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A NOTE ON THE NULLITY OF HOMOTOPY

GROUP FOR COMPLETE THREE

DIMENSIONAL MANIFOLDS WITH RICCI≥ 0**
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Abstract

This note shows the nullity of homotopy groups for complete three dimensional manifolds

with Ricci≥ 0 under some growth condition of the geodesic ball. The author also gives some
examples which show the growth condition here is optimal in some sense.
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§1. Introduction

Let M3 be a complete, noncompact Riemannian manifold, and RicciM be its Ricci cur-

vature. Schoen-Yau[1] proved the following

Theorem 1.1. Let M3 be a complete, noncompact Riemannian manifold. Assume

RicciM > 0. Then, M3 is diffeomorphic to R3.

It is natural to ask what can happen, if we only assume RicciM ≥ 0. It is quite clear

that S2 × R with standard product metric is a manifold with Ricci≥ 0 and homotopically

nontrival.

Zhu[2] used the the growth of the volume for the geodesic ball to control the homotopy

group of M3. He proved

Theorem 1.2. Let M3 be a complete, noncompact Riemannian manifold. Let V (r) be

the volume of the geodesic ball of radius r. If

V (r) ≥ cr3 (for some constant c > 0),

then M3 is contractible.

In what follows, we assume that M3 is a complete, noncompact Riemannian manifold

with Ricci≥ 0. Let V (r) be the volume of the geodesic ball of radius r. Then, we prove the

following:

Proposition 1.1. If lim sup
r→∞

V (r)
r = ∞, then π2(M) = 0.

Proposition 1.2. If lim sup
r→∞

V (r)
r2 = ∞, then π1(M) = {e}.
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Main Theorem Let M3 be a complete, noncompact Riemannian manifold. Assume

RicciM ≥ 0, and

lim sup
r→∞

V (r)

r2
= ∞.

Then M3 is contractible.

We will show this is indeed an extension of Zhu’s theorem and is optimal in some sense.

§2. Proof of Main Theorem

Our argument follows closely that of Schoen-Yau and Zhu, with some detailed analysis

on the order of V (r).

Proof of Proposition 1.1. If π2(M) ̸= 0, then the universal covering space M̃ has

similar properties, i.e., π2(M̃) = π2(M) ̸= 0, Ricci
M̃

≥ 0 and

lim sup
r→∞

Ṽ (r)

r
= ∞.

The sphere theorem of three dimensional topology[3] says that there exists an embedded S2

in M̃ which is homotopically nontrival.

If M̃\S2 were connected, then we could find a loop in M̃ intersecting S2 at exactly one

point. This loop could not be null homotopic. Hence, π1(M̃) ̸= {e}, which is a contradiction.

Hence, M̃\S2 has two components M̃1, M̃2.

As π1(S
2) = {e}, by Van Kampon’s theorem, both M̃1 and M̃2 are simply connected.

Assume M̃1 were compact, then S2 is trival in H∗(M̃, S2). S2 is homotopically trival in M̃1,

according to Hurewicz theorem. This contradicts the fact that S2 is homotopically nontrival

in M̃ .

Hence, both M̃1, M̃2 are noncompact. For any pi ∈ M̃1 and qi ∈ M̃2 such that

dist(pi, S
2) → ∞ and dist(qi, S

2) → ∞, there exist minimal geodesics γi connecting pi,

qi and intersecting S2 at γi(0) ∈ S2 (and assume |γ̇i(0)| = 1). Then, we can choose a

subsequence of γi (still denoted by γi) such that

lim
i→∞

γi(0) = p ∈ S2, lim
i→∞

γ̇i(0) = v ∈ TpM̃.

Then, the geodesic γ(t) (such that γ(0) = p, γ̇(0) = v ∈ TpM̃) is a minimal geodesic on M̃3.

By Cheeger-Gromoll splitting theorem, M̃ = Σ×R for some complete manifolds Σ (see [4]).

If Σ were an open manifold, H2(Σ) = 0. π1(Σ) = π1(M̃) = {e}. By Hurewicz theorem,

π2(Σ) = H2(Σ) = 0. This contradicts the fact π2(Σ) = π2(M̃) ̸= 0. Hence, Σ is a compact

manifold.

Hence, V (r) ≤ 2V (Σ)×r, where V (Σ) is the volume of Σ. This contradicts the assumption

lim sup
r→∞

V (r)
r = ∞.

Hence, we have π2(M) = π2(M̃) = 0.

Remark 2.1. We can know from the above that ifM3 is a complete noncompact manifold

with Ricci≥ 0 and π2(M
3) ̸= 0, then M3 = S2 ×R (but S2 may have nonstandard metric).

In fact, we have shown M3 = Σ × R for some compact manifold Σ. But, RicciM ≥ 0
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shows that the Gaussian curvature K for Σ is nonnegative. The Gauss-Bonnet formula:∫
Σ

KdA = 4π(1− g), where g is the genus of Σ,

shows that g ≤ 1. If g = 1, π2(M) = π2(Σ) = π2(T
2) = 0, which is a contradiction. Hence,

g = 0 or Σ is diffeomophic to S2.

Proof of Proposition 1.2. If lim sup
r→∞

V (r)
r2 = ∞, π2(M) = 0 according to Proposition

1.1. Hence, M is a K(π, 1) space. Hi(π1(M)) = Hi(M) = 0 for i ≥ 2. Hence π1(M) is

torsion free.

Assume π1(M) ̸= {e}. Let [σ] ∈ π1(M) be a nontrival loop, π : M̃ → M be the universal

cover. Let V (r) be the volume of the geodesic ball centered at p. π(p̃) = p. Let F be the

fundamental domain of M containing p̃ in M̃ . Denote by BM
p (r), BM̃

p̃ (r) the geodesic balls

of radius r centered at p and p̃ respectively. Then,

N∪
k=1

[σ]k(F ∩BM̃
p̃ (r)) ⊂ BM̃

p̃ (NL(σ) + r).

Here, L(σ) is the length of σ. [σ]j(F ∩ BM̃
p̃ (r)) ∩ [σ]k(F ∩ BM̃

p̃ (r)) = ∅, for j ̸= k (because

[σ]k ̸= e in π1(M̃) for all k > 0). Hence,

NVol(Bp(r)) = NVol(F ∩BM̃
p̃ (r))

= Vol
( N∪

k=1

[σ]k
(
F ∩BM̃

p̃ (r)
))

≤ Vol(BM̃
p̃ (NL(σ) + r))

≤ 4

3
π(NL(σ) + r)3 by volume comparison theorem.

Hence,

V (r) ≤ 4

3
π
(NL(σ) + r)3

N
, for all N > 0 and r ≥ 1.

Choosing N = [r] + 1, we have

V (r) ≤ cr2, for some constant c > 0.

This contradicts the assumption lim sup
r→∞

V (r)
r2 = ∞.

Hence, M is simply connected.

Remark 2.2. A detail analysis shows that if π1(M) ̸= {e}, then

lim sup
r→∞

V (r)

r2
≤ 9πL.

Here, L = inf{L(σ)|[σ] ∈ π1(M) and [σ] ̸= e in π1(M)}.
Proof of Main Theorem. From Propositions 1.1 and 1.2, we have π1(M) = {e},

π2(M) = 0. But, M is an open manifold, H3(M) = 0. Hence, according to Hurewicz

theorem, πk(M) = 0 for all k ≥ 3. According to Whitehead theorem, M is contractible.

§3. Examples

Example 3.1. Let M3 = S2 ×R with standard product metric. Then, RicciM ≥ 0 and
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lim sup
r→∞

V (r)
r = 2Vol(S2) ≤ ∞.

π2(M
3) = Z ̸= 0.

This example shows that the volume growth condition for Proposition 1.1 is optimal.

Example 3.2. Let M3 = S1 × R2 with standard product metric. Then, RicciM = 0,

and lim sup
r→∞

V (r)
r2 = 4πdiam(S1).

π2(M
3) = 0, π1(M

3) = Z ̸= {e}.

This example shows that the volume growth condition for Proposition 1.2 is optimal.

Example 3.3. Let M3 = R3 with metric ds2 = dr2 + f2(r)dθ2S2 , where dθ2S2 is the

standard metric of S2 and (r, θ) is the polar coordinate of R3 (see [5]). Then, f(0) = 0,

f ′(0) = 1 and

f ′′(r) +K(r)f(r) = 0 for all r ≥ 0,

where K(r) is the radicial curvature of M3. If K(r) ≥ 0, then RicciM3 ≥ 0 and

V (r) = Vol(S2)

∫ r

0

f2(s)ds.

Let f(r) = crα for r ≥ r0 large enough. Then,

K(r) =
(1− α)α

r2
for r ≥ r0.

If 0 ≤ α ≤ 1, K(r) ≥ 0 for r ≥ r0. For α and r0 fixed, one can find c > 0 and f(r) in [0, r0),

such that K(r) ≥ 0.

V (r) ∼Vol(S2)c2
∫ r

r0

s2αds

=
c2r2α+1

2α+ 1
Vol(S2) as r → ∞.

Hence, M3 satisfies our condition, but not the condition of Zhu[2] if 1
2 < α < 1.

This example shows that our theorem is indeed an extension of Zhu’s theorem.
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