
Chin. Ann. of Math.
19B: 1(1998),113-128.

MINIMUM PERIOD CONTROL PROBLEM

FOR INFINITE DIMENSIONAL SYSTEM**

Pan Liping* Li Xunjing*

Abstract

In order to solve the so-called minimum period control problem for a class of abstract

evolutionary systems, the authors study an infinite dimensional time optimal control problem
with mixed type target set. To the latter problem complete results are established, which then
are applied to the former to derive the desirable answer.
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§1. Introduction

Let X be a separable reflexive Banach space and e·A be a compact C0-semigroup on X.

Our main purpose of this paper is to solve the following so-called minimum period control

problem:

Problem MPCP. Find a T̂ ∈ (0,+∞), an x̂0 ∈ Q1 and a û(·) ∈ U0 ≡ {u(·) : R+ → U |
u(·) is measurable } such that

û(t+ T̂ ) = û(t), a.e. t ∈ R+, (1.1)

x(t+ T̂ ; x̂0, û(·)) = x(t; x̂0, û(·)), ∀t ∈ R+, (1.2)

T̂ = inf{T ∈ (0,+∞) | ∃u(·) ∈ U0, x0 ∈ Q1 such that u(t+ T ) = u(t),

x(t+ T ;x0, u(·)) = x(t, x0, u(·)), a.e. t ∈ R+},
(1.3)

where Q1 is a bounded closed sphere with positive radius in X, U is a bounded subset of

some Banach space Z, U ̸= ∅, B(·) : Z → X is a continuous map and

x(t;x0, u(·)) = etAx0 +

∫ t

0

e(t−τ)AB(u(τ))dτ, t ∈ R+ (1.4)

for any (x0, u(·)) ∈ X × U0.

Denote

QMPCP = {(y, y) | y ∈ Q1},
RMPCP(t) = {(x0, x(t;x0, u(·)) | x0 ∈ Q1, u(·) ∈ U0}, ∀t ∈ R+.

(1.5)
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Definition 1.1. Problem MPCP is called solvable if and only if

T̂ ≡ inf{T ∈ (0,+∞) | QMPCP ∩RMPCP(T ) ̸= ∅} ∈ (0,+∞) (1.6)

( here and hereafter, we always stipulate inf ∅ = +∞) holds and

QMPCP ∩RMPCP(T̂ ) ̸= ∅. (1.7)

Remark 1.1. If Problem MPCP is solvable, then from (1.7) there exist an x̂0 ∈ Q1 and

a v̂(·) ∈ U0 such that

x(T̂ ; x̂0, v̂(·)) = x̂0. (1.8)

Let

û(t) = v̂(t− (n− 1)T̂ ), (n− 1)T̂ ≤ t < nT̂ , n = 1, 2, · · · . (1.9)

Then it is obvious that û(·) is a minimum period control.

Definition 1.2. Problem MPCP is called approximately solvable if and only if (1.6) holds

and

QMPCP ∩RMPCP(T̂ ) ̸= ∅. (1.10)

With the help of our results obtained in Section 4, we can deduce the following result to

Problem MPCP (see Section 5).

Theorem 1.1. Let the assumptions on Q1, U and B(·) posed in the statement of Problem

MPCP hold. Then Problem MPCP is approximately solvable if and only if the following

equation

f0(t) = inf
{
g0(t, ξ, η) +

∫ t

0

sup
u∈U

⟨η, e(t−τ)AB(u)⟩dτ | ξ, η ∈ X∗, ∥ (ξ, η) ∥≤ 1
}
= 0 (1.11)

admits of minimum positive root. In this case T̂ happens to equal the minimum positive

root. Furthermore, if Problem MPCP is solvable and (x̂0, û(·)) ∈ Q1 × U0 is a solution of

Problem MPCP, then there exists a nontrivial function ψ̂(·) ∈ C([0, T̂ ], X∗) which along

with x(·; x̂0, û(·)) satisfies

max
u∈U

⟨ψ̂(t), B(u)⟩ = ⟨ψ̂(t), B(û(t))⟩, a.e. t ∈ [0, T̂ ], (1.12)

ψ̂(t) = e(T̂−t)A∗
ψ̂(T̂ ), ∀t ∈ [0, T̂ ], (1.13){

x̂0 = x(T̂ ; x̂0, û(·)),

⟨ψ̂(0)− ψ̂(T̂ ), x0 − x̂0⟩ ≤ 0, ∀x0 ∈ Q1

(1.14)

where

g0(t, ϕ, ψ) ≡ sup
x0,x∈Q1

(⟨ϕ, x0 − x⟩+ ⟨ψ, etAx0 − x⟩), ∀t ∈ R+, ϕ, ψ ∈ X∗. (1.15)

(In the above theorem and hereafter, we let ∥ · ∥ and ⟨·, ·⟩ denote the norms and the dual

product on X∗ ×X).

It is not hard to verify RMPCP(t) is closed for any t ∈ R+ if we further assume B(·) is

affine and U is convex (see [12]). Hence Theorem 1.1 has the following consequence.

Theorem 1.2. Let all assumptions of Theorem 1.4 hold and

B(u) = Cu+ h (1.16)
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where C ∈ L(Z,X) and h ∈ X. Then Problem MPCP is solvable if and only if equation

(1.11) admits of minimum positive root and all the other conclusions of Theorem 1.1 are

valid.

The remainder of this paper is devided into four parts. In Section 2 we state and explain

an infinite dimensional time optimal control problem with mixed type target set. In Section

3 we give some preliminary results. In Section 4 we establish several results to the time

optimal control problem posed in Section 2, Section 5 is devoted to the proof of Theorem

1.1 by using the results in Section 4.

§2. Time Optimal Control Problem with Mixed Target Set

Consider the following abstract evolutionary controlled system on Xx(t;x0, u(·)) = etAx0 +

∫ t

0

e(t−τ)Au(τ)dτ, u(τ) ∈ U(τ) ⊆ X, τ ∈ [0, t], t ∈ R+,

x0 ∈ Q0 ⊆ X

(2.1)

and the target set map

Q(·) : R+ → 2X×X , (2.2)

where

(H1) X is a separable reflexive Banach space and e·A : R+ → L(X) is a compact C0-

semigroup on X;

(H2) 2Y ≡ {S ⊆ Y | S is bounded and closed} for any normed space Y , U(·) : R+ → 2X

is Hausdorff continuous and our admissible control function set is U ≡ {u(·) : R+ → X | u(·)
is measurable, u(t) ∈ U(t), a.e. t ∈ R+};

(H3) Q0 is a bounded and closed convex subset of X, Q(·) : R+ → 2X×X is Hausdorff

continuous and Q(t) is convex for any t ∈ R+.

Remark 2.1. U ≠ ∅ (according to Theorem 2 in [9]).

Let

R(t) ≡ {(x0, x(t;x0, u(·))) | x0 ∈ Q0, u(·) ∈ U}, ∀t ∈ R+ (2.3)

and d(S1, S2) ≡ inf{∥ y1 − y2 ∥| yi ∈ Si, i = 1, 2} for any normed space Y , Si ⊆ Y , i = 1, 2.

We consider the following time optimal control problem.

Problem P. Find an x̂0 ∈ Q0 and a û(·) ∈ U such that

d((x̂0, x(t; x̂0, û(·))), Q(t̂)) = r̂ ≡ inf
t∈R+

d(R(t), Q(t)) (2.4)

where

t̂ ≡ inf{t ∈ R+ | d(R(t), Q(t)) = r̂}. (2.5)

Throughout this section, Section 3 and Section 4 we assume that

(H4) r0 ≡ d(Q̃0, Q(0)) > r̂ where

Q̃0 ≡ {(x0, x0) | x0 ∈ Q0}. (2.6)

Definition 2.1. We say Problem P is solvable if and only if t̂ ∈ (0,+∞) and there exists

a pair (x̂0, û(·)) ∈ Q0 × U such that (2.4) holds.
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Definition 2.2. We say Problem P is approximately solvable if and only if t̂ ∈ (0,+∞)

and

[Q(t̂) + r̂Ō1] ∩R(t̂) ̸= ∅ (2.7)

holds. ( In (2.7) and hereafter Ō1 denotes the closed unit ball with center at the origin in

X ×X).

Remark 2.2. It is easy to show (under (H1)–(H3)) R(t) is convex for any t ∈ R+ by

means of a property of vector-valued measures (see [13]).

Remark 2.3. The following control systemx(t;x0, v(·)) = etAx0 +

∫ t

0

e(t−τ)AB(τ, v(τ))dτ, v(τ) ∈ V (τ) ⊆ Z, τ ∈ [0, t], t ∈ R+,

x0 ∈ Q0 ⊆ X,

(2.8)

where Z is a separable Banach space, B(·, ·) : R+ × Z → X is a continuous map and

V (·) : R+ → 2Z is a Hausdorff continuous set-valued map, which seems to be more general

than (2.1), can be referred to the latter actually. To see this, suffice it to set

U(t) = {B(t, v) | v ∈ V (t)}. (2.9)

In fact, by Theorem 3 in [9], we immediately know

U = {B(·, v(·)) | v(·) : R+ → Z is measurable, v(t) ∈ V (t), a.e. t ∈ R+} (2.10)

to such U(·).
Problem P can be referred to the separated end type target set case by adding a suit-

able state equation like that has been done to finite dimensional optimal control problems

with mixed endpoint constraints in [3]. Concretely speaking, one can directly verify that

(x̂0, û(·)) ∈ Q0 ×U is an optimal solution to Problem P if and only if
((

IX
IX

)
x̂0,

(
0
û(·)

))
is optimal to the following problem.

Problem P̃. Find a pair (ˆ̃x0, ˆ̃u(·)) ∈ Q̃0(̂t̃)× Ũ such that

d(x̃(̂t̃; ˆ̃x0, ˆ̃u(·)), Q(̂t̃)) = ˆ̃r ≡ inf
t∈R+

d(R̃(t), Q(t)) (2.11)

where

Ũ ≡ {ũ(·) : R+ → X ×X | ũ(·) is measurable, ũ(t) ∈ {0} × U(t), a.e. t ∈ R+}, (2.12)

R̃(t) ≡ {x̃(t; x̃0, ũ(·)) | x̃0 ∈ Q̃0, ũ(·) ∈ Ũ}, t ∈ R+, (2.13)

ˆ̃t ≡ inf{t ∈ R+ | d(R̃(t), Q(t)) = ˆ̃r}, (2.14)

x̃(t; x̃0, ũ(·)) = etÃx̃0 +

∫ t

0

e(t−τ)Ãũ(τ)dτ, ∀t ∈ R+, x̃0 ∈ X ×X, ũ(·) ∈ Ũ , (2.15)

where

Ã =

(
0 0
0 A

)
. (2.16)

However,

(
IX 0
0 e·A

)
, the semigroup generated by Ã, is not compact. Besides, the condi-

tions of Theorem 4.4 and Theorem 4.5 (see Section 4) do not imply Q(̂t̃) is finite codimen-

sional in X ×X.
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§3. Several Preliminary Results

In this section, we present several auxiliary results, which will play an important role in

the discussions of the next section. Define

f(t, r) = inf
{
g(t, r, ξ, η) +

∫ t

0

sup
u∈U(τ)

⟨η, e(t−τ)Au⟩dτ
∣∣ξ, η ∈ X∗, ∥(ξ, η)∥ = 1

}
, ∀t, r ∈ R+,

(3.1)

where g(t, r, ϕ, ψ) = sup{⟨ϕ, x0 − y⟩+ ⟨ψ, etAx0 − z⟩ | x0 ∈ Q0, (y, z) ∈ Q(t) + rŌ1},
∀t, r ∈ R+, ϕ, ψ ∈ X∗. (3.2)

Noticing that e·A : R+ → L(X) is a compact C0-semigroup and f(t, ·) : R+ → R1 is

a Lip-1 function uniformly in t ∈ R+, by some meticulous estimations, we can obtain the

following two lemmas (cf. the proofs of the similar results in [11]).

Lemma 3.1. Let (H1)–(H3) hold. Then

f(·, ·) ∈ C((0,+∞)× R+,R
1). (3.3)

Lemma 3.2. Let (H1)–(H3) hold. Then R(·) : (0,+∞) → 2X×X is Hausdorff continu-

ous.

Lemma 3.3. Let (H1)–(H4) hold. Then for each r ∈ [0, r0),

∃t ∈ (0,+∞), [Q(t) + rŌ1] ∩R(t) ̸= ∅ ⇐⇒ r ∈ D0 (3.4)

where D0 ≡ {r ∈ [0, r0) | ∃t ∈ (0,+∞) such that f(t, r) = 0}. (3.5)

Proof. First of all, we have

r0 ≥ r̂ ≥ 0 (3.6)

since (H4) holds. From the definition of r0, we immediately know

[Q(0) + rŌ1] ∩ Q̃0 = ∅, ∀r ∈ [0, r0). (3.7)

Then, according to the Hausdorff continuity of Q(·) : R+ → 2X×X at 0, the boundedness of

U(t) for any t ∈ R+ and the Hausdorff continuity of U(·) : R+ → 2X , we easily know there

exists a positive integer ν0(r) such that∫ t

0

sup
u∈U(τ)

⟨ψ, e(t−τ)Au⟩dt ≤ 1

8
ρ0(r), ∀ψ ∈ Ō∗

1 ,

[Q(t) + rŌ1] ∩ Q̃0 = ∅,
t ∈ [0,

1

ν0(r)
], r ∈ [0, r0), (3.8)

where Ō∗
1 denotes the closed unit ball with center at the origin in X∗ and

ρ0(r) ≡ min
t∈[0, 1

ν0(r)
]
d(Q(t) + rŌ1, Q̃0), ∀r ∈ [0, r0). (3.9)

Take a positive integer ν1(r) ≥ ν0(r) being big enough so that∣∣∣ inf{⟨ϕ, y⟩+ ⟨ψ, z⟩ | (y, z) ∈ Q(t) + rŌ1}

− inf
{
⟨ϕ, y⟩+ ⟨ψ, z⟩ | (y, z) ∈ Q

( 1

ν1(r)

)
+ rŌ1

}∣∣∣ ≤ 1

8
ρ0(r),

∥ (ϕ, ψ) ∥= 1, ϕ, ψ ∈ X∗, t ∈
[
0,

1

ν1(r)

]
, r ∈ [0, r0).

(3.10)
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By Eidelheit’s Theorem, there exist ϕ1(r), ψ1(r) ∈ X∗, ∥ (ϕ1(r), ψ1(r)) ∥= 1 such that

1

2
+ sup{⟨ϕ1(r) + ψ1(r), x0⟩ | x0 ∈ Q0}

≤ inf
{
⟨ϕ1(r), y⟩+ ⟨ψ1(r), z⟩ | (y, z) ∈ Q

( 1

ν0(r)

)
+ rŌ1

}
, ∀r ∈ [0, r0).

(3.11)

Now, take a positive integer ν2(r) ≥ ν1(r) being big enough so that

∥ (etA
∗
− IX∗)ψ0(r) ∥<

ρ0(r)

8(M0 + 1)
, ∀t ∈ [0,

1

ν2(r)
], r ∈ [0, r0), (3.12)

where M0 ≡ sup
x0∈Q0

∥ x0 ∥ (3.13)

(the reflexivity ofX guarantees e·A
∗
: R+ → L(X∗), the dual semigroup of e·A : R+ → L(X),

is strongly continuous too[5]). The inequality in (3.8) and (3.10)-(3.12) imply

g(t, r, ϕ1(r), ψ1(r)) +

∫ t

0

sup
u∈U(τ)

⟨ψ1(r), e
(t−τ)Au⟩dτ ≤ −1

8
ρ0(r) < 0,

∀t ∈ [0,
1

ν2(r)
], r ∈ [0, r0).

(3.14)

Hence we have

f(t, r) ≤ −1

8
ρ0(r) < 0, ∀t ∈ [0,

1

ν2(r)
], r ∈ [0, r0). (3.15)

For any (t, r) ∈ (0,+∞)× [0, r0), if

[Q(t) + rŌ1] ∩R(t) ̸= ∅, (3.16)

then there exists a (y0, z0) ∈ Q(t) + rŌ1, two sequences {yn} ∈ Q0 and {un(·)} ⊆ U such

that

∥ (yn − y0, x(t; yn, un(·))− z0) ∥<
1

n
, n = 1, 2, · · · , (3.17)

which results in

f(t, r) ≥ inf
{
⟨ϕ, yn − y0⟩+ ⟨ψ, etAyn − z0⟩

+

∫ t

0

⟨ψ, e(t−τ)Aun(τ)⟩dτ | ϕ, ψ ∈ X∗, ∥ (ϕ, ψ) ∥= 1}

= inf{⟨ϕ, yn − y0⟩+ ⟨ψ, x(t; yn, un(·))− z0⟩ | ϕ, ψ ∈ X∗, ∥ (ϕ, ψ) ∥= 1}

≥ − 1

n
, n = 1, 2, · · · .

(3.18)

Letting n→ ∞ in (3.18), we get

f(t, r) ≥ 0. (3.19)

(3.15), (3.19) and the continuity of f(·, ·) : (0,+∞) × R+ → R1 (Lemma 3.1) ensure there

exists a tr ∈ (0, t] such that f(tr, r) = 0. Thus r ∈ D0.

On the contrary, let (t, r) ∈ (0,+∞)× R+ such that

f(t, r) = 0. (3.20)

If [Q(t) + rŌ1] ∩R(t) = ∅,
(3.21)
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then, by Ascoli-Mazur Theorem, we know

ρ(t, r) ≡ d(Q(t) + rŌ1, R(t)) > 0, (3.22)

which yields

[Q(t) + rŌ1] ∩
[
R(t) +

1

2
ρ(t, r)Ō1

]
= ∅. (3.23)

Thus, by Eidelheit’s Theorem, there exist ϕ̄, ψ̄ ∈ X∗ such that ∥ (ϕ, ψ) ∥= 1 and

sup{⟨ϕ̄, x0 +
1

2
ρ(t, r)e′⟩+ ⟨ψ̄, x1 +

1

2
ρ(t, r)e”⟩ | (x0, x1) ∈ R(t), (e′, e”) ∈ Ō1}

≤ inf{⟨ϕ̄, y⟩+ ⟨ψ̄, z⟩ | (y, z) ∈ Q(t) + rŌ1},
(3.24)

which implies

1

2
ρ(t, r) + ⟨ϕ̄, x0⟩+ ⟨ψ̄, x(t;x0, u(·))⟩

≤ inf{⟨ϕ̄, y⟩+ ⟨ψ̄, z⟩ | (y, z) ∈ Q(t) + rŌ1}, ∀x0 ∈ Q0, u(·) ∈ U .
(3.25)

It is obvious that for any ∆t ∈ (0, t),

max
v∈e∆tAU(s)

⟨ψ̄, e(t−∆A−s)Av⟩ = sup
u∈U(s)

⟨ψ̄, e(t−s)Au⟩, ∀s ∈ [0, t−∆t]. (3.26)

By Theorem 3 in [9], we know there exists a uψ̄,∆t(·) ∈ U such that

⟨ψ̄, e(t−s)Auψ̄,∆t(s)⟩ = max
v∈e∆tAU(s)

⟨ψ̄, e(t−∆t−s)Au⟩, s ∈ [0, t−∆t]. (3.27)

(3.26) and (3.27) lead to (with the help of Lebesgue’s Dominated Convergence Theorem)∫ t

0

sup
u∈U(s)

⟨ψ̄, e(t−s)Au⟩ds =
∫ t

0

lim
∆t↓0

χ[0,t−∆t](s) max
v∈e∆tAU(s)

⟨ψ̄, e(t−∆t−s)Av⟩ds

= lim
∆t↓0

∫ t

0

χ[0,t−∆t](s) max
v∈e∆tAU(s)

⟨ψ̄, e(t−∆t−s)Av⟩ds

= lim
∆t↓0

∫ t

0

⟨ψ̄, e(t−s)Aχ[0,t−∆t](s)uψ̄,∆t(s)⟩ds

≤ sup
u(·)∈U

∫ t

0

⟨ψ̄, e(t−s)Au(s)⟩ds,

(3.28)

while the converse inequality is true apparently. Hence we have

sup
u(·)∈U

∫ t

0

⟨ψ̄, e(t−s)Au(s)⟩ds =
∫ t

0

sup
u∈U(s)

⟨ψ̄, e(t−s)Au⟩ds. (3.29)

(3.25) together with (3.29) implies

g(t, r, ϕ̄, ψ̄) +

∫ t

0

sup
u∈U(s)

⟨ψ̄, e(t−s)Au⟩ds ≤ −1

2
ρ(t, r). (3.30)

Therefore,

f(t, r) ≤ −1

2
ρ(t, r) < 0, (3.31)

which contradicts (3.20).

Remark 3.1. Let (H1)-(H4) hold. From the proof of Lemma 2.3 we know if t̂ < +∞
then

t̂ ∈
[ 1

ν2(r)
,+∞

)
⊆ (0,+∞). (3.32)
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§4. Results on Problem P

Now, we would like to discuss the solvability of Problem P, give a formula for determining

(t̂, r̂), derive a sufficient and a necessary optimality condition of Problem P, which will be

used to prove Theorem 1.1 in Section 5.

Theorem 4.1. Let (H1)–(H4) hold. Then

r̂ = infD0. (4.1)

Proof. From (3.4) we know

∀r ∈ D0, ∃t ∈ (0,+∞) such that d(Q(t), R(t)) ≤ r, (4.2)

which yields

r̂ ≤ r, ∀r ∈ D0. (4.3)

Therefore, we have

r̂ ≤ infD0. (4.4)

On the other hand, according to the definition of r̂, there exists a sequence {tn} ⊆ (0,+∞)

such that

r̂ ≤ d(Q(tn), R(tn)) < r̂ +
1

n
, n = 1, 2, · · · , (4.5)

which apparently implies

{Q(tn)+[d(Q(tn), R(tn)) +
1

n
]Ō1} ∩R(tn) ̸= ∅, n = 1, 2, · · ·, (4.6)

lim
n→∞

d(Q(tn), R(tn)) = r̂. (4.7)

From (H4), we have r̂ < r0. Thus we can take a positive integer N0 being big enough so

that

d(Q(tn), R(tn)) +
1

n
< r0, n ≥ N0 (4.8)

(recall (4.7)). (4.6) along with (4.8) means

d(Q(tn), R(tn)) +
1

n
∈ D0, n ≥ N0. (4.9)

Hence we have

d(Q(tn), R(tn)) +
1

n
≥ infD0, n ≥ N0. (4.10)

Finally, letting n→ ∞ in (4.10) we get

r̂ ≥ infD0. (4.11)

(4.1) follows from (4.4) and (4.11) immediately.

To give the next results, we need the following definition.

Define an order on R+ × R+: We say (t1, r1) ≼ (t2, r2) if and only if r1 < r2, or r1 = r2
and t1 ≤ t2.

Obviously, Definition 2.2 has the following equivalent definition.

Definition 4.1. We say Problem P is approximately solvable if and only if there exists

a pair (t̄, r̄) ∈ R+ × R+ such that

∀(t, r) ≼ (t̄, r̄), (t, r) ̸= (t̄, r̄), [Q(t) + rŌ1] ∩R(t) = ∅, (4.12)

[Q(t̄) + r̄Ō1] ∩R(t̄) ̸= ∅. (4.13)
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Remark 4.1. If such a (t̄, r̄) as said in Definition 4.1 does exist, then it is not hard to

see

t̄ = t̂, r̄ = r̂. (4.14)

Theorem 4.2. Let (H1)–(H4) hold. Then Problem P is approximately solvable if and

only if

infD0 ∈ D0 (4.15)

holds. Moreover, in the case that (4.15) holds, (t̂, r̂) is the minimum (according to “≼”) zero

point of f(·, ·) in (0,+∞)× [0, r0).

Proof. Let Problem P be approximately solvable, namely t̂ < +∞ and

[Q(t̂) + r̂Ō1] ∩R(t̂) ̸= ∅. (4.16)

Then (noticing (H4)) we have

r̂ ∈ D0 (4.17)

according to Lemma 3.3. Thus, by Theorem 4.1 we immediately get (4.15). Conversely, let

(4.15) hold. Then, also by Theorem 4.1, we know (4.17) holds. Consequently, we have

∃t0 ∈ (0,+∞), such that f(t0, r̂) = 0, (4.18)

which implies (reviewing the proof of Lemma 3.3, we can find

∀(t, r) ∈ (0,+∞)× R+, f(t, r) = 0 =⇒ [Q(t) + rŌ1] ∩R(t) ̸= ∅ (4.19)

has been obtained there actually)

[Q(t0) + r̂Ō1] ∩R(t0) ̸= ∅. (4.20)

Therefore (recalling Remark 3.1), we have

t̂ ∈ (0, t0] ⊆ (0,+∞). (4.21)

Hence, there exists a sequence {tn} ⊆ [t̂,+∞) such that tn ↓ t̂ (n→ ∞) and

[Q(tn) + r̂Ō1] ∩R(tn) ̸= ∅, n = 1, 2, · · ·. (4.22)

By Lemma 3.3, from (4.22) we can conclude that

∃sn ∈ (0, tn] such that f(sn, r̂) = 0, n = 1, 2, · · ·. (4.23)

By (4.19), we immediately know (4.23) implies

[Q(sn) + r̂Ō1] ∩R(sn) ̸= ∅, n = 1, 2, · · ·. (4.24)

This yields

sn ≥ t̂, n = 1, 2, · · ·. (4.25)

Therefore, we have

lim
n→∞

sn = lim
n→∞

tn = t̂(> 0). (4.26)

Thus, from (4.23) and the continuity of f(·, ·) : (0,+∞) × R+ → R1 (Lemma 3.1), we

immediately get

f(t̂, r̂) = 0, (4.27)
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which implies

[Q(t̂) + r̂Ō1] ∩R(t̂) ̸= ∅ (4.28)

(here (4.19) is used again). The final conclusion of Theorem 4.2 is a natural consequence of

(4.19), (4.27), the continuity of f(·, ·) and the optimality of (t̂, r̂).

The next result we will give is a sufficient optimality condition to Problem P.

Theorem 4.3. Let (H1)–(H4) hold. Let (t̄, r̄) be the minimum (according to “≼”) zero

point of f(·, ·) in (0,+∞) × [0, r0) and there exist ψ̄(·) ∈ C([0, t̄], X∗), x̄0 ∈ Q0, ū(·) ∈ U
and (ξ̄, η̄) ∈ (∂dQ(t̄))((x̄0, x(t̄, x̄0, ū(·)))) such that

ψ̄(t) = −e(t̄−t)A
∗
η̄, ∀t ∈ [0, t̄], (4.29)

max
u∈U(t)

⟨ψ̄(t), u⟩ = ⟨ψ̄(t), ū(t)⟩, a.e. t ∈ [0, t̄], (4.30)

⟨ψ̄(0)− ξ̄, x0 − x̄0⟩ ≤ 0, ∀x0 ∈ Q0. (4.31)

Then (x̄0, ū(·)) is an optimal pair to Problem P. (In this theorem and hereafter, for any y

belonging to a Banach space Y , we denote the generalized gradient[4] of dS(·) ≡ d({·}, S) :
Y → R+ at y).

Proof. First, noticing that

(t̄, r̄) ∈ (0,+∞)× [0, r0), f(t̄, r̄) = 0 =⇒ r̄ ∈ D0, (4.32)

we immediately have

r̄ ≥ infD0. (4.33)

If r̄ > infD0, then we can take an r ∈ (infD0, r̄) and a t ∈ (0,+∞) such that

f(t, r) = 0, (4.34)

which contradicts the minimality of (t̄, r̄). Therefore,

r̄ = infD0, (4.35)

(4.14) holds. Thus, according to Theorem 4.2, (t̂, r̂) (also) is a minimum (in the sense of

“≼”) zero point of f(·, ·) in (0,+∞)× [0, r0). Hence we have

(t̂, r̂) = (t̄, r̄); (4.36)

Besides, we have

d(R(t̂), Q(t̂)) = r̂. (4.37)

Second, we would like to show (x̄0, ū(·)) is an optimal pair of Problem P. By the convexity

of Q(t̄) and the definition of generalized gradients (see [4]), we have

dQ(t̄)((x0, x(t̄;x0, u(·))))
≥ dQ(t̄)((x̄0, x(t̄; x̄0, ū(·)))) + ⟨ξ̄, x0 − x̄0⟩
+ ⟨η̄, x(t̄;x0, u(·))− x(t̄; x̄0, ū(·))⟩, ∀(x0, u(·)) ∈ X × U .

(4.38)
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On the other hand, from (4.29)–(4.31) we have

⟨ξ̄, x0 − x̄0⟩+ ⟨η̄, x(t̄;x0, u(·))− x(t̄; x̄0, ū(·))⟩
≥ ⟨ψ̄(0), x0 − x̄0⟩ − ⟨ψ̄(t̄), x(t̄;x0, u(·))− x(t̄; x̄0, ū(·))⟩

= ⟨ψ̄(0)− et̄A
∗
ψ̄(t̄), x0 − x̄0⟩ −

∫ t̄

0

⟨e(t̄−s)A
∗
ψ̄(t̄), u(s)− ū(s)⟩ds

=

∫ t̄

0

[ max
u∈U(s)

⟨ψ̄(s), u⟩ − ⟨ψ̄(s), u(s)⟩]ds ≥ 0, ∀(x0, u(·)) ∈ Q0 × U .

(4.39)

Combining (4.38) and (4.39), we get

dQ(t̄)((x0, x(t̄;x0, u(·)))) ≥ dQ(t̄)((x̄0, x(t̄; x̄0, ū(·)))), ∀(x0, u(·)) ∈ Q0 × U . (4.40)

The optimality of (x̄0, ū(·)) follows from (4.36), (4.37) and (4.40) immediately.

Let

Q0(t) ≡ {y ∈ X | ∃z ∈ X such that (y, z) ∈ Q(t) + r̂Ō1}, ∀t ∈ R+. (4.41)

Theorem 4.4. Let (H1)–(H4) hold and Problem P be approximately solvable. Let Q0(t̂)−
Q0 and

S ≡ {z − x(t̂; y, u(·)) | y ∈ Q0, (y, z) ∈ Q(t̂) + r̂Ō1, u(·) ∈ U} (4.42)

be finite codimensional in X. Then there exist ϕ̂, ψ̂ ∈ X∗ such that

∥ (ϕ̂, ψ̂) ∥= 1, (4.43)

g(t̂, r̂, ϕ̂, ψ̂) +

∫ t̂

0

sup
u∈U(t)

⟨ψ̂, et̂−t)Au⟩dt = 0. (4.44)

Proof. Since Problem P is approximately solvable, according to Theorem 4.2, we have

f(t̂, r̂) = 0. Hence we can take a sequence {(ϕ̂n, ψ̂n)} ⊆ X∗ ×X∗ such that

∥ (ϕ̂n, ψ̂n) ∥= 1, (4.45)

g(t̂, r̂, ϕ̂n, ψ̂n) +

∫ t̂

0

sup
u∈U(t)

⟨ψ̂n, e(t̂−t)Au⟩dt <
1

n
, n = 1, 2, · · · , (4.46)

which implies

⟨ϕ̂n + et̂A
∗
ψ̂n, y − x0⟩+ ⟨ψ̂n, z − x(t̂; y, u(·))⟩ > − 1

n
,

∀x0 ∈ Q0, (y, z) ∈ Q(t̂) + r̂Ō1, u(·) ∈ U , n = 1, 2, · · ·.
(4.47)

(4.47) yields

⟨ψ̂n, z − x(t̂; y, u(·))⟩ > − 1

n
, ∀(y, z) ∈ [Q(t̂) + r̂Ō1] ∩ (Q0 ×X), u(·) ∈ U , n = 1, 2, · · · .

(4.48)

Besides, from

R(t̂) ∩ [Q(t̂) + r̂Ō1] ̸= ∅ (4.49)

we immediately know

0 ∈ S̄(⊆ coS). (4.50)

Thus, if

lim sup
n→∞

∥ ψ̂n ∥> 0, (4.51)
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then by Lemma 3.2 in [13] (noting that we have assumed S is finite codimensional), there

exists a subsequence of {ψ̂n} (we still denote it by {ψ̂n} for simplicity) and a nonzero ψ̂ ∈ X∗

such that

ψ̂n
w→ ψ̂ (n→ ∞). (4.52)

If (4.51) does not hold, namely

lim
n→∞

∥ ψ̂n ∥= 0, (4.53)

then (notice (4.45)) we have

lim inf
n→∞

∥ ϕ̂n ∥> 0. (4.54)

And, from (4.47) we know there exists a sequence {ϵn} ⊆ R+ such that ϵn → 0 (n → ∞)

and

⟨ϕ̂n, y − x0⟩ ≥ −ϵn, ∀y ∈ Q0(t̂), x0 ∈ Q0, n = 1, 2, · · ·. (4.55)

Also due to (4.49),

0 ∈ Q0(t̂)−Q0 ⊆ co[Q0(t̂)−Q0]. (4.56)

Again using Lemma 3.2 in [13] (note that it has been assumed that Q0(t̂) − Q0 is finite

codimensional), we get a subsequence of {ϕ̂n} (still denote it by {ϕ̂n} for simplicity) and a

nonzero ϕ̂ ∈ X∗ such that

ϕ̂n
w→ ϕ̂ (n→ ∞). (4.57)

Correspondingly, to the case that (4.51) (resp. (4.54)) holds, take a subsequence of {ϕ̂n}
(resp. {ψ̂n}) (still denote it by {ϕ̂n} (resp. {ψ̂n})) for which there exists a nonzero ϕ̂ (resp.

ψ̂) ∈ X∗ such that

ϕ̂n
w→ ϕ̂ (resp. ψ̂n

w→ ψ̂) (n→ ∞). (4.58)

Summarizing the above discussions, we know there exists a subsequence of {(ϕ̂n, ψ̂n)} (still

denote it by {(ϕ̂n, ψ̂n)} for simplicity) and ϕ̂, ψ̂ ∈ X∗ such that

(ϕ̂n, ψ̂n)
w→ (ϕ̂, ψ̂) (n→ ∞), (ϕ̂, ψ̂) ̸= 0 (4.59)

whether or no; And, obviously, we may demand (ϕ̂, ψ̂) satisfies (4.43). Letting n → ∞ in

(4.47), we get

⟨ϕ̂+ et̂A
∗
ψ̂, y − x0⟩+ ⟨ψ̂, z − x(t̂; y, u(·))⟩ ≥ 0,

∀x0 ∈ Q0, (y, z) ∈ Q(t̂) + r̂Ō1, u(·) ∈ U , (4.60)

which is equivalent to

g(t̂, r̂, ϕ̂, ψ̂) +

∫ t̂

0

sup
u∈U(t)

⟨ψ̂, e(t̂−t)Au⟩dt ≤ 0 (4.61)

(see the proof of Lemma 3.3). On the other hand, from (4.49) we know that the left hand

side of (4.61) is no less than 0. Combining this and (4.61) we immediately get (4.44).

Theorem 4.4 has the following corollary (such sort of results are called Pontryagin type

maximum principles usually).
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Theorem 4.5. Let (H1)–(H4) hold. Let (x̂0, û(·)) be an optimal pair of Problem P. Then

there exist ϕ̂, ψ̂ ∈ X∗ such that

∥ (ϕ̂, ψ̂) ∥= 1, −(ϕ̂, ψ̂) ∈ (∂dQ(t̂)+r̂Ō1
)((x̂0, x(t̂; x̂0, û(·)))), (4.62)

max
u∈U(t)

⟨ψ̂(t), u⟩ = ⟨ψ̂(t), û(t)⟩, a.e. t ∈ [0, t̂], (4.63)

where

ψ̂(t) = e(t̂−t)A
∗
ψ̂, ∀t ∈ [0, t̂], (4.64)

⟨ψ̂(0) + ϕ̂, x0 − x̂0⟩ ≤ 0, ∀x0 ∈ Q0. (4.65)

Proof. According to Theorem 4.4, we know there exist ϕ̄, ψ̄ ∈ X∗ such that (4.43) and

(4.44) hold, while (4.44) implies

⟨ϕ̂, x0 − y⟩+ ⟨ψ̂, et̂Ax0 − z⟩+
∫ t̂

0

sup
u∈U(t)

⟨ψ̂, e(t̂−t)Au⟩dt ≤ 0,

∀x0 ∈ Q0, (y, z) ∈ Q(t̂) + r̂Ō1.

(4.66)

Taking x0 = x̂0 and (y, z) = (x̂0, x(t̂; x̂0, û(·))) in (4.66), we get∫ t̂

0

[ sup
u∈U(t)

⟨ψ̂, e(t̂−t)Au⟩ − ⟨ψ̂, e(t̂−t)Aû(t)⟩]dt ≤ 0, (4.67)

which immediately yields

max
u∈U(t)

⟨ψ̂, e(t̂−t)Au⟩ = ⟨ψ̂, e(t̂−t)Aû(t)⟩, a.e. t ∈ [0, t̂]. (4.68)

Therefore, (4.66) implies

⟨−ϕ̂, y − x̂0⟩+ ⟨−ψ̂, z − x(t̂; x̂0, û(·))⟩ ≤ 0, ∀(y, z) ∈ Q(t̂) + r̂Ō1. (4.69)

Next, note that there exists a sequence {(yn, zn)} ⊆ Q(t̂) + r̂Ō1 such that

∥ (yn − y, zn − z) ∥< dQ(t̂)+r̂Ō1
((y, z)) +

1

n
, n = 1, 2, · · · (4.70)

for any (y, z) ∈ X ×X. (4.43) and (4.69)-(4.70) result in

⟨−ϕ̂, y − x̂0⟩+ ⟨−ψ̂, z − x(t̂; x̂0, û(·))⟩

≤ ⟨−ϕ̂, y − yn⟩+ ⟨−ψ̂, z − zn⟩ ≤∥ (y − yn, z − zn) ∥
→ dQ(t̂)+r̂Ō1

((y, z)) (n→ ∞)

(4.71)

for any (y, z) ∈ X ×X. Besides, noticing that

dQ(t̂)((x̂0, x(t̂; x̂0, û(·)))) = r̂, (4.72)

from (4.71) we immediately know the second expression in (4.62) holds. Finally, taking

(y, z) = (x̂0, x(t̂; x̂0, û(·))) in (4.66), we get

⟨ϕ̂+ et̂A
∗
ψ̂, x0 − x̂0⟩ ≤ 0, ∀x0 ∈ Q0. (4.73)

Thus, let ψ̂(·) be the function defined by (4.64), then (4.63) and (4.65) follow from (4.68)

and (4.73) respectively.
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§5. Proof of Theorem 1.1

We return to Problem MPCP. First of all, we have

f0(t) ≤ 0, ∀t ∈ R+, (5.1)

∀t ∈ R+, QMPCP ∩RMPCP(t) ̸= ∅ =⇒ f0(t) ≥ 0, (5.2)

∀t ∈ R+, f0(t) = 0 =⇒ QMPCP ∩RMPCP(t) ̸= ∅. (5.3)

In fact, one easily see (5.1) holds from (1.11). The proofs of (5.2) and (5.3) are completely

similar to the ones of (3.19) and (4.19) respectively (cf. the proof of Lemma 3.3). From

(5.1)-(5.3) we immediately get

∀t ∈ R+, QMPCP ∩RMPCP(t) ̸= ∅ ⇐⇒ f0(t) = 0. (5.4)

Contrasting Definition 1.2 with (5.4), we immediately know Problem MPCP is approxi-

mately solvable if and only if f0(·) admits of minimum positive zero point, and, in this case

the minimum positive zero point is just the minimum positive period.

Secondly, let Problem MPCP be solvable. Then T̂ ∈ (0,+∞). Thus we can take a positive

integer N̂ such that

T̂ ∈
( 1

N̂
, N̂
)
. (5.5)

Let (x̂0, û(·)) ∈ Q1 × U0 be a solution of Problem MPCP. Then it is obvious that (x̂0, û(·))
is an optimal pair to the following problem:

Problem (MPCP)N̂ . Find a T̂N̂ ∈ [ 1
N̂
, N̂ ], an x̂

(N̂)
0 ∈ Q1 and a ûN̂ (·) ∈ U0 such that

ûN̂ (t+ T̂N̂ ) = ûN̂ (t), a.e. t ∈ R+, (5.6)

x(t+ T̂N̂ ; x̂
(N̂)
0 , ûN̂ (·)) = x(t; x̂

(N̂)
0 , ûN̂ (·)), ∀t ∈ R+, (5.7)

T̂N̂ = inf
{
T ∈

[ 1
N̂
, N̂
]∣∣∃u(·) ∈ U0, x0 ∈ Q1 such that u(t+ T ) = u(t),

x(t+ T ;x0, u(·)) = x(t;x0, u(·)), ∀t ∈ R+};
(5.8)

T̂N̂ = T̂ . (5.9)

It is not hard to see that Problem (MPCP)N̂ can be referred to a special case of Problem

P; and, for this case

r̂ = 0, (5.10)

the dynamic operator of the system is(
A 0
0 0

)
: D(A)× R1 → X × R1 (5.11)

(D(A) denotes the domain of A) and

U(t) =

(
B(U)
1

)
, Q0 =

{(
y
0

) ∣∣∣y ∈ Q1

}
, Q(t) =

{((
y
s0

)
,

(
y
s

))∣∣∣y ∈ Q1,

s0 ∈ [−1,−1], s ∈
[ 1
N̂
, N̂
]}
, ∀t ∈ R+.

(5.12)

It is easy to verify that (H1)–(H4) hold,

t̂ = T̂ , Q0(T̂ ) = Q1 × [−1, 1], (5.13)
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S =
{(

y
s

)
−
[
e
T̂

(
A 0
0 0

)(
y
0

)
+

∫ T̂

0

e
(T̂−τ)

(
A 0
0 0

)(
B(u(τ))

1

)
dτ
]∣∣∣y ∈ Q1,

s ∈
[ 1
N̂
, N̂
]}

=
{(

(IX − eT̂A)y −
∫ T̂
0
e(T̂−τ)AB(u(τ))dτ

s− T̂

)∣∣y ∈ Q1, s ∈
[ 1
N̂
, N̂
]}
.

(5.14)

The compactness of eT̂A implies that X0 ≡ (IX − eT̂A)X is closed and finite codimensional

in X. By Banach’s Open Mapping Theorem, we know there exists a positive number ϵ0
such that

Ōϵ0(≡ {x ∈ X |∥ x ∥≤ ϵ0}) ∩X0 ⊆ (IX − eT̂A)(Q1 − y0), (5.15)

where y0 is the centre of Q1. Hence, to this special case of Problem P, all hypotheses posed

on Problem P hold. Thus, applying Theorem 4.5 to it, we immediately know there exist α̂,

β ∈ R1 and ϕ̂, ψ̂ ∈ X∗ such that ∥∥∥(( ϕ̂
α̂

)
,

(
ψ̂

β̂

))∥∥∥ = 1, (5.16)

((
ϕ̂
α̂

)
,

(
ψ̂

β̂

))
∈
(
∂d{(( y

s0

)
,

(
y
s

))∣∣y∈Q1 s0∈[−1,1], s∈[ 1
N̂
,N̂ ]
})((( x̂00

)
,

(
x̂0
T̂

)))
,

(5.17)

max
u∈U

⟨(
ψ̂(t)

−β̂

)
,

(
B(u)
1

)⟩
=

⟨(
ψ̂(t)

−β̂

)
,

(
B(û(t))

1

)⟩
a.e. t ∈ [0, T̂ ], (5.18)

⟨(
ψ̂(0)

−β̂

)
−
(
ϕ̂
α̂

)
,

(
x0 − x̂0

0

)⟩
≤ 0, ∀x0 ∈ Q1, (5.19)

where ψ̂(t) = −e(T̂−t)A∗
ψ̂, ∀t ∈ [0, T̂ ].

(5.20)

Noting (5.5) and 0 ∈ (−1, 1), we easily derive

(ϕ̂, ψ̂) ∈ (∂d{(y,y)|y∈Q1})((x̂0, x̂0)), α̂ = β̂ = 0 (5.21)

from (5.17). Combining (5.16) and the second expression in (5.21) we immediately have

∥ (ϕ̂, ψ̂) ∥= 1. (5.22)

Substituting the second expression of (5.21) into (5.18)-(5.19), we get

max
u∈U

⟨ψ̂(t), B(u)⟩ = ⟨ψ̂(t), B(û(t))⟩, a.e. t ∈ [0, T̂ ], (5.23)

⟨ψ̂(0)− ϕ̂, x0 − x̂0⟩ ≤ 0, ∀x0 ∈ Q1. (5.24)

Then, noticing that

∀ϕ, ψ ∈ X∗, (ϕ, ψ) ∈ (∂d{(y,y)|y∈Q1})((x̂0, x̂0)) =⇒ ϕ+ ψ√
2

∈ (∂dQ1)(x̂0), (5.25)

we can get

⟨ϕ̂− ψ̂(T̂ ), x0 − x̂0⟩ ≤ 0, ∀x0 ∈ Q1 (5.26)
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from (5.20), the first expression of (5.21) and (5.24), which together with (5.26) yields

⟨ψ̂(0)− ψ̂(T̂ ), x0 − x̂0⟩ ≤ 0, ∀x0 ∈ Q1. (5.27)

Finally, we show

ψ̂(·) ̸= 0. (5.28)

If (5.28) does not hold, then from (5.20),(5.22) and (5.24) and (5.26) we immediately have

ϕ̂ ̸= 0, (5.29)

⟨ϕ̂, x0 − x̂0⟩ = 0, ∀x0 ∈ Q1. (5.30)

While the interior of Q1 is nonempty, from (5.30) we immediately see

ϕ̂ = 0, (5.31)

which contradicts (5.29).
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