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PERIODIC CARDINAL INTERPOLATORY WAVELETS
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Abstract

The authors construct periodic interpolating wavelets and their duals from a periodic func-
tion g(z) whose Fourier coefficients are positive. The corresponding decomposition and re-
construction algorithm is also given. The spline example shows that such kind of wavelets
shares good localization with any desired regularity and symmetry. The construction depends
essentially on the finite Fourier Transformation and the theory of circulant matrix.

Keywords Periodic wavelet, Multiresolution, Cardinal Interpolation, Dual basis,
Circulant matrix

1991 MR Subject Classification 42C05, 41A63, 41A30, 41A15

Chinese Library Classification 0174.2, 0174.41

§1. Introduction

Periodic problems appear in various applications which motivated an extensive study of
periodic wavelets in recent years.
Y. Meyer!® ! studied periodic multiresolutions by periodizing known wavelets. Perrier

(13] stated the construction and algorithm of periodic wavelets, their algorithm

and Basdevant
makes heavy use of the Fast Fourier Transformation (FFT). Chui and Mhasker(”) constructed
the trigonometric wavelets. Plonka and Tasche'*15] studied p-periodic wavelets for general
periodic scaling functions. Their algorithms('® are based on Fourier technique. The first
author of this paper made a full study of periodic wavelets when the scaling functions are

1-5] Each equation in the decomposition

derived from different kinds of spline functions!
and reconstruction algorithms involves only two terms which do not depend on the regu-
larity of the underlying wavelets. The error estimates are studied elaborately. The discret
Fourier transform is used implicitly. Koh, Lee and Tan['%! gave a general framework of pe-
riodic wavelets, where two terms were obtained and the two-term algorithms operating on
the frequency domain was also realized. Narcowich and Ward'? investigated the periodic
scaling functions and wavelets generated by continuously differentiable periodic functions
with positive Fourier coeflicients. They also discussed the localization of scaling functions
and wavelets. The method of using the periodic wavelets, e.g., to denoise and to detect sin-
gularity, is also pointed out. Chen et el construct a kind of real-valued periodic orthogonal
wavelets. The relation between the periodic wavelets and the Fourier series is also discussed.
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In this paper, we construct periodic interpolatory wavelets and their duals from a peri-
odic function g(x) whose Fourier coeflicients are positive. The wavelets as well as scaling
function are symmetric with respect to some axes. The corresponding decomposition and
reconstruction algorithm is also given. The spline example shows that such kind of wavelets
shares good localization with any desired regularity. Our construction depends essentially
on the finite Fourier Transformation and the theory of circulant matrix.

§2. Cardinal Interpolatory Scaling Functions
2
%. Let g(x) be
a 2m-periodic, continuous differentiable function whose Fourier coefficients are positive, i.e.,
g(z) € C([0,27]), and

g(x) = Z C,, ei"® with Cp, >0 forany n € Z. (2.1)
nezZ

Let j be a nonnegative integer, K a positive integer. K; = VK, hj =

For f,g € 8’[0, 27) the inner product of f, g is defined by
1 27
(frg) =5 | [fla)g(z)dz.

- 27T 0
Define

V; = span{g(a), g(& — hy),- - 9@ — (K; — Dhy)}. (2.2)
Then from [11] we know that dimV; = K; and V; C Vj41.
Definition 2.1. For £ =0,1,--- ,K; — 1, define

K;j—1
Zi(@):= Y gla+khy) ™ = K; Y Cu,—rexp(i(nk; - O)z),
k=0 nexzZ
~ Z(x
Zg (l‘) = Z(j )
121l

It is easy to check that
<ZZI, Zé) = 00,0, for 0</0y,0<K;—1,

ZJ(x + khj) = exp(—ilkh;) Z] (z). (2.3)
Since ZZ(O) =K; Z Chni,;—¢ > 0, we give the following definition.
nez
Definition 2.2. For 0 < j < K; — 1, define
K.—1 .
1 ' Z)(x)
pi(r) = — —.
K; ; Z;(0)

We have the following theorem.
Theorem 2.1. Suppose g(z) satisfies (2.1). Let V;,p; be defined as (2.2) and Definition
2.2 respectively. Then
(1) @j(z) possesses the cardinal interpolatory property, i.e., pj(kh;) = oo for k =
0,1, K, — 1.
(2) {e;(- — khj)}kKio_l is a basts for V;,
V; = span{g;(- — kh;) : k=0,1,--- | K; — 1}.
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(3) @;(x) satifies the following two-scale equation
Kj—1
0i(@) = @i (@) + D 9 (20 + Dhjy1)pja(z — (20 + Dhyya).
=0
Proof. From (2.3), we know that Zg(khj) = exp(—ilkh;) Zg (0). Hence

K.—1 . K.—1
1S Zkny) 1 N
(kh:) = — M:—E exp(—ilkh;) = dog.
(pj( J) Kj yort Zg (0) K] ~ p( J) Ok

Since ¢;(- — kh;) € V;, span{p;(-),¢;(- — hj), - ,¢;(- — (K; — 1)h;)} C V;. But,
the set of functions {¢;(- — kh])}f; 0 ' is a linearly independent system. Therefore Vi =
span{¢;(- — kh;) : k =0,1,--- ,K; — 1}, which completes the proof of the theorem since
the two-scale equation can be deduced simply from the cardinal interpolatory property of

pj(z).

§3. Cardinal Interpolatory Wavelets

In this section, we shall construct the cardinal interpolatory wavelets.
For £=0,1,---,K; — 1, define

j +1 541 i+l i+l ith;
R)(x) := {d}" Z] " (x) — d?;MZ?;H(x)}edhf“, (3.1)
where 47! = 125, el
AL

We have the following lemma.
Lemma 3.1. For {,A=0,1,--- ,K; — 1,

(R} (x), Z§ () = 0.
Proof. By the definition of Zﬁ; , we have

Zl(z) = K; Z Cnr;—xexp(i(nK; — \)x)
neZ

K.
= il Z Conk;—aexp(i(2nK; — N)x)

2
nezZ

K; .
+ ]T—H Z C(Qn,l)Kj,Aexp(z((Qn -1)K; — Nz)
nez

_ % (@) + 2 \@) - (3.2)
Then, from (3.1) , (3.2) and the orthogonality of Ziﬂ, we obtain
(R (x), Z3 (=)
= §<{dz“éz’“<x> — diLZE (@) 2 @) + 29\ (@)
= S |2 = a1 o =0
Since
Ry(hj) = {21 (hyi) — dﬁtiﬁ%}th(ﬁjﬂ)}e“’”“

=y 277 0) + dﬁiﬁgie(o) >0,



136 CHIN. ANN. OF MATH. Vol.19 Ser.B

we define

K;j—

1 R

et (3.3)
J 0=0 Re( J+1)
since
R} (khj + hj1) = {d) T 2] (khj + hji1) — d?iﬂ?iz(khj + hjpq)ethit
= {2 ()™ = i 23 (e (TR et
= ),

we have
— K.—1
kh + h; +1 1 4 —iklh;
Lj(khj +hj41) = — —J:— e " = §op.
K z; Rl(hj+1) Kj =0
Now define
W, = span{R}(z): £ =0,1,--- , K; — 1}.
By Lemma 3.1, we know that
W; Cc Vi eV
Note that for each j, L;j(z — kh;) is a linear combination of {R@(m)}ﬁgl We have
span{Lj(x—khj):k:0,1,~- VK —1} cW;cVimoeV,
but dim{span{L;(z — kh;) : k=0,1,--- —1}} = K; = dim(Vj41 ©Vj). Therefore
Wj = ‘/jJrl @V} = span{Lj(xf khj) . k = 0,].,"‘ ,Kj — 1}
From Proposition 4.1 in [11], we know that
Clos | ) V; = C[0,2m).
Jj=0
We can summarize the discussion of this section as the following theorem.
Theorem 3.1. The set

{po(@)} ILs(@ — thy) 2y

7>0

is an interpolatory basis for C[0,27) and L;(x) satisfies the following two-scale relation
Li(x) = @jr1(x —hjpa) + > Li(thy)pj(x — thy).
£=0

§¢4. Symmetry of Scaling Functions and Wavelets

From now on, we shall assume that g(z) is real-valued and symmetric about the origin,
ie., g(x) = g(—x) = g(x), which implies that C, = C_,, = C, fornc Z.
We have the following Lemma.
Lemma 4.1. Suppose that Zg is defined as Definition 2.1, dzﬂ in (3.1). Then, the
following equalities are valid:
Z(w) = 27 (x) = Zi,_(x) = Z] (—w),

J+1 _7+1 J+1
&, =d, =dy it
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Proof.
Zg(a:) =K, Z Chnr;—rexp(—i(nK; — {)x)
nez
=K; Z C_ni;—eexp(—i(—nK; — {)x)
nez
= K; Z Cousc; eexp(i(nK; + £)x) = 27 ,(x),
nez

the proofs of others are similar.

Now, we can state the main results of this section.

Theorem 4.1. Suppose that @;(z) is defined as Definitioin 2.2, L;(x) as (3.3), and g(z)
18 real-valued with C,, = C_,,. Then

(1) p;(x) is real-valued and p;(—x) = @;(x);

(2) Lj(x) is real and Lj(hji1 +x) = Lj(hj41 — ).

Proof. (i) Since

1 '& 2w 1 & 2 ()
pj(z) = ] Z - = 7 7
i =0 Z](0) i = Zk,-e0)
1 iZZ(:E) 1 & Zi () @
P53 Z10) K5 = 2;(0)
where we use the relation Z};j (z) = Zi(x),
1 & 2 1 G 2
oi(~0) = = D )
i =0 4 (0) J =0 Z_z(o)

which completes the proof of the first part of the theorem.
(ii) To prove the second part of this theorem, we first note that

R)(z) = {d;'|r Zf' (x) — d];;MZ?;M(x)}e iy
i1 41 i1 S+l —ith

={d)" 27 () - dj;;:+ezj—}j—e($)}e thits
= A2 @) — L 2 @)e

=R ,(z)= R%r[(x).
Hence

K;—-1 ijl(j,g(x)

Lj(x)zf 77=LZ

i =0 R)(hjt1) K; =0 R%g—e(hjﬂ)
(@) _ 1R~ R
- Eé:l Rg(hj—kl) - FJ =0 RZ(hj-s-l) N j(x),
where the relation RJI'(]_ (z) = R} () is used.
Pay attention to R’ ,(hj11 — x) = R)(hj41 + x). We have

K:—1
. j+1+ )

J (h
Kj = Ri(hj1) Kj = R, (hj1)
=Lj(hjy1+x) = Lij(hjy1 + ),

RI)(hjy1 — 1 &~ R
Lyl - = - 30 Bl =0 Ly
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which implies that L;(x) is symmetric about the point hj;y1. The proof of the theorem is
finished.

§5. Dual Scaling Functions and Dual Wavelets

In this section, we shall construct the dual scaling functions and dual wavelets where
circulant matrix and its properties are used heavily.
The following lemma is important for the construction of dual scaling functions.
Lemma 5.1. Suppose that ¢;(x) is defined in Definition 2.2,
2mi ihs 1 K;j—1 K;j—1
wi=eFi =M, Fi= f(wek)e,k:m Gj = ({g;i(- = thj), ;i (- — kh’j»)l,k:O’
J
Pj(2) = (05 05) + {05 (s 05 (- = Bz + -+ {p5(), 0 (- = (K = D)hy)) 21
Then, G is an invertible circulant matriz, and G;l = FA7LF*, where

A = diag{P;j(1), Pj(w),- -, Pj(w 1)},

the star denotes the complex conjugate.

Proof. By the periodicity of ¢;(x), we know that
(pj(@ = Lhy), (@ — khy)) = (p;(x), (@ — (k = O)hy)),

which implies that G; is a circulant matrix.

From [8], we know that G, can be diagonalized by F, i.e. G; = FA;F*, where A =
diag{ P;(1), P;(w), - , Py )},

Now, we need to check that P;(w") # 0 for r =0,1,--- , K; — 1.

From Definition 2.2 and the orthogonality of ZZ , we have

1 Kj‘1<Zz<w> Z%(w—khj>>

(pj(z), pj(x — khj)) = —5

Kj 2,n=0 ZZ (O) Z%(O)
_ 1 Z Zj(x) Z%(x) o—iknh;
KJ2 £,n=0 Ztg (0) ’ Z%(O)
K;—1 ;
1 E B,
K = 1720
Hence, for r =0,1,--- , K; — 1,
K;—1
Pj(w") = Z CZIOR"I khj»wrk
k=0
K;j—1 Do Kj—1
_ JZ 127117 '} pi(r—0)kh;
5 .
K" = 1200 =
1z
K|z (0)]

Therefore, G is an invertible cirulant matrix with G;l =F A;lF *.

The proof of the Lemma is finished.
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Theorem 5.1. Suppose that A; and F are defined in Lemma 5.1, e = (1,0,---,0) € R¥
1s a K;-dimensional unit vector, and

vj(x)
pj(x —hy)

@j(z) = eFA;'F* , ev;.
pi(z — (K; — 1)h;)
Then {@j(x — k;hj)}kKial is a dual basis for {¢;(x — khj)}fial, i.e.,
<()5J(1' - khj),(ﬁj(it - ghj» = 5k4 for k,g = 07 1, te ,Kj — 1.
Proof. Let

010 0
0 0 1 0
II := Circ(0,1,0,---,0)=[ 0 0 0 0
1 00 --- 0

Note that FA;'F* is a circulant matrix, FA;'F*Il = IIFA; ' F*. Hence
@j(x — khy) = eFAT F*(@j(x — khy), 05 (x — (k+ 1hy), - 5w — (k+ K; — 1)hy))"
= eFATVF* - T15 - (9(2), (= hy), -+, iz — (K — 1)hy))T
= ell"FATF* - (pj(x), 5 (x — hy), -+ s — (K5 — 1)hy)) T
Therefore
(@j(x — khy), pj(x — Lhy))

(pj(x), p;
(pj(x — hy),

(z (— Chy)) )
pi(x —Lh,
= ell* AL F* A !
(pj(x = (Kj — )hj), @j(x — Lhy))
or equivalently,
(5@ — khy), 5 (w — thy) )iz = 1 - FA;'F* Gy =1,

which implies that {@;(z — khj)}fio_l is a dual basis for {¢;(z — kh;) kK:J(;l

Analogously, we can give the dual wavelets as follows.
Theorem 5.2. Let

Q;(2) = Y (L;(-), L;(- — khy)) ¥,
k=0
Lj(x)
Lj(x — hy)

Then (L;(x — kh;), Lj(x — £hj)) = 6x¢ for k,£=0,1,---  K; — 1.
. . (@) +(dit )2
Since Q;(w") = Kj—‘sz(th)J‘z

Theorem 5.1.

> 0, the proof of this theorem is similar to that of
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In applications, symmetry is very important. Since ¢; and L; are symmetric, we have
the following theorem.

Theorem 5.3. Suppose that g(x) is symmetric about the origin point. Then @;(x) is
symmetric about the origin and Ej (z) is symmetric about the origin.

Proof. For simplicity, we rewrite ¢;(x) as @j(z) = > cxpj(x — kh;). Then, by the
k=0
symmetry and periodicity of ¢;, we have
, Kj—1
—z)=¢e Z crpj(—x — khj) = copj(x Z crpj(x + khj)
= k=1
Kj—1 Kj—1
= cop;(x Z crpj(T — —k)h;) = cop;(x Z cr; ki (x — khy).
k=1
Since Circ(cg, ¢, ,cKj_l) = FA7LF* and A = diag{P;(1), Pj(w), - - , Pj(w®i~1)} is real,
we see that Circ(co,c1,---,ck;—1) is a real Hermitian matrix, so that cx, = c.

Kj—1
Therefore ¢;(—xz) = Y cppj(x —kh;) = ¢;(z).

A similar discussion gives L;(z) = L;(—x), which completes the proof of the theorem.

§6. Algorithms and Examples

In this section, we shall give the decomposition and reconstruction algorithms of this kind
of periodic wavelets.
To this end, let f(z) € Vj4+1. Then we can rewrite f( ) as

Kjt1—1 Kjy1—1
> fkhji)eji (e — khy) = Z iz — khjg).
k=0 —
Let
K;—1
pir1(x) = > {alp;(x — thy) + bjL;(x — (h;)}, (6.1)
=0
@jr1(z — hjp1) Z {plj(x — thy) + q) Lj(x — thy)}. (6.2)
Then
K;—1
1@ = 2khjn) = Y {aj_ypi(@ — lhy) + b, Li(x — thy)}
£=0
@it1(z — (2k +1)hj41) Z {p)_pi(@ — thy) + q)_, Lj(x — thy)}.
Therefore

K- K;j—1
= Z C%;gl Z {a%_kwj(x—ﬁhj) be k Lj(x —thy)}
k=0 =0
K;—1 K;—1

+ Y ity > APl (= thy) + gl Li(z — thy)}
ki

£=0
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No.2

K;j—-1 K;—-1 .
= S Y [oladl + it festo - eny)
k=0

=0
Z_ { Z_ [é Ko+ kc%;:}rl} }Lj(m_fhj)y
=0 k=

which induces the followmg Decompoatlon Formulas

¢ = Z [C‘chj +p)_ kcék+1:| dy = Z [béka%}?“qukCéﬁl}
k=0 k=0

Since
Kjt1—-1

> i(thit)ejia (@ —thys)

)
Z L; (ghj+1)<»0j+1($ - fhj+1),

=0

pi(z) =
=0
Kj1-1
Lj(x) =
¢
a simple calculation gives
K;—1 K;—
D ces(x—khj) + Z diLj(x = kh;)
=0

=Y a @j(Chjt1)pjt1(z — Lhjtr — 2khjiq)
‘]_ .
+ Y Lj(Chji1)pjp1(z — Lhjpr — 2khjyq)

= { cps (€ = 2k)hj41) Z &, Lj( )hj+1)}@j+1($ — thjt1).
=0 k=0
Therefore, we obtain the Reconstruction Formulas
K;—1
=) e (0= 20)hye) + AL (£~ 2k)hy)},
k=0

or
K;—-1 K;—

1

At =c+ Y dLi((t—khy) Gil =Y (6= k) + hjp) +d).
k=0 k=0

Now, we are going to compute ag, bg, pZ, and qg.

From
Pit1(z Z {ae@J hj) +szj($_£hj>},

and the duality of ¢;(x) and <pj( ), we have ae (@j(x — Lhj),;+1(x)). Recall that

Kj+1-1
Gi(x) = > Gi(khjt)@jia(x —khj) € Vi,
k=0
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thus,
o Kja-1
a; = @j(khj11)(@j+1(z — khjpr — hj), pj41(2))
k=0
Kjti—1

i ((k = 20hj11){pjr1(r — khjt1), 0j4+1(2)),

k=0
analogously, we have,
Kjt1—1
bz = Z LJ((/f — 2€)hj+1)<g0j+1($ - khj+1)v 90j+1(x)>
k=0
o K-l
ph= Y G((k=20+Dhj1){pjs1(z — khjp1), @j41())
k=0
Kj+1-1
q% = LJ((]C — 20 + 1)hj+1)<<,0j+1(x - khj-l—l)a (pj-ﬁ-l(x»'
k=0

¢7. Final Remarks

In this paper, we construct interpolatory wavelets and their corresponding dual wavelets
from a periodic function. These wavelets are symmetric, but are not orthogonal. Examples
show that they share some localization property, but we do not prove that now.
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