞ ·m(f) < ∞.

Hence un ∈ DX ∩ L2(E, ν̄M ) = DY . Now since un is EX -orthogonal to u − un, EX
1 (u −

un, u − un) = (g, u − un). We have un −→ u in EX -norm. It follows that DY is dense in

U1(L2(m)) and hence in DX with respect to EX -norm.

This theorem tells that Y ≺ X implies that (EY ,DY ) ≪ (EX ,DX). In the rest of the

section we aim to show the inverse. We will first give a lemma.

Lemma 2.1. Assume that (E1,D1) and (E2,D2) are Dirichlet forms on L2(m).

(a) If (E2,D2) < (E1,D1), then E1-norm is dominated by E2-norm on D2.

(b) If (E2,D2) ≪ (E1,D1), then each E2-nest is an E1-nest.

Proof. (a) let I be the inclusion operator from (D2, E2-norm) to (D1, E1-norm); i.e.,

I(u) = u for u ∈ D2. By a basic fact in functional analysis, it suffices to show that I is

continuous. Let {un} ⊂ D2 such that E2
1 (un, un) −→ 0. Set u+

n := un∨0 and u−
n := −un∧0.

Then (1.1e) and subordination imply that

E1
1 (u

±
n , u

±
n ) ≤ E2

1 (u
±
n , u

±
n ) ≤ E2

1 (un, un) −→ 0.

Hence E1
1 (un, un) −→ 0, i.e., I is continuous.
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(b) Let {En} be an E2-nest. Then
∪
n
D2

En
is dense in D2 with respect to E2-norm, and to

E1-norm by (a). Since D2 is dense in D1 with E1-norm,
∪
n
D2

En
is dense in D1 with E1-norm.

It follows from the fact that D2
En

⊂ D1
En

that
∪
n
D1

En
is dense in D1 with respect to E1-norm;

i.e., {En} is an E1-nest.

It follows from this lemma that each E2-exceptional set is E1-exceptional and the quasi-

regularity of (E2,D2) implies that of (E1,D1). It is also easily seen from this lemma that

“≪” and “≺” are partial orders in their respective defining classes.

Theorem 2.2. Let Y be a symmetric Borel right process on state space (E,B(E)) which

is associated with a quasi-regular Dirichlet form (EY ,DY ) on L2(m). Then (EY ,DY ) ≪
(EX ,DX) implies that Y ≺ X.

Proof. Let (V q) be the resolvent of Y . Since DY is dense in DX with respect to EX -

norm, there exists, for f, g ∈ pB(E) ∩ L2(m) and q > 0, {un} ⊂ DY such that un −→ Uqf

in EX -norm and also in L2-norm. Then u+
n −→ Uqf and

(un, g) = EY
q (u+

n , V
qg) ≥ EX

q (u+
n , V

qg).

Bringing n to infitity, we have

(Uqf, g) ≥ EX
q (Uqf, V qg) = (f, V qg) = (V qf, g).

It follows that Uqf ≥ V qf a.e. m for q > 0 and f ∈ pB(E) ∩ L2(m).

Since (EY ,DY ) is quasi-regular, there exists an EY -nest {En}, which is an EX -nest by

Lemma 2.1. Set F := ∪nEn. Then F is separable and both X and Y actually live on F .

Let {qi} be a dense set in ]0,∞[ and fj a dense set in pCc(F ). By Lemma 2.1 the EY -

quasi-continuous function V qifj , i, j ∈ N, is also EX -quasi-continuous. Then there exists an

EX -nest {E′
n} such that {Uqifj , V

qifj : i, j ∈ N} ⊂ C({E′
n}). Hence Uqifj(x) ≥ V qifj(x)

for all x ∈ ∪nE
′
n and i, j ∈ N. Let N := (

∩
n
Ec

n) ∪ (
∩
n
(E′

n)
c), which is EX -exceptional. By

continuity of U ·f(x) and V ·f(x) for f ∈ Cc(E) and x ∈ E, we find that Uqfj(x) ≥ V qfj(x)

for q > 0, j ∈ N and x ∈ E \N . A similar limiting reasonning gives

Uqf(x) ≥ V qf(x), for x ∈ E \N, f ∈ pB(E), q > 0.

By the results in Chapter III of [1], there exists M ∈ sMF(X) with N as its exceptional set

such that (V q) is given by (2.1).

Combining the theorems above, we show that the killing transform in the theory of

Markov processes is essentially equivalent to strong subordination in the theory of Dirichlet

forms. But we may ask what specific can be said about subordination.

Corollary 2.1. Let Y be a symmetric Borel right process on (E,B(E)) which is associated

with a quasi-regular Dirichlet form (EY ,DY ) on L2(m). If (EY ,DY ) < (EX ,DX), then there

exists a measure σ on E × E such that EY (u, v) = EX(u, v) + σ(u⊗ v), u, v ∈ DY .

Proof. Let D be the closure of DY in DX with respect to EX -norm. It is clear

that (EX ,D) is also a Dirichlet form on L2(m) and quasi-regular by Lemma 2.1. Then

(EY ,DY ) ≪ (EX ,D). Using Theorem 2.2 and the Feynman-Kac formula (3.14) in [4] we

have our conclusion proven.

An interesting question is under what condition subordination is equivalent to strong

subordination.
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§3. Characterization

In this section we assume X and (EX ,DX) as in §2. Given a σ-finite measure µ charging

no exceptional sets, let

D(µ) := DX ∩ L2(E, µ),

E(µ)(u, v) := EX(u, v) + µ(ũṽ), u, v ∈ D(µ).
(3.1)

The pair (E(µ),D(µ)) is called µ-perturbation (of (EX ,DX)). The measure µ is said to be

(EX -)smooth on E if it does not charge exceptional sets and there exists an EX -nest {En}
such that µ(En) < ∞ for all n. It follows from (IV.4.c) of [3] that the measure µ is smooth

if and only if the µ-perturbation is quasi-regular and strongly subordinate to (EX ,DX).

Let J be the canonical measure of X (or jumping measure of (EX ,DX). Given now a

positive symmetric bivariate measure ν, denote by ν̄ the marginal measure of ν. We call ν

smooth if ν̄ is smooth and ν|Dc ≤ J , where D := {(x, x) : x ∈ E}. Let
D(ν) := DX ∩ L2(E, ν̄);

E(ν)(u, v) := EX(u, v) + ν(ũ⊗ ṽ), u, v ∈ D(ν).
(3.2)

The pair (E(ν),D(ν)) is called ν-perturbation (of (EX ,DX)). Two Dirichlet forms on L2(m)

are equivalent if they have a common domain and their corresponding norms are equivalent.

Lemma 3.1. Let ν be a smooth symmetric bivariate measure. Then the ν-perturbation

is equivalent to ν̄-perturbation. Consequently ν-perturbation is quasi-regular and strongly

subordinate to (EX ,DX).

Proof. The equivalence follows from the well-known Beurling-Deny’s decomposition.

The other results are easy to check.

Having all previous results at hands, the following characterization theorem is almost

trivial.

Theorem 3.1. A positive symmetric measure on E ×E is a bivariate Revuz measure of

some M ∈ sMF(X) if and only if ν is smooth.
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