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Abstract

Let N be the set of positive integers and C be Cantor’s ternary set. A function ξ : N → [0, 1]

is established by the help of the Fibonacci sequence such that ξ(N), the closure of the set ξ(N),

is homeomorphic to the set C.
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§1. Introduction

The Fibonacci sequence is a typical topic in discrete mathematics such as Elementary

Number Theory[2] or Combinatorics[5], while Cantor’s ternary set is a typical topic in con-

tinuous mathematics such as Real Analysis[1] or General Topology[3,4,6]. One can hardly

find articles relating these two objects from two different fields in the literature. In this

paper, using Zeckendorf’s representation of natural numbers[7], we will establish a relation

between the Fibonnaci sequence and Cantor’s ternary set.

§2. Preliminaries

Let u1 = 1, u2 = 1, un+2 = un+1 + un be the Fibonacci sequence. It is well known[2]

that a natural number n can be expressed as a sum of distinct Fibonacci numbers. The

expression is not unique. Zeckendorf found[7] that if we have one more requirement that no

consecutive Fibonacci numbers un, un+1 can be used as addands, then the sum expression

is unique. In summary we have the following fact.

Zeckendorf’s Representation. For any given natural number n, there are Fibonacci

numbers ui1 , ui2 , · · · , uik such that

Z1. i1 < i2 < · · · < ik;

Z2. |im − in| ≥ 2 for m ̸= n and 1 ≤ m,n ≤ k;

Z3. n = ui1 + ui2 + · · ·+ uik ;

Z4. The representation in Z3 is unique, i.e., if n = uj1 + uj2 + · · · + ujh such that

j1 < j2 < · · · < jh and |jm − jn| ≥ 2 for m ̸= n, 1 ≤ m,n ≤ h, then k = h and im = jm for

1 ≤ m ≤ k.
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Cantor’s ternary set is a subset of the interval [0, 1], which is obtained by the following

procedure. Deleting the middle third open interval of [0, 1], we have two closed subintervals.

Deleting the middle third open intervals of the two subintervals respectively, we have four

closed subintervals. Continuing deleting the open middle third intervals from each closed

subintervals obtained in the previous procedure for countably infinitely many times, the set of

all leftover points constitutes Cantor’s ternary set. Another easier way to construct Cantor’s

set is to express every real number x ∈ [0, 1] in base three, x =
∑

an/3
n, an = 0, 1, 2, then

the set of all x in which an never equal to 1 is Cantor’s ternary set. The following elegant

result gives the characterization of Cantor’s set (see [4] or [6]).

Characterization of Cantor’s Ternary Set. A topological space C is homeomorphic

to a Cantor’s ternary set if and only if

C1. C is a metric space;

C2. C is compact;

C3. C is perfect;

C4. C is totally disconnected.

Here C is perfect means that every point x ∈ C is a limit point of a sequence of distinct

point xn ∈ C(n = 1, 2, · · · ). C is totally disconnected if every connected component of C is

a single point.

The function ξ(X) based on Zeckendorf’s representation. Now we give the defi-

nition of the function ξ(x) from the set N of natural numbers into the interval [0, 1]. This

function is based on Zeckendorf’s representation. In next section we will prove that the

closure of the set ξ(N) is homeomorphic to Cantor’s ternary set.

Definition 2.1. Let N be the set of all natural numbers and x ∈ N. If the Zeckendorf’s

representation of x is x = ui1 + ui2 + · · ·+ uik , then define

ξ(x) = (2ui1)
−1 + (22ui2)

−1 + · · ·+ (2kuik)
−1.

Let d =
∞∑

m=1
(2mu2m−1)

−1 = 0.602636 · · · . It is easily seen that 0 ≤ ξ(x) ≤ d holds for all

x ∈ N. We need a few lemmas to investigate the properties of the function ξ(x).

Lemma 2.1. Let ui (i = 1, 2, · · · ) be the Fibonacci sequence. If i > j ≥ 2, then

u−1
j ≤ (2/3)u−1

i .

Proof. Since i > j implies i− 1 ≥ j, we have

3ui = 3(ui−1 + ui−2) ≥ 3(uj + uj−1) = 3uj + 3uj−1.

Since uj = uj−1 + uj−2 ≤ 2uj−1, we have 3ui ≥ 3uj + (3/2)uj = (9/2)uj , u
−1
i ≤ (2/3)u−1

j .

Lemma 2.2. Let x ∈ N. If x = ui1 + ui2 + · · · + uik is Zeckendorf ’s representation of

X, then ξ(x) < 2/(3ui1).

Proof. It is easily seen that ui2 = ui2−1 + ui2−2 ≥ 2ui2−2 ≥ 2ui1 . If uim ≥ 2m−1ui1 ,

then uim+1 = uim+1−1 + uim+1−2 ≥ 2uim+1−2 ≥ 2uim ≥ 2mui1 . Therefore

ξ(x) = (2ui1)
−1 + (22ui2)

−1 + · · ·+ (2kuik)
−1

≤ (2ui1)
−1 + (23ui1)

−1 + · · ·+ (22k−1ui1)
−1

< (2ui1)
−1(1 + 2−2 + · · ·+ 2−2k+2 + · · · ) = 2/(3ui1).
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Lemma 2.3. Let x1, x2 ∈ N and x1 = ui1 + · · ·+uik , x2 = uj1 + · · ·+ujh be Zeckendorf’s

representations of x1, x2, respectively. If furthermore ξ(x1) < ξ(x2), then

ξ(x2)− ξ(x1) > 0.1(2hujh)
−1.

Proof. We discuss the following possible cases.

(1) uim = ujm for m = 1, 2, · · · , k. Then h ≥ k + 1, otherwise ξ(x1) = ξ(x2). It is easily

seen that

ξ(x2)− ξ(x1) = (2k+1ujk+1
)−1 + · · ·+ (2hujh)

−1 ≥ (2hujh)
−1 > 0.1(2hujh)

−1.

(2) There is a natural number g ≤ k− 1 such that uim = ujm for m = 1, 2, · · · , g− 1, but

uig ̸= ujg . We discuss two subcases.

(i) ig > jg. Similar to Lemma 2.2, we can prove by induction that uig+s ≥ 2suig . Then

ξ(x1)−
g−1∑
m=1

(2muim)−1 = (2guig )
−1 + (2g+1uig+1)

−1 + · · ·+ (2kuik)
−1

≤ (2guig )
−1 + (2g+2uig )

−1 + · · ·+ (22k−guik)
−1

< (2guig )
−1(1 + 2−2 + · · ·+ 2−2k+2g + · · · )

≤ (4/3)(2guig )
−1.

Since ig > jg, by Lemma 2.1, we have (4/3)(2guig )
−1 ≤ (8/9)(2gujg )

−1. Therefore

ξ(x2)− ξ(x1) ≥ (2uj1)
−1 + · · ·+ (2gujg )

−1 − ξ(x1)

= (2gujg )
−1 −

(
ξ(x1)−

g−1∑
m=1

(2muim

)−1

)

≥ (2gujg )
−1 − (8/9)(2gujg )

−1

> 0.1(2gujg )
−1 ≥ 0.1(2hujh)

−1.

(ii) ig < jg. This case is impossible because if discussing ξ(x2) −
g−1∑
m=1

(2mujm)−1 in (i)

instead of ξ(x1)−
g−1∑
m=1

(2muim)−1, we may get ξ(x1)− ξ(x2) > 0, which is a contradiction to

the condition ξ(x2) > ξ(x1).

The proof of Lemma 2.3 is completed.

Let d =
∞∑

m=1
(2mu2m−1)

−1 = 0.602636 · · · . We give an important property of the function

ξ(x).

Theorem 2.1. The function ξ(x) is an injection from N into (0, d).

Proof. Suppose that there are x1, x2,∈ N such that ξ(x1) = ξ(x2). We are going to prove

x1 = x2. Let x1 = ui1 + · · ·+uik and x2 = uj1 + · · ·+ujh be Zeckendorf’s representations of

x1, x2 respectively. If x1 ̸= x2, then there is a natural number g such that uig ̸= ujg . Using

the method in the proof of Lemma 2.3, we know that ig > jg implies ξ(x2) > ξ(x1), while

ig < jg implies ξ(x1) > ξ(x2), both are contradictory to the condition ξ(x1) = ξ(x2).

§3. Main Result

Now we prove the main result.
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Theorem 3.1. The closure of the set ξ(N) is homeomorphic to Cantor’s ternary set.

Proof. Let ξ(N) be the closure of the set ξ(N). It is easily seen that ξ(N) is a subset

of the interval [0, d]. Naturally it inherits a distance function from the metric space of real

numbers. As a matter of fact we know that d(u, v) = |u−v| for u, v ∈ ξ(N), where | | means

the absolute value. Therefore ξ(N) is a metric space.

As a subset of [0, d], ξ(N) is bounded. Therefore ξ(N) is compact since it is a bounded

closed set in the space of real numbers.

To show that ξ(N) is a perfect set, we have to prove that every point in ξ(N) is a limit

point of ξ(N).

Suppose p ∈ ξ(N). Then there is an x ∈ N such that p = ξ(x). If x = ui1 + · · · + uik

is Zeckendorf’s representation of x, then consider the sequence xr(r = 1, 2, · · · ) defined as

follows:

xr = (ui1 + · · ·+ uik) + uik+r+1 = x+ uik+r+1.

It is easily seen that xr ∈ N and the above expression is Zeckendorf’s representation of xr

since ik + r + 1 ≥ ik + 2. A direct enumeration gives

ξ(xr) = ξ(x) + (2k+1uik+r+1)
−1 = p+ (2k+1uik+r+1)

−1.

Therefore lim
r→∞

ξ(xr) = p. The set ξ(N) is perfect.

To show that ξ(N) is totally disconnected, we have to prove that each connected compo-

nent of ξ(N) is a single point.

Let C be a connected component of ξ(N) which is not a single point. Since C is a connected

set and connected sets in the space of real numbers are intervals[3], we know that there are

two real numbers a, b such that a < b and the interval (a, b) ⊆ C. Let p ∈ (a, b). Then p is a

limit point of ξ(xr) for a sequence xr ∈ ξ(N). Hence there is an xr0 such that ξ(xr0) ∈ (a, b).

Let xr0 = uj1 + · · ·+ujh be Zeckendorf’s representation of xr0 .Then consider the interval

I = (ξ(xr0) − 0.1(2hujh)
−1, ξ(xr0)). We have ξ(N) ∩ I = ∅ since x ∈ N and ξ(x) < ξ(xr0)

imply x /∈ I by Lemma 2.3. Noticing that I is an open set, we have ξ(N) ∩ I = ∅. Hence

C ∩ I = ∅, and (a, b) ∩ I = ∅. This is impossible because letting c = max(a, ξ(xr0) −
0.1(2hujh)

−1), we have (c, ξ(xr0)) ⊂ (a, b) ∩ I. This contradiction proves that C must be a

single point.

By the discussion above we know that ξ(N) is homeomorphic to Cantor’s ternary set.

The proof is completed.
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