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Abstract

The authors construct periodic interpolating wavelets and their duals from a periodic func-
tion g(x) whose Fourier coefficients are positive. The corresponding decomposition and re-
construction algorithm is also given. The spline example shows that such kind of wavelets
shares good localization with any desired regularity and symmetry. The construction depends

essentially on the finite Fourier Transformation and the theory of circulant matrix.
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§1. Introduction

Periodic problems appear in various applications which motivated an extensive study of

periodic wavelets in recent years.

Y. Meyer[8,11] studied periodic multiresolutions by periodizing known wavelets. Perrier

and Basdevant[13] stated the construction and algorithm of periodic wavelets, their algorithm

makes heavy use of the Fast Fourier Transformation (FFT). Chui and Mhasker[7] constructed

the trigonometric wavelets. Plonka and Tasche[14,15] studied p-periodic wavelets for general

periodic scaling functions. Their algorithms[16] are based on Fourier technique. The first

author of this paper made a full study of periodic wavelets when the scaling functions are

derived from different kinds of spline functions[1−5]. Each equation in the decomposition

and reconstruction algorithms involves only two terms which do not depend on the regu-

larity of the underlying wavelets. The error estimates are studied elaborately. The discret

Fourier transform is used implicitly. Koh, Lee and Tan[10] gave a general framework of pe-

riodic wavelets, where two terms were obtained and the two-term algorithms operating on

the frequency domain was also realized. Narcowich and Ward[12] investigated the periodic

scaling functions and wavelets generated by continuously differentiable periodic functions

with positive Fourier coefficients. They also discussed the localization of scaling functions

and wavelets. The method of using the periodic wavelets, e.g., to denoise and to detect sin-

gularity, is also pointed out. Chen et el[6] construct a kind of real-valued periodic orthogonal

wavelets. The relation between the periodic wavelets and the Fourier series is also discussed.
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In this paper, we construct periodic interpolatory wavelets and their duals from a peri-

odic function g(x) whose Fourier coefficients are positive. The wavelets as well as scaling

function are symmetric with respect to some axes. The corresponding decomposition and

reconstruction algorithm is also given. The spline example shows that such kind of wavelets

shares good localization with any desired regularity. Our construction depends essentially

on the finite Fourier Transformation and the theory of circulant matrix.

§2. Cardinal Interpolatory Scaling Functions

Let j be a nonnegative integer, K a positive integer. Kj = 2jK, hj =
2π

Kj
. Let g(x) be

a 2π-periodic, continuous differentiable function whose Fourier coefficients are positive, i.e.,

g(x) ∈
◦
C([0, 2π]) , and

g(x) =
∑
n∈ZZ

Cn e
inx with Cn > 0 for any n ∈ ZZ. (2.1)

For f, g ∈
◦
C[0, 2π) the inner product of f, g is defined by

⟨f, g⟩ := 1

2π

∫ 2π

0

f(x)g(x) dx.

Define

Vj := span{g(x), g(x− hj), · · · , g(x− (Kj − 1)hj)}. (2.2)

Then from [11] we know that dimVj = Kj and Vj ⊂ Vj+1.

Definition 2.1. For ℓ = 0, 1, · · · ,Kj − 1, define

Zj
ℓ (x) :=

Kj−1∑
k=0

g(x+ khj) e
ikℓhj = Kj

∑
n∈ZZ

CnKj−ℓ exp(i(nKj − ℓ)x),

Z̃j
ℓ (x) =

Zj
ℓ (x)

||Zj
ℓ ||

.

It is easy to check that

⟨Z̃j
ℓ1
, Z̃j

ℓ2
⟩ = δℓ1ℓ2 for 0 ≤ ℓ1, ℓ2 ≤ Kj − 1,

Zj
ℓ (x+ khj) = exp(−iℓkhj)Z

j
ℓ (x). (2.3)

Since Zj
ℓ (0) = Kj

∑
n∈ZZ

CnKj−ℓ > 0, we give the following definition.

Definition 2.2. For 0 ≤ j ≤ Kj − 1, define

φj(x) =
1

Kj

Kj−1∑
ℓ=0

Zj
ℓ (x)

Zj
ℓ (0)

.

We have the following theorem.

Theorem 2.1. Suppose g(x) satisfies (2.1). Let Vj , φj be defined as (2.2) and Definition

2.2 respectively. Then

(1) φj(x) possesses the cardinal interpolatory property, i.e., φj(khj) = δ0k for k =

0, 1, · · · ,Kj − 1.

(2) {φj(· − khj)}
Kj−1
k=0 is a basis for Vj,

Vj = span{φj(· − khj) : k = 0, 1, · · · ,Kj − 1}.
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(3) φj(x) satifies the following two-scale equation

φj(x) = φj+1(x) +

Kj−1∑
ℓ=0

φj((2ℓ+ 1)hj+1)φj+1(x− (2ℓ+ 1)hj+1).

Proof. From (2.3), we know that Zj
ℓ (khj) = exp(−iℓkhj)Z

j
ℓ (0). Hence

φj(khj) =
1

Kj

Kj−1∑
ℓ=0

Zj
ℓ (khj)

Zj
ℓ (0)

=
1

Kj

Kj−1∑
ℓ=0

exp(−iℓkhj) = δ0k.

Since φj(· − khj) ∈ Vj , span{φj(·), φj(· − hj), · · · , φj(· − (Kj − 1)hj)} ⊂ Vj . But,

the set of functions {φj(· − khj)}
Kj−1
k=0 is a linearly independent system. Therefore Vj =

span{φj(· − khj) : k = 0, 1, · · · ,Kj − 1}, which completes the proof of the theorem since

the two-scale equation can be deduced simply from the cardinal interpolatory property of

φj(x).

§3. Cardinal Interpolatory Wavelets

In this section, we shall construct the cardinal interpolatory wavelets.

For ℓ = 0, 1, · · · ,Kj − 1, define

Rj
ℓ(x) := {dj+1

ℓ Z̃j+1
ℓ (x)− dj+1

Kj+ℓZ̃
j+1
Kj+ℓ(x)}e

iℓhj+1 , (3.1)

where dj+1
ℓ =

||Zj+1
Kj+ℓ||

||Zj
ℓ ||

.

We have the following lemma.

Lemma 3.1. For ℓ, λ = 0, 1, · · · ,Kj − 1,

⟨Rj
ℓ(x), Z

j
λ(x)⟩ = 0.

Proof. By the definition of Zj
λ , we have

Zj
λ(x) = Kj

∑
n∈ZZ

CnKj−λexp(i(nKj − λ)x)

=
Kj+1

2

∑
n∈ZZ

C2nKj−λexp(i(2nKj − λ)x)

+
Kj+1

2

∑
n∈ZZ

C(2n−1)Kj−λexp(i((2n− 1)Kj − λ)x)

=
1

2

(
Zj+1
λ (x) + Zj+1

Kj+λ(x)
)
. (3.2)

Then, from (3.1) , (3.2) and the orthogonality of Zj+1
λ , we obtain

⟨Rj
ℓ(x), Z

j
λ(x)⟩

=
1

2
⟨{dj+1

ℓ Z̃j+1
ℓ (x)− dj+1

Kj+ℓZ̃
j+1
Kj+ℓ(x)}e

iℓhj+1 , Zj+1
λ (x) + Zj+1

Kj+λ(x)⟩

=
1

2
eiℓhj+1{dj+1

ℓ · ||Zj+1
λ || − dj+1

Kj+ℓ · ||Z
j+1
Kj+ℓ||} · δλ,ℓ = 0.

Since

Rj
ℓ(hj+1) = {dj+1

ℓ Z̃j+1
ℓ (hj+1)− dj+1

Kj+ℓZ̃
j+1
Kj+ℓ(hj+1)}eiℓhj+1

= dj+1
ℓ Z̃j+1

ℓ (0) + dj+1
Kj+ℓZ̃

j+1
Kj+ℓ(0) > 0,
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we define

Lj(x) :=
1

Kj

Kj−1∑
ℓ=0

Rj
ℓ(x)

Rj
ℓ(hj+1)

; (3.3)

since

Rj
ℓ(khj + hj+1) = {dj+1

ℓ Z̃j+1
ℓ (khj + hj+1)− dj+1

Kj+ℓZ̃
j+1
Kj+ℓ(khj + hj+1)}eiℓhj+1

= {dj+1
ℓ Z̃j+1

ℓ (hj+1)e
−iℓkhj − dj+1

Kj+ℓZ̃
j+1
Kj+ℓ(hj+1)e

−i(Kj+ℓ)khj}eiℓhj+1

= e−iℓkhj Rj
ℓ(hj+1),

we have

Lj(khj + hj+1) =
1

Kj

Kj−1∑
ℓ=0

Rj
ℓ(khj + hj+1)

Rj
ℓ(hj+1)

=
1

Kj

Kj−1∑
ℓ=0

e−iklhj = δ0k.

Now define

Wj = span{Rj
ℓ(x) : ℓ = 0, 1, · · · ,Kj − 1}.

By Lemma 3.1, we know that

Wj ⊂ Vj+1 ⊖ Vj .

Note that for each j, Lj(x− khj) is a linear combination of {Rj
ℓ(x)}

Kj−1
ℓ=0 . We have

span{Lj(x− khj) : k = 0, 1, · · · ,Kj − 1} ⊂ Wj ⊂ Vj+1 ⊖ Vj ,

but dim{span{Lj(x− khj) : k = 0, 1, · · · ,Kj − 1}} = Kj = dim(Vj+1 ⊖ Vj). Therefore

Wj = Vj+1 ⊖ Vj = span{Lj(x− khj) : k = 0, 1, · · · ,Kj − 1}.

From Proposition 4.1 in [11], we know that

Clos
∪
j≥0

Vj =
◦
C[0, 2π).

We can summarize the discussion of this section as the following theorem.

Theorem 3.1. The set

{φ0(x)}
∪
j≥0

{Lj(x− ℓhj)}
Kj−1
ℓ=0

is an interpolatory basis for
◦
C[0, 2π) and Lj(x) satisfies the following two-scale relation

Lj(x) = φj+1(x− hj+1) +

Kj−1∑
ℓ=0

Lj(ℓhj)φj+1(x− ℓhj).

§4. Symmetry of Scaling Functions and Wavelets

From now on, we shall assume that g(x) is real-valued and symmetric about the origin,

i.e., g(x) = g(−x) = g(x), which implies that Cn = C−n = Cn for n ∈ ZZ.

We have the following Lemma.

Lemma 4.1. Suppose that Zj
ℓ is defined as Definition 2.1, dj+1

ℓ in (3.1). Then, the

following equalities are valid:

Zj
ℓ (x) = Zj

−ℓ(x) = Zj
Kj−ℓ(x) = Zj

ℓ (−x),

dj+1
ℓ = dj+1

−ℓ = dj+1
Kj+1−ℓ.
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Proof.

Zj
ℓ (x) = Kj

∑
n∈ZZ

CnKj−ℓexp(−i(nKj − ℓ)x)

= Kj

∑
n∈ZZ

C−nKj−ℓexp(−i(−nKj − ℓ)x)

= Kj

∑
n∈ZZ

CnKj+ℓexp(i(nKj + ℓ)x) = Zj
−ℓ(x),

the proofs of others are similar.

Now, we can state the main results of this section.

Theorem 4.1. Suppose that φj(x) is defined as Definitioin 2.2, Lj(x) as (3.3), and g(x)

is real-valued with Cn = C−n. Then

(1) φj(x) is real-valued and φj(−x) = φj(x);

(2) Lj(x) is real and Lj(hj+1 + x) = Lj(hj+1 − x).

Proof. (i) Since

φj(x) =
1

Kj

Kj−1∑
ℓ=0

Zj
ℓ (x)

Zj
ℓ (0)

=
1

Kj

Kj−1∑
ℓ=0

Zj
Kj−ℓ(x)

Zj
Kj−ℓ(0)

=
1

Kj

Kj∑
ℓ=1

Zj
ℓ (x)

Zj
ℓ (0)

=
1

Kj

Kj−1∑
ℓ=0

Zj
ℓ (x)

Zj
ℓ (0)

= φj(x),

where we use the relation Zj
Kj

(x) = Zj
0(x),

φj(−x) =
1

Kj

Kj−1∑
ℓ=0

Zj
ℓ (−x)

Zj
ℓ (0)

=
1

Kj

Kj−1∑
ℓ=0

Zj
−ℓ(x)

Zj
−ℓ(0)

= φj(x),

which completes the proof of the first part of the theorem.

(ii) To prove the second part of this theorem, we first note that

Rj
ℓ(x) = {dj+1

ℓ Z̃j+1
ℓ (x)− dj+1

Kj+ℓZ̃
j+1
Kj+ℓ(x)}e

−iℓhj+1

= {dj+1
ℓ Z̃j+1

−ℓ (x)− dj+1
Kj+ℓZ̃

j+1
−Kj−ℓ(x)}e

−iℓhj+1

= {dj+1
−ℓ Z̃j+1

−ℓ (x)− dj+1
Kj−ℓZ̃

j+1
Kj−ℓ(x)}e

−iℓhj+1

= Rj
−ℓ(x) = Rj

Kj−ℓ(x).

Hence

Lj(x) =
1

Kj

Kj−1∑
ℓ=0

Rj
ℓ(x)

Rj
ℓ(hj+1)

=
1

Kj

Kj−1∑
ℓ=0

Rj
Kj−ℓ(x)

Rj
Kj−ℓ(hj+1)

=
1

Kj

Kj∑
ℓ=1

Rj
ℓ(x)

Rj
ℓ(hj+1)

=
1

Kj

Kj−1∑
ℓ=0

Rj
ℓ(x)

Rj
ℓ(hj+1)

= Lj(x),

where the relation Rj
Kj

(x) = Rj
0(x) is used.

Pay attention to Rj
−ℓ(hj+1 − x) = Rj

ℓ(hj+1 + x). We have

Lj(hj+1 − x) =
1

Kj

Kj−1∑
ℓ=0

Rj
ℓ(hj+1 − x)

Rj
ℓ(hj+1)

=
1

Kj

Kj−1∑
ℓ=0

Rj
−ℓ(hj+1 + x)

Rj
−ℓ(hj+1)

= Lj(hj+1 + x) = Lj(hj+1 + x),
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which implies that Lj(x) is symmetric about the point hj+1. The proof of the theorem is

finished.

§5. Dual Scaling Functions and Dual Wavelets

In this section, we shall construct the dual scaling functions and dual wavelets where

circulant matrix and its properties are used heavily.

The following lemma is important for the construction of dual scaling functions.

Lemma 5.1. Suppose that φj(x) is defined in Definition 2.2,

ω := e
2πi
Kj = eihj , F :=

1

Kj
(ωℓk)

Kj−1
ℓ,k=0 , Gj := (⟨φj(· − ℓhj), φj(· − khj)⟩)

Kj−1
ℓ,k=0 ,

Pj(z) = ⟨φj , φj⟩+ ⟨φj(·), φj(· − hj)⟩z + · · ·+ ⟨φj(·), φj(· − (Kj − 1)hj)⟩zKj−1.

Then, Gj is an invertible circulant matrix, and G−1
j = FΛ−1F ∗, where

Λ = diag{Pj(1), Pj(ω), · · · , Pj(ω
Kj−1)},

the star denotes the complex conjugate.

Proof. By the periodicity of φj(x), we know that

⟨φj(x− ℓhj), φj(x− khj)⟩ = ⟨φj(x), φj(x− (k − ℓ)hj)⟩,

which implies that Gj is a circulant matrix.

From [8], we know that Gj can be diagonalized by F, i.e. Gj = FΛjF
∗, where Λ =

diag{Pj(1), Pj(ω), · · · , Pj(ω
Kj−1)}.

Now, we need to check that Pj(ω
r) ̸= 0 for r = 0, 1, · · · ,Kj − 1.

From Definition 2.2 and the orthogonality of Zj
ℓ , we have

⟨φj(x), φj(x− khj)⟩ =
1

Kj
2

Kj−1∑
ℓ,n=0

⟨
Zj
ℓ (x)

Zj
ℓ (0)

,
Zj
n(x− khj)

Zj
n(0)

⟩

=
1

Kj
2

Kj−1∑
ℓ,n=0

⟨
Zj
ℓ (x)

Zj
ℓ (0)

,
Zj
n(x)

Zj
n(0)

⟩
e−iknhj

=
1

Kj
2

Kj−1∑
ℓ=0

||Zj
ℓ ||2

|Zj
ℓ (0)|2

e−ikℓhj .

Hence, for r = 0, 1, · · · ,Kj − 1,

Pj(ω
r) =

Kj−1∑
k=0

⟨φj(·), φj(· − khj)⟩ωrk

=
1

Kj
2

Kj−1∑
ℓ=0

||Zj
ℓ ||2

|Zj
ℓ (0)|2

Kj−1∑
k=0

ei(r−ℓ)khj

=
1

Kj

||Zj
r ||2

|Zj
r (0)|2

> 0.

Therefore, Gj is an invertible cirulant matrix with G−1
j = FΛ−1

j F ∗.

The proof of the Lemma is finished.
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Theorem 5.1. Suppose that Λj and F are defined in Lemma 5.1, e = (1, 0, · · · , 0) ∈ IRKj

is a Kj-dimensional unit vector, and

φ̃j(x) := eFΛ−1
j F ∗


φj(x)

φj(x− hj)
...

φj(x− (Kj − 1)hj)

 ∈ Vj .

Then {φ̃j(x− khj)}
Kj−1
k=0 is a dual basis for {φj(x− khj)}

Kj−1
k=0 , i.e.,

⟨φ̃j(x− khj), φj(x− ℓhj)⟩ = δkℓ for k, ℓ = 0, 1, · · · ,Kj − 1.

Proof. Let

Π := Circ(0, 1, 0, · · · , 0) =


0 1 0 · · · 0
0 0 1 · · · 0
0 0 0 · · · 0
...

...
...

. . .
...

1 0 0 · · · 0

 .

Note that FΛ−1
j F ∗ is a circulant matrix, FΛ−1

j F ∗Π = ΠFΛ−1
j F ∗. Hence

φ̃j(x− khj) = eFΛ−1
j F ∗(φj(x− khj), φj(x− (k + 1)hj), · · · , φj(x− (k +Kj − 1)hj))

T

= eFΛ−1
j F ∗ ·Πk · (φj(x), φj(x− hj), · · · , φj(x− (Kj − 1)hj))

T

= eΠkFΛ−1
j F ∗ · (φj(x), φj(x− hj), · · · , φj(x− (Kj − 1)hj))

T .

Therefore

⟨φ̃j(x− khj), φj(x− ℓhj)⟩

= eΠkFΛ−1
j F ∗


⟨φj(x), φj(x− ℓhj)⟩

⟨φj(x− hj), φj(x− ℓhj)⟩
...

⟨φj(x− (Kj − 1)hj), φj(x− ℓhj)⟩

 ,

or equivalently,

(⟨φ̃j(x− khj), φj(x− ℓhj)⟩)
Kj−1
k,ℓ=0 = I · FΛ−1

j F ∗ ·Gj = I,

which implies that {φ̃j(x− khj)}
Kj−1
k=0 is a dual basis for {φj(x− khj)}

Kj−1
k=0 .

Analogously, we can give the dual wavelets as follows.

Theorem 5.2. Let

Qj(z) =

Kj−1∑
k=0

⟨Lj(·), Lj(· − khj)⟩zk,

L̃j(x) = eF diag{(Qj(1))
−1, (Qj(ω))

−1, · · · , (Qj(ω
Kj−1))−1}F ∗


Lj(x)

Lj(x− hj)
...

Lj(x− (Kj − 1)hj)

 .

Then ⟨L̃j(x− khj), Lj(x− ℓhj)⟩ = δkℓ for k, ℓ = 0, 1, · · · ,Kj − 1.

Since Qj(ω
r) = Kj

(dj+1
r )2+(dj+1

Kj+r)
2

|Rj
r(hj+1)|2

> 0, the proof of this theorem is similar to that of

Theorem 5.1.
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In applications, symmetry is very important. Since φj and Lj are symmetric, we have

the following theorem.

Theorem 5.3. Suppose that g(x) is symmetric about the origin point. Then φ̃j(x) is

symmetric about the origin and L̃j(x) is symmetric about the origin.

Proof. For simplicity, we rewrite φ̃j(x) as φ̃j(x) =
Kj−1∑
k=0

ckφj(x − khj). Then, by the

symmetry and periodicity of φj , we have

φ̃j(−x) = e

Kj−1∑
k=0

ckφj(−x− khj) = c0φj(x) +

Kj−1∑
k=1

ckφj(x+ khj)

= c0φj(x) +

Kj−1∑
k=1

ckφj(x− (Kj − k)hj) = c0φj(x) +

Kj−1∑
k=1

cKj−kφj(x− khj).

Since Circ(c0, c1, · · · , cKj−1) = FΛ−1F ∗ and Λ = diag{Pj(1), Pj(ω), · · · , Pj(ω
Kj−1)} is real,

we see that Circ(c0, c1, · · · , cKj−1) is a real Hermitian matrix, so that cKj−k = ck.

Therefore φ̃j(−x) =
Kj−1∑
k=0

ckφj(x− khj) = φ̃j(x).

A similar discussion gives L̃j(x) = L̃j(−x), which completes the proof of the theorem.

§6. Algorithms and Examples

In this section, we shall give the decomposition and reconstruction algorithms of this kind

of periodic wavelets.

To this end, let f(x) ∈ Vj+1. Then we can rewrite f(x) as

f(x) =

Kj+1−1∑
k=0

f(khj+1)φj+1(x− khj+1) =

Kj+1−1∑
k=0

cj+1
k φj+1(x− khj+1).

Let

φj+1(x) =

Kj−1∑
ℓ=0

{ajℓφj(x− ℓhj) + bjℓLj(x− ℓhj)}, (6.1)

φj+1(x− hj+1) =

Kj−1∑
ℓ=0

{pjℓφj(x− ℓhj) + qjℓLj(x− ℓhj)}. (6.2)

Then

φj+1(x− 2khj+1) =

Kj−1∑
ℓ=0

{ajℓ−kφj(x− ℓhj) + bjℓ−kLj(x− ℓhj)}

φj+1(x− (2k + 1)hj+1) =

Kj−1∑
ℓ=0

{pjℓ−kφj(x− ℓhj) + qjℓ−kLj(x− ℓhj)}.

Therefore

f(x) =

Kj−1∑
k=0

cj+1
2k

Kj−1∑
ℓ=0

{ajℓ−kφj(x− ℓhj) + bjℓ−kLj(x− ℓhj)}

+

Kj−1∑
k=0

cj+1
2k+1

Kj−1∑
ℓ=0

{pjℓ−kφj(x− ℓhj) + qjℓ−kLj(x− ℓhj)}
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=

Kj−1∑
ℓ=0

{Kj−1∑
k=0

[
ajℓ−kc

j+1
2k + pjℓ−kc

j+1
2k+1

]}
φj(x− ℓhj)

+

Kj−1∑
ℓ=0

{Kj−1∑
k=0

[
bjℓ−kc

j+1
2k + qjℓ−kc

j+1
2k+1

]}
Lj(x− ℓhj),

which induces the following Decomposition Formulas

cjℓ =

Kj−1∑
k=0

[
ajℓ−kc

j+1
2k + pjℓ−kc

j+1
2k+1

]
, djℓ =

Kj−1∑
k=0

[
bjℓ−kc

j+1
2k + qjℓ−kc

j+1
2k+1

]
.

Since

φj(x) =

Kj+1−1∑
ℓ=0

φj(ℓhj+1)φj+1(x− ℓhj+1)

Lj(x) =

Kj+1−1∑
ℓ=0

Lj(ℓhj+1)φj+1(x− ℓhj+1),

a simple calculation gives

Kj−1∑
k=0

cjkφj(x− khj) +

Kj−1∑
k=0

djkLj(x− khj)

=

Kj−1∑
k=0

cjk

Kj+1−1∑
ℓ=0

φj(ℓhj+1)φj+1(x− ℓhj+1 − 2khj+1)

+

Kj−1∑
k=0

djk

Kj+1−1∑
ℓ=0

Lj(ℓhj+1)φj+1(x− ℓhj+1 − 2khj+1)

=

Kj+1∑
ℓ=0

{Kj−1∑
k=0

cjkφj((ℓ− 2k)hj+1) +

Kj−1∑
k=0

djkLj((ℓ− 2k)hj+1)
}
φj+1(x− ℓhj+1).

Therefore, we obtain the Reconstruction Formulas

cj+1
ℓ =

Kj−1∑
k=0

{cjkφj((ℓ− 2k)hj+1) + djkLj((ℓ− 2k)hj+1)},

or

cj+1
2ℓ = cjℓ +

Kj−1∑
k=0

djkLj((ℓ− k)hj) cj+1
2ℓ+1 =

Kj−1∑
k=0

cjkφj((ℓ− k)hj + hj+1) + djℓ .

Now, we are going to compute ajℓ , b
j
ℓ , p

j
ℓ , and qjℓ .

From

φj+1(x) =

Kj−1∑
ℓ=0

{ajℓφj(x− ℓhj) + bjℓLj(x− ℓhj)},

and the duality of φj(x) and ˜φj(x), we have ajℓ = ⟨φ̃j(x− ℓhj), φj+1(x)⟩. Recall that

φ̃j(x) =

Kj+1−1∑
k=0

φ̃j(khj+1)φj+1(x− khj+1) ∈ Vj+1,
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thus,

ajℓ =

Kj+1−1∑
k=0

φ̃j(khj+1)⟨φj+1(x− khj+1 − ℓhj), φj+1(x)⟩

=

Kj+1−1∑
k=0

φ̃j((k − 2ℓ)hj+1)⟨φj+1(x− khj+1), φj+1(x)⟩,

analogously, we have,

bjℓ =

Kj+1−1∑
k=0

L̃j((k − 2ℓ)hj+1)⟨φj+1(x− khj+1), φj+1(x)⟩

pjℓ =

Kj+1−1∑
k=0

φ̃j((k − 2ℓ+ 1)hj+1)⟨φj+1(x− khj+1), φj+1(x)⟩

qjℓ =

Kj+1−1∑
k=0

L̃j((k − 2ℓ+ 1)hj+1)⟨φj+1(x− khj+1), φj+1(x)⟩.

§7. Final Remarks

In this paper, we construct interpolatory wavelets and their corresponding dual wavelets

from a periodic function. These wavelets are symmetric, but are not orthogonal. Examples

show that they share some localization property, but we do not prove that now.

References

[ 1 ] Chen, H. L., Antiperiodic wavelets, J. Comput. Math. (Chinese), 14:1(1996), 32–39.

[ 2 ] Chen, H. L., Wavelets from trigonometric spline approach, JATA, 12:2(1996), 99–110.
[ 3 ] Chen, H. L., Wavelats on the unit circle, Results in Mathematics, 31(1997), 322–336.
[ 4 ] Chen, H. L., Construction of orthonormal wavelets in the periodic case, Chinese Science Bulletin,

14:7(1996), 552–554.

[ 5 ] Chen, H. L. & Liang, X. Z., Bivariate box-spline wavelets, Harmonic Analysis in China, M. T. Cheng
etc. eds. 1995, Kluwer Academin Publishes.

[ 6 ] Chen, H. L., Liang, X. Z., Peng, S. L. & Xiao, S. L., Real-valued periodic wavelets: Construction and
the relation with Fourier Series, to appear in J. Comput. Math. (Chinese).

[ 7 ] Chui, C. K. & Mhasker, H. N., On trigonometric wavelets, Constructive Approximation, 9(1993),
167–190.

[ 8 ] Daubechies, I., Ten lectures on wavelets, SIAM, Philadelphia, 1992.
[ 9 ] Gautmacher, F. R., The theory of matrices, N. Y. Chelsea Publ. Co., 1959.

[10] Koh, Y. W., Lee, S. L. & Tan, H. H., Periodic orthogonal splines and wavelets, Applied and Computa-
tional Harmonic Analysis, 1995.

[11] Meyer, Y., Ondelettes et fonctions splines, Seminairé EDP, Paris, 1986.
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