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AND MINIMAL SURFACES IN S6**
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Abstract

In terms of the almost complex connection and the unitary moving frame, a complex version
on the theory of the nearly Kähler structure in S6 is given. Under this framework, minimal
surfaces in the nearly Kähler S6 are studied. A complete classification for complete minimal

surfaces in S6 with constant Kähler angle and nonnegative curvature is given. Moreover, almost
complex curves in S6 are considered.
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§1. Introduction

As is well known, there is not any almost complex structure in the n(> 2)-dimensional,

except 6-dimensional, sphere. By means of the multiplication in the Cayley number, an

orthogonal almost complex structure J can be defined on the unit 6-sphere S6. Indeed, this

is a nearly Kähler structure on S6 (see [8]). Much progress on the geometry of submanifolds

in the naerly Kähler S6 has been made recently[2,3,6,7,11]. In their research works, the nearly

Kähler S6 is considered as a real 6-manifold of constant sectional curvature with an almost

complex structure satisfying the nearly Kählerian property. It seems to be uncomfortable for

us to discuss some problems. A more natural idea is to introduce the almost complex affine

connection on the nearly Kähler S6 and to establish the corresponding structure equations.

So far, we have not seen any statement in this direction, except in [1].

In this paper, we would like to give a complex version on the theory of the nearly Kähler

structure in terms of the almost complex connection and structure equations. Under this

framework, we then study minimal surfaces in the nearly Kähler S6. The following results

will be shown (see Theorem 4.1 and Theorem 5.1).

Theorem A. Let M be a minimal surface in the nearly Kähler S6 with constant Kähler

angle α ( ̸= 0, π). If M is complete and has nonnegative Gauss curvature K, then either

K ≡ 1 and M is totally geodesic; or K ≡ 0 and M is either totally real or superminimal.

Theorem B. The nearly Kähler S6 has a Frenet frame along every almost complex curve

on S6.
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The contents of this paper are arranged as follows. In §2 the complex version of structure

equations of nearly Kähler manifolds will be given. The complex version of the theory on

minimal surfaces in the nearly Kähler S6 will be established in §3. In §4 Theorem A will be

proved. Finally, in §5, we consider the almost complex curves in the nearly Kähler S6 and

the proof of Theorem B will be given.

§2. The Nearly Kähler Structure

Let N be an almost Hermitian manifold of real dimensional 2n with almost complex

structure J and Hermitian metric ⟨ , ⟩. We denote by ∇ the Levi-Civita connection with

respect to the metric ⟨ , ⟩ viewed as a Riemannian metric. If the almost complex structure

satisfies

(∇XJ)Y + (∇Y J)X = 0 or equivalently (∇XJ)X = 0 (2.1)

for any vector fields X and Y on N , then N is called a nearly Kähler manifold (Tachibana

space; K-space). Clearly, all of the Kähler manifolds are nearly Kählerian, while any 4-

dimensional nearly Kähler manifold is Kählerian[9]. Moreover, it is shown in [12] that there

does not exist any dimensional, except 6-dimensional, non-Kählerian nearly Kähler manifold

of constant holomorphic sectional curvature.

The most typical example of nearly Kähler manifolds is the nearly Kähler 6-dimensional

unit sphere S6. The explanation of the almost complex structure on S6 may be found in [2]

and [7].

We now introduce a (2,1)-tensor field ∇J on N defined by

(∇J)(X,Y ) = (∇Y J)X

for any vector fields X,Y ∈ TN . From (2.1) we have

(∇J)(X,Y ) + (∇J)(Y,X) = 0, (2.2)

(∇J)(JX, Y ) + J((∇J)(X,Y )) = 0, (2.3)

⟨(∇J)(X,Y ), Z⟩+ ⟨(∇J)(X,Z), Y ⟩ = 0,

⟨(∇J)(X,Y ), JZ⟩+ ⟨(∇J)(X,Z), JY ⟩ = 0. (2.4)

In general, the connection ∇ is not almost complex with respect to the almost complex

structure J , namely, ∇J ̸= 0. However, from the connection ∇ we can construct an almost

complex affine connection ∇̃ which is defined by[10]

∇̃XY = ∇XY − 1
4 (∇JY J)X − 1

4J((∇XJ)Y ) = ∇XY − 1
2J((∇XJ)Y ), (2.5)

so that ∇̃J = 0. Moreover, the connection ∇̃ is compatible with the metric ⟨ , ⟩ according
to (2.2) and (2.4), i.e., Z⟨X,Y ⟩ = ⟨∇̃ZX,Y ⟩+ ⟨X, ∇̃ZY ⟩ for any X,Y ∈ TN .

We now choose a local field of orthonormal frames {eA} in N such that Jeα = eα∗ , where

the convention of the range of indices is as follows:

α, β, γ, · · · = 1, · · · , n; A,B,C, · · · = 1, · · · , n, 1∗, · · · , n∗.

Let {θA} be the coframes dual to {eA}. Then the almost complex structure can be written

as J = JA
B θBeA, where (

JA
B

)
=

(
0 −In
In 0

)
, JA

B + JB
A = 0. (2.6)
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Let

(∇J)(eA, eB) = JC
ABeC , (2.7)

where, and from now on, the Einstein sum convention is used. We then have

JA
BCθ

C = dJA
B − JA

C θCB + JC
B θAC , (2.8)

dθA = −θAB ∧ θB , θAB + θBA = 0,

dθAB = −θAC ∧ θCB +ΦA
B , (2.9)

which are the structure equations related to ∇. From (2.7), (2.2)–(2.4) are reduced to

JA
BC + JA

CB = 0, JA
BC + JB

AC = 0, (2.10)

JA
CDJC

B + JA
C JC

BD = 0. (2.11)

Let {θ̃AB} be the connection 1-forms related to the almost complex affine connection ∇̃
described as in (2.5). Then, by the definition that ∇̃XeB = θ̃AB(X)eA, it follows from (2.5)

and (2.7) that

θ̃AB = θAB − 1

2
JA
C JC

BDθD, (2.12)

which together with (2.9)1 yields

dθA = −θ̃AB ∧ θB +ΨA, ΨA =
1

2
JA
DJD

BCθ
B ∧ θC , (2.13)

dθ̃AB = −θ̃AC ∧ θ̃CB + Φ̃A
B, (2.14)

Φ̃A
B =

1

2
(ΦA

B − JA
CΦC

DJD
B )− 1

8
(JA

ECJ
E
BD − JA

EDJE
BC)θ

C ∧ θD. (2.15)

On putting

ωα = θα +
√
−1θα

∗
, Θα = Ψα +

√
−1Ψα∗

,

ωa
β̄
= θ̃αβ +

√
−1θ̃α

∗

β , Ωα
β̄
= Φ̃α

β +
√
−1Φ̃α∗

β ,
(2.16)

we have from (2.13)–(2.15)

dωα = −ωα
β̄ ∧ ωβ +Θα, ωα

β̄ + ωβ̄
α = 0,

dωα
β̄ = −ωα

γ̄ ∧ ωγ

β̄
+Ωα

β̄ , (2.17)

where ωβ̄
α = ω̄β

ᾱ as well as ωᾱ = ω̄α below.

By (2.6) and (2.8) we see easily that

Jα
β∗C = Jα∗

βC , Jα∗

β∗C = −Jα
βC . (2.18)

Thus, if we set

Pα
βγ = Jα

βγ +
√
−1Jα∗

βγ , (2.19)

then the 2-form Θα defined as in (2.16) can be expressed as

Θα =

√
−1

2
Pα
βγω

β̄ ∧ ωγ̄ . (2.20)

In the case that N = S6, i.e., the nearly Kähler unit 6-sphere, we have n = 3 and

ΦA
B = θA ∧ θB . By [7] and (2.15), we have

⟨(∇J)(X,Y ), (∇J)(Z,W )⟩ = ⟨X,Z⟩⟨Y,W ⟩ − ⟨X,W ⟩⟨Z, Y ⟩
+ ⟨JX,Z⟩⟨Y, JW ⟩ − ⟨JX,W ⟩⟨Y, JZ⟩, (2.21)
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which is equivalent to

JA
EBJ

E
CD = δADδBC − δACδBD + JA

DJC
B − JA

C JD
B , (2.22)

Ωα
β̄ =

3

4
ωα ∧ ωβ̄ − 1

4
δαβ

∑
γ

ωγ ∧ ωγ̄ . (2.23)

Moreover, by (2.8), (2.18) and (2.22), we see that Pα
βγ is skew-symmetric with respect to

any two indices and that

| P 3
12 |2= 1. (2.24)

By (2.4) we know easily that ⟨(∇J)(e1, e2), eλ⟩ = 0 for λ = 1, 2, 1∗, 2∗. By (2.21), we have

| (∇J)(e1, e2) |2= 1. These allow us to be able to choose

e3 = (∇J)(e1, e2), e3∗ = Je3, (2.25)

so that J3
12 = 1 and J3∗

12 = 0. Hence,

P 3
12 = P̄ 3

12 = 1. (2.26)

§3. Minimal Surfaces in the Nearly Kähler S6

Let M be a connected oriented 2-dimensional Riemannian manifold and x : M → S6

be an isometric immersion of M into the nearly Kähler S6. As is shown in [5], the Kähler

angle α of x may be defined by cosα = ⟨Je1, e2⟩, where {e1, e2} is an orthonormal basis

on M . Thus, x is almost complex if and only if sinα = 0, while x is totally real if and

only if cosα = 0. Assume that x is not almost complex. Then, in the open subset where

sinα ̸= 0, we may extend {ei, Jei}, (i, j, · · · = 1, 2), to a neighbourhood U ⊂ S6. Let

DU = span{ei, Jei} be a real 4-dimensional distribution on U . We now put

(sinα)e1∗ = −(cosα)e1 − Je2, (sinα)e2∗ = Je1 − (cosα)e2,
ẽ1 = (cos α

2 )e1 + (sin α
2 )e1∗ , ẽ1∗ = (cos α

2 )e2 + (sin α
2 )e2∗ ,

ẽ2 = (sin α
2 )e1 − (cos α

2 )e1∗ , ẽ2∗ = −(sin α
2 )e2 + (cos α

2 )e2∗ .

Clearly, both {ei, ei∗} and {ẽi, ẽi∗} are the orthonormal bases ofDU and Jẽi = ẽi∗ . By taking

ẽ3 = e3 ∈ D⊥
U , the orthogonal complement of DU , and ẽ3∗ = e3∗ = Jẽ3, we obtain a unitary

frame {ẽα, ẽα∗} on U ⊂ S6 where ẽ3 and ẽ3∗ are defined up to a unitary transformation.

Particularly, if we choose ẽ3 = (∇J)(ẽ1, ẽ2) and ẽ3∗ = Jẽ3, then we obtain an adapted frame

satisfying (2.26) on U ⊂ S6.

On putting φ = θ1 +
√
−1θ2 where { θα} is the coframe field dual to {eα}, the induced

metric of M is written as ds2M = φφ̄. Thus, the structure equations of M are

dφ =
√
−1θ12 ∧ φ, dθ12 =

√
−1

2
Kφ ∧ φ̄, (3.1)

where θ12 is the real connection 1-form and K is the Gauss curvature of M .

Let ωα = θ̃α +
√
−1θ̃α

∗
where {θ̃α} is the coframe field dual to {ẽα} as described in §2.

By restricting {ωα} to M , we have

ω1 = (cos α
2 )φ, ω2 = (sin α

2 )φ̄, ω3 = 0, (3.2)
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which are equivalent to

(cos
α

2
)ω1 + (sin

α

2
)ω2̄ = θ1 +

√
−1θ2,

(sin
α

2
)ω1 − (cos

α

2
)ω2̄ = θ1

∗
+

√
−1θ2

∗
,

ω3 = θ3 +
√
−1θ3

∗
. (3.3)

By taking the exterior derivatives of (3.2) and using (2.17) and (2.23), we get
1
2{dα− (sinα)(ω1

1̄ + ω2
2̄)} = aφ+ bφ̄,

−ω1
2̄ = bφ+ cφ̄,

(3.4)

−(cos α
2 )ω

3
1̄ +

√
−1
4 (sinα)P 3

12φ̄ = a′φ+ b′φ̄,

−(sin α
2 )ω

3
2̄ −

√
−1
4 (sinα)P 3

12φ = b′φ+ c′φ̄,
(3.5)

where a, b, c, a′, b′ and c′ are smooth complex valued functions defined locally on M . The

condition for M to be minimal is that b = b′ ≡ 0. As is proved in [5], when x : M → S6

is minimal which is not almost complex, the Kähler angle of x is a smooth function on M

everywhere except at some isolated points.

For a minimal immersion x : M → S6 which is not almost complex, by taking exterior

derivatives of (3.3) and making use of (2.17) and (3.2)–(3.5), we get

θ12 =
√
−1{(cos α

2 )
2ω1

1̄ − (sin α
2 )

2ω2
2̄}, (3.6)

θ1
∗

1 +
√
−1θ1

∗

2 = −(ā+ c)φ̄, θ2
∗

1 +
√
−1θ2

∗

2 = −
√
−1(ā− c)φ̄,

θ31 +
√
−1θ32 = −(ā′ + c′)φ̄, θ3

∗

1 +
√
−1θ3

∗

2 = −
√
−1(ā′ − c′)φ̄.

(3.7)

By differentiating (3.6), we can get the Gauss equation of M :

K = 1− 2(| a |2 + | c |2 + | a′ |2 + | c′ |2). (3.8)

By taking exterior derivative of (3.4)1 and using (2.17) and (3.1), we have

da+
√
−1aθ12 = a1φ+ a2φ̄,

with a2 = (cotα) | a |2 −(tan
α

2
) | a′ |2 +(cot

α

2
) | c′ |2, (3.9)

dc− 3
√
−1cθ12 = c1φ+ c2φ̄,

with c1 = −(cotα)ac+

√
−1

2
(P 3

12ā
′ − P̄ 3

12c
′). (3.10)

Let △ be the Laplacian on M . By (3.2), (3.6)–(3.9), a standard computation gives

1
4△α = (cotα) | a |2 −(tan α

2 ) | a
′ |2 +(cot α

2 ) | c
′ |2 . (3.11)

If we set θri = hr
ijθ

j , r = 1∗, 2∗, 3∗, 3, and Hr = hr
11 +

√
−1hr

12, then, by virtue of (3.7)

and the minimality, we see easily that

Q =
∑
r

(H̄r)2φ4 = 4(ac̄+ a′c̄′)φ4 (3.12)

is a holomorphic form of degree 4 on M as pointed out in [4]. Following R. Bryant[1], the

minimal immersion x : M → S6 is called superminimal if the form Q defined by (3.12)

vanishes identically.

Let TxM and TxS
6 be the tangent spaces to M and S6, respectively, at a point x ∈ M .

We denote by HxM the almost complex subspace in TxS
6 generated by TxM , called the
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almost complex tangent space of M at x. Clearly, HxM =span{e1, e2, e1∗ , e2∗} when x is

not almost complex. Thus, TxS
6 can be decomposed as

TxS
6 = HxM ⊕H⊥

x M, (3.13)

where H⊥
x M =span{e3, e3∗} is the orthogonal complement of HxM in TxS

6.

On the other hand, let T
(2)
x M be the second osculating space of M at x(see [4]). Then,

the first normal space of M at x, denoted by N (1)
x M , is the orthogonal complement of TxM

in T
(2)
x M , so that

TxS
6 = T (2)

x M ⊕N (c)
x M = TxM ⊕N (1)

x M ⊕N (c)
x M, (3.14)

where N (c)
x M is the orthogonal complement of T

(2)
x M in TxS

6. By the minimality of M ,

the real dimension of N (1)
x M is not larger than two and the second fundamental form of M

with respect to any ξ ∈ N (c)
x M vanishes identically.

Before concluding this section we show a topological property for minimal surfaces in the

nearly Kähler S6. Define globally a real canonical 1-form σ on M by

σ =
√
−1

3∑
α=1

ωα
ᾱ . (3.15)

Proposition 3.1. Let M be a minimal surface in the nearly Kähler S6. Then the

canonical 1-form σ on M defined by (3.15) is closed. Hence, σ defines a canonical cohomology

class on M , namely, [σ] ∈ H1(M,R).

Proof. If M is not almost complex, then, by (2.17), (3.4) and (3.5), a straightforward

computation gives dσ = 0.

If M is almost complex, then, by using the Frenet frame along the complex curve x :

M → S6 (see §5 below), a similar computation gives dσ = 0.

§4. Minimal Surfaces with Constant Kähler Angle

In this section we will consider minimal surfaces in the nearly Kähler S6 with constant

Kähler angle α ̸= 0, π. From (3.4)1 and its complex conjugation it follows that α is constant

if and only if a ≡ 0. Thus, in the case that α =const., the holomorphic form Q defined by

(3.12) is reduced to

Q = 4a′c̄′φ4. (4.1)

By introducing the local complex coordinate z on M such that φ = λdz, we have from (4.1)

the locally holomorphic function F = 4a′c̄′λ4 on M which satisfies

△ log | F |2= 0 (4.2)

for F ̸= 0. On the other hand, in the isothermal net K = −△ log λ. Hence we have

△ log | a′c̄′ |2= 8K (4.3)

for F ̸= 0.

From (4.3) we have the following

Theorem 4.1. Let x : M → S6 be a minimal immersion with constant Kähler angle

α (0 < α < π). If M is complete and has nonnegative Gauss curvature K, then either K ≡ 1

and x is totally geodesic; or K ≡ 0 and x is either totally real or superminimal. In the last
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case, with respect to an adapted local field of unitary coframes {ωα} in the nearly Kähler

S6, the almost complex connection forms {ωα
β̄
} of S6 restricted to M are given locally by 0 −

√
2
2 eiρdz̄ i

2 (sin
α
2 )dz√

2
2 e−iρdz 0 − i

2 (cos
α
2 )dz̄

i
2 (sin

α
2 )dz̄ − i

2 (cos
α
2 )dz 0

 , (4.4)

where i =
√
−1, ρ is a real constant, and z is the local complex coordinate on M .

Proof. The proof will be separated into some steps.

1st Step. From (4.3) it follows that

△ | a′c̄′ |2= 8 | a′c̄′ |2 K + 4 ∥ grad | a′c̄′ |∥2, (4.5)

which holds on M globally. Under the hypothesis of the theorem, we see from (4.5) that

| a′c̄′ |2 is a subharmonic function on M . By (3.8) and the assumption that K ≥ 0 we have

| a′c̄′ |≤ 1

2
(| a′ |2 + | c′ |2) ≤ 1

4
(1−K) ≤ 1

4
,

namely, | a′c̄′ |2 is bounded above on M . Then, by Liouville’s theorem, | a′c̄′ |2 is a constant,

so that either | a′c̄′ |2= 0 or, by (4.3), K ≡ 0 on M .

2nd Step. We will prove that if K ̸= 0 on M , then K ≡ 1 and x is totally geodesic.

Since a = 0, (3.11) gives

(tan α
2 ) | a

′ |2= (cot α
2 ) | c

′ |2 . (4.6)

Thus, in the case that | a′c̄′ |2= 0, (4.6) deduces that

a′ = 0, c′ = 0. (4.7)

We now consider the following cubic form

P = ω1ω1̄
2ω

2̄ = −1

2
(sinα)c̄φ3 = −1

2
(sinα)c̄λ3dz3. (4.8)

By vertue of (2.17), (3.4), (3.5), (3.10) and (4.5), we see easily that the cubic form P is

holomorphic on M , as shown similarly in [5]. Then, c̄λ3 is a holomorphic function on M .

In the same manner as in the first step, we then have

△ | c |2= 6 | c |2 K + 4 ∥ grad | c |∥2 . (4.9)

Since K ̸= 0, by using Liouville’s theorem again, we obtain from (4.9) that c ≡ 0, so that

a = c = a′ = c′ = 0 on M identically, i.e., x is totally geodesic and K ≡ 1 according to

(3.8).

3rd Step. We now consider the case that K ≡ 0 on M . By the first step, we have seen

that | a′c̄′ |2 is a constant, which together with (4.6) implies that both | a′ |2 and | c′ |2 are

constant. Moreover, both | a′ |2 and | c′ |2 are either zero or nonzero simultaneously. In

such a case we see from (3.8) that

| c |2= 1

2
− | a′ |2 − | c′ |2, (4.10)

which is also a constant. In the following we will consider two cases separately.

4th Step. Suppose that | a′c̄′ |2 ̸= 0 on M . From (3.7), (3.13) and (3.14) we see

that N (1)
x M ∩ H⊥

x M ̸= ∅ for any point x ∈ M . In fact, if N (1)
x M ∩ H⊥

x M = ∅, then

H⊥
x M ⊆ N (c)

x M, which implies that θ3j = θ3
∗

j = 0 for j = 1, 2, namely, a′ = c′ = 0 according

to (3.7). This is impossible. Hence, we consider only two cases as follows.
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Case (i) N (1)
x M ∩HxM = ∅ for a point x ∈ M . In such a case, we have N (1)

x M ⊆ H⊥
x M ,

which implies that θ1
∗

j = θ2
∗

j = 0 for j = 1, 2, namely, c = 0 at the point x. Since | c |2 is

constant, c ≡ 0 on M . We now have from (3.10) that P 3
12ā

′ = P̄ 3
12c

′. By choosing suitably

{e3, e3∗ = Je3} such that (2.26) holds, we have ā′ = c′, so that | a′ |2=| c′ |2 ̸= 0. From (4.4)

it follows that tan α
2 = cot α

2 , namely, α = π/2 and x : M → S6 is totally real.

Case (ii) N (1)
x M ∩ HxM ̸= ∅ for a point x ∈ M . By taking ξ ∈ N (1)

x M ∩ H⊥
x M and

η ∈ N (1)
x M ∩ HxM , we have N (1)

x M =span{ξ, η} because ⟨ξ, η⟩ = 0. We now choose

e3 = ξ/ ∥ ξ ∥ and e3∗ = Je3. Since H⊥
x M is almost complex, e3∗ = Jξ/ ∥ ξ ∥ lies in H⊥

x M ,

so that ⟨e3∗ , η⟩ = 0. Clearly, ⟨e3∗ , ξ⟩ = 0. Thus, e3∗ /∈ N (1)
x M , i.e., e3∗ ∈ N (c)

x M . In such a

case, we have θ3
∗

1 = θ3
∗

2 = 0, so that ā′ = c′ according to (3.7). In the same manner, from

(4.4) it follows that α = π/2 and the immersion x is totally real.

5th Step. Suppose that | a′c̄′ |2= 0 on M . It means that a′ = c′ = 0 on M identically.

Then, the form Q defined by (3.12) vanishes on M , namely, x : M → S6 is superminimal.

From (4.8) it follows that | c |2= 1/2, which together with (3.10) yields

dc− 3
√
−1cθ12 = 0. (4.11)

Since K ≡ 0, we can choose the local complex coordinate z on M such that φ = dz, so that

θ12 = 0. Thus, (4.11) implies that

c =

√
2

2
e
√
−1ρ for some real constant ρ. (4.12)

(3,4)2 and (4.12) yield that

ω1
2 = −

√
2

2
e
√
−1ρdz̄. (4.13)

By choosing {e3, e3∗ = Je3} such that (2.26) holds, we have from (3.5)

ω3
1 =

√
−1

2
(sin

α

2
)dz̄, ω3

2 = −
√
−1

2
(cos

α

2
)dz. (4.14)

From (3.4)1 and (3.6) it follows that

ω1
1 = ω2

2 = 0. (4.15)

By taking exerior derivatives of (4.14) and using the structure equations, we can find that

ω2
3 ∧ dz = 0 and ω3

3 ∧ dz̄ = 0, which imply ω3
3 = 0. (4.4) now follows directly from (4.12)–

(4.15).

Hence, the theorem is proved completely.

Remark 4.1. The partial conclusion of this theorem was shown also by X. Li[11] in a

different way, which is a generalization of [6], where M is compact. (4.4) gives an example

of flat superminimal surfaces in the nearly Kähler S6 with constant Kähler angle α ̸= 0, π.

If M is a topological 2-sphere, then the forms (4.1) and (4.8) vanish on M identically.

Hence, we have directly

Corollary 4.1. If x : S2 → S6 is a minimal immersion with constant Kähler angle α

(0 < α < π), then x is totally geodesic.

Remark 4.2. This corollary was proved in [3] by a different approach.

§5. Almost Complex Curves in the Nearly Kähler S6

In this section We consider the case that x : M → S6 is almost complex, i.e., its differential
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dx is complex linear. Thus, x is necessarily a branched minimal immersion and is called an

almost complx curve.

Let {uα} be a local field of unitary frames in S6 and ∇̃ be the almost complex affine

connection of S6 as mentioned in §2. The covariant differential of uα is given by ∇̃uα = ωβ
ᾱuβ .

A unitary frame {uα} of S6 along an almost complex curve x : M → S6 is called a Frenet

frame if, at each point of M , u1 is tangent to M and

∇̃uα = ωα−1
ᾱ uα−1 + ωα

ᾱuα + ωα+1
ᾱ uα+1 (indices do not sum up), (5.1)

where ωα+1
ᾱ is a (1,0)-form and ω0

1̄ = ω4
3̄ = 0 (see [13]). We have the following

Theorem 5.1. The nearly Kähler S6 has a Frenet frame along every almost complex

curve x : M → S6.

Proof. We begin by choosing u1 tangent to M and completing to a local unitary frame

{u1, u2, u3}. Then we have

ω1 = φ = λdz, ω2 = ω3 = 0 (5.2)

along x, where z is the local complex coordinate on M .

By taking exterior derivative of (5.2)2 and using the structure equations, we have

ωr
1̄ = hrdz (r, s = 2, 3) (5.3)

for some complex valued functions hr on M . By virtue of (2.17) and (5.2), the differentiation

of (5.3) gives (
dhr − hrω1

1̄ +
∑
s

hsωr
s̄

)
∧ dz = 0.

The expression in parenthesis is therefore a multiple of dz, which means that functions hr(z)

satisfy locally the following differential equation system

∂hr

∂z̄
=

∑
s

ars(z)h
s(z) (r, s = 2, 3), (5.4)

where ars are complex valued functions. By a theorem of [4], (5.4) shows that either hr ≡ 0

or hr have only isolated zeroes. If hr ≡ 0 for all r, then {uα} is trivially a Frenet frame; if

not we can make a unitary change of u2 and u3 so that ∇̃u1 = ω1
1̄u1 + ω2

1̄u2, where ω2
1̄ is

a (1,0)-form. Now, since ω3
1̄ = 0, (2.17) yields ω3

2̄ ∧ ω2
1̄ = 0, which implies that ω3

2̄ is also a

(1,0)-form. Hence, (5.1) holds and the theorem is proved.

Remark 5.1. Another development of the theory of almost complex curves in S6 is given

in [2].

By using a Frenet frame for S6 along an almost complex curve x : M → S6, we have

ω2
1̄ = pφ, ω3

1̄ = 0, ω3
2̄ = qφ (5.5)

for some complex valued functions p and q on M . By taking exterior derivative of (5.2)1

and using (5.5) and (3.1), we have ω1
1 = −

√
−1θ12 and

K = 1− 2 | p |2 . (5.6)

From (5.5) and (5.6) we can find

1

4
△ log | p |2= 3

2

(
K − 1

6

)
+ | q |2, (5.7)
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for p ̸= 0. Similarly, we have

1

4
△ log | q |2= 1

2
− 2 | q |2 (5.8)

for q ̸= 0.

From (5.7) and (5.8) we can obtain easily the following result proved by Dillen Verstraeien

Vraneken[7] in different way.

Proposition 5.1. Let M be a compact surface and x : M → S6 be an almost complex

curve with the Gauss curvature K related to the induced metric.

(i) If K ≥ 1/6, then K ≡ 1/6 or K ≡ 1 on M ;

(ii) If 0 ≤ K ≤ 1/6, then K ≡ 0 or K ≡ 1/6 on M .
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