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Abstract

The author discusses Bernstein type inequalities for degenerate U -statistics. As applications
of these results, Cramer type large deviations for studentized U -statistics are obtained under

mild conditions.
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§1. Introduction and Main Results

Let X1, X2, · · · , Xn, · · · be independent and identically distributed (i.i.d.) random vari-

ables with common distribution function P. Let h : Rm → R be measurable and symmetric

in its arguments. The U -statistics corresponding to the kernel h is defined by

Um
n (h) =

(n−m)!

n!

∑
(i1,··· ,im)∈In

m

h(Xi1 , · · · , Xim), (1.1)

where Inm = {(i1, · · · , im) : ij ∈ N, 1 ≤ ij ≤ n, ij ̸= ik, if j ̸= k}.
The kernel h( · ) is called r-degenerate for P, 0 ≤ r ≤ m− 1, if

max{l ≥ 0;E(h(X1, · · · , Xm)|Gl) = 0 a.s.} = r, (1.2)

where Gl is the field generated by X1, · · · , Xl; G0 is the trivial field. For r = 0 we deal with

so-called centered non-degenerate kernel; m− 1 degenerate kernel is called also P -canonical

(see [1]).

Exponential bounds for P (Um
n (h) ≥ x) are studied by many authors under different set

of assumations. A far more comeplete list of papers containing results of this kind includes

Hoeffding[10], Borisov[4], Christofides[8], Arcones and Gine[1], Miao and Zhang[12], Cheng[7],

as well as Arcones[16].

In the previous results, for degenerate U -statistics Arcones and Gine[1] got:
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Theorem A. Let h( · ) be P -canonical with |h| ≤ A. Then, there exist constants C1, C2

depending only on m such that for all n ≥ m,

P

((
n

m

)1/2

|Um
n (h)| ≥ x

)
≤ C1 exp

(
−C2(x/A)

2/m
)
. (1.3)

The followimg Theorem is due to Cheng[7].

Theorem C. Let h( · ) be P -canonical with B ≡ E exp(|h|) <∞. Then for all n ≥ m,

P (|Um
n (h)| ≥ x) ≤ 2 exp

(
0.55

n

(n− 1) · · · (n− j + 1)

(j + 1)!

j
− nx

2j+3 log n

)
+B exp

(
− 1

2j+2

[n
j

]
x
)
. (1.4)

In this paper, we obtain the exact estimate of constants C1, C2 in Theorem A. Also, we

discuss Bernstein type inequalities for degenerate U -statistics under E exp(|h|2δ) < ∞ for

some o < δ ≤ 1, which extend and sharpen Theorem C with many other similar results.

To establish our main results, the upper bounds of E(Um
n (h))p for any real number p ≥ 2

are better estimated (see the following Lemma 1.1) which are interesting in itself. In the

third section, we discuss Cramer type deviation for studentized U -statistics by using these

exponential inequalities, which improve the similar results given in [15].

Theorem 1.1. Let h( · ) be P -canonical with |h| ≤ C. Then for any x ≥ A0e
m/2, n ≥ m,

P

((
n

m

)1/2

|Um
n (h)| ≥ x

)
≤ exp

(
− m

2

[
1 +

1

e

( x

A0

)2/m])
(1.5)

where A0 =
√
π
2 C

(
8
em

2
)m

.

In the following Theorem 1.2 we relax the conditions of Theorem 1.1.

Theorem 1.2 Let h( · ) be P -canonical with

α ≡ E exp(|h|2δ) <∞, for some 0 < δ ≤ 1. (1.6)

Then for all x ≥ [2e(C0 + 1)]m/2, n ≥ n0,

P

((
n

m

)1/2

|Um
n (h)| ≥ xA1

)
≤ exp

(
− (2e)−1mx2/m

C0 +
(
Bx1/m[ nm ]−δ/2

)2/(mδ+1)

)
(1.7)

where A1 =
√
π
2

(
8
em

2
)m

, B−1 = min[
√
2eCδδ, 2e(C0 +1)Cδδ], n0, C0, C are chosed as those

of Lemma 2.2.

Remark 1.1. Let h( · ) be P -canonical with E exp(|h|) < ∞. It follows from Theorem

C that there exists constant C > 0 such that

P

((
n

m

)1/2

|Um
n (h)| ≥ x

)
≤ exp

(
− Cn1−m/2x

log n

)
, for all x > 0. (1.8)

It is easy to see that inequality (1.7) is better than (1.8) in the range x2/m ≤ n1/2.

In the following, we define for k = 1, · · · ,m∏
k,m

h(x1, · · · , xk) = (δx1 − P ) · · · (δxk
− P )Pm−kh, (1.9)
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where Q1 · · ·Qmh =
∫
···
∫
h(x1, · · ·xm)dQ1(x1) · · · dQm(xm). Then

Um
n (h) =

m∑
k=0

(
m

k

)
Uk
n

∏
k,m

h

 , (1.10)

where
∏
k,m

h( · ) is a P -canonical function of k-variable,

Uk
n

(∏
k,m

h
)
=

(n− k)!

n!

∑
(i1,··· ,ik)∈In

k

∏
k,m

h(Xi1 , · · · , Xik) (1.11)

and the first r summands of the sum in (1.11) vanish if h( · ) is r-degenerate for P.

It is well-known that |h| ≤ A implies |Πk,mh| ≤ A, and conditions (1.6) imply

E exp
(∣∣∣∏

k,m

h
∣∣∣2δ) <∞, for some 0 < δ ≤ 1 (1.12)

by using Jensen’s inequality. Therefore, combining (1.10)–(1.12) and Theorems 1.1 and 1.2,

we obtain easily the following results.

Corollary 1.1. Let h( · ) be r-degenerate for P, 0 ≤ r ≤ m−1 with |h| ≤ C and Pmh = 0

if r=0. Then for all x > 0, n ≥ m,

P
(
n(r+1)/2

∣∣Ur+1
n (h)

∣∣ ≥ x
)
≤

m∑
k=r+1

exp
(
−C(m, k)x2/kn(k−r−1)/k

)
, (1.13)

where positive constants C(m,k) depend on m, k only.

Corollary 1.2. Let h be r-degenerate (1 ≤ r ≤ m − 1) for P and (1.6) hold. Then for

all x > 0, n ≥ m

P
(
n(r+1)/2

∣∣Ur+1
n (h)

∣∣ ≥ x
)

≤
m∑

k=r+1

exp
(
− C1(m, k)

x2/kn(k−r−1)/k

1 +
(
x1/kn(k−r−1−δ)/2

)2/(kδ+1)

)
, (1.14)

where positive constants C1(m, k) depend on m, k only.

Remark 1.2. Inequality (1.14) generalizes the main results given by Borisov[4], where

the author established (1.14) for degenerate U -statistics satisfying

|h(x1, x2, · · · , xm)| ≤ g(x1) · · · g(xm).

§2. Lemmas and Proofs of Main Results

To prove the Theorems, we need the following lemmas.

Lemma 2.1. Let h( · ) be P -canonical. Then for all real p ≥ 2,

E

∣∣∣∣∣
(
n

m

)1/2

Um
n (h)

∣∣∣∣∣
p

≤Cm,pE

 1

[ nm ]

[ n
m ]∑

j=1

h2(Xjm+1, · · · , X(j+1)m)

p/2

(2.1)

≤Cm,pE|h(X1, · · · , Xm)|p (2.2)

where Cm,p =
(√

π
2

)p (
8
em

2
)mp

(p− 1)mp/2.

Remark 2.1. The upper bounds of E|
(
n
m

)
Um
n (h)|p are studied by many authors (see,

for example, [6, 7, 9]). But, inequality (2.1) seems to be new and inequality (2.2) is more

accurate than the previous results
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Proof. Let ai1,··· ,im be elements in a Banach space (B, ∥.∥),

Y =
∑

1≤i1<···<im≤n

ϵi1 · · · ϵimai1,··· ,im ,

where ϵj , j ≥ 1 are a squence of i.i.d. Rademacher random variables. In View of Khinchin-

type inequalities for the Rademacher chaos (see, for example, [3]), it is evident that for any

real fixed p ≥ 2

E|Y |p ≤ (p− 1)mp/2
( ∑

1≤i1<···<im≤n

a2i1,··· ,im

)p/2
. (2.3)

Now we apply Theorem 1.2 and Corollary 1 in [17] for a convex function ϕ(x) = |x|p, and
then (2.3) with ai1,··· ,im = h(Xi1 , · · · , Xim), to obtain

E
∣∣∣ ∑
1≤i1<···<im≤n

h(Xi1 , · · · , Xim)
∣∣∣p ≤ mmpE

∣∣∣ ∑
1≤i1<···<im≤n

h(X1
i1 , · · · , X

m
im)
∣∣∣p

( where {Xk
j }nj=1, k = 1, · · · ,m are independent copies of {Xj}nj=1 )

≤ (2m)mpE
∣∣∣ ∑
1≤i1<···<im≤n

h(X1
i1 , · · · , X

m
im)ϵ1i1 · · · ϵ

m
im

∣∣∣p
( by symmetrization, cf. Ledoux and Talagrand (1991),

where{ϵkj }nj=1, k = 1, · · · ,m are independent copies of {ϵj}nj=1 )

≤ (2m)mp[4m−1(m− 1)!]pE
∣∣∣ ∑
1≤i1<···<im≤n

h(Xi1 , · · · , Xim)ϵi1 · · · ϵim
∣∣∣p

≤ Cm,pE
( ∑

1≤i1<···<im≤n

h2(Xi1 , · · · , Xim)
)p/2

(2.4)

( using that k! ≤
√
2πkkke−k exp(

1

12k
) ).

Since
(
n
m

)−1 ∑
1≤i1<···<im≤n

h2(Xi1 , · · · , Xim) is the average of W (Xi1 , · · · , Xin) over all the

permutations i1, · · · , in of 1, · · · , n with

W (x1, · · · , xn) = k−1
k−1∑
j=0

h2(Xjm+1, · · · , X(j+1)m)

and k = [ nm ] (see [14]), we have, by convexity of xp/2 (x > 0),

E
∣∣∣(n
m

)1/2

Um
n (h)

∣∣∣p
≤ Cm,pE

(n
m

)−1 ∑
1≤i1<···<im≤n

h2(Xi1 , · · · , Xim)

p/2

≤ Cm,pE
[ 1

[ nm ]

[ n
m ]∑

j=1

h2(Xjm+1, · · · , X(j+1)m)
]p/2

. (2.5)

Inequality (2.2) follows from Hölder’s inequality. This proves Lemma 2.1.

Lemma 2.2. Let X,Xj , j ≥ 1 be a sequence of nonnegative i.i.d. random variables with

A ≡ E exp(|X|δ) <∞ for some 0 < δ ≤ 1. Then,
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(1) for all y ≥ C0 and n ≥ n0,

P
( 1
n

n∑
j=1

Xj ≥ y
)
≤ exp[−(cny)δ], (2.6)

(2) for all real p ≥ 1,

E
( 1
n

n∑
j=1

Xj

)p
≤ Cp

0 + (Cn)−p
(p
δ

)p/δ
, (2.7)

where

C =

{
(1− δ)/21/δ+2, if 0 < δ < 1,

1/4(2A+ 1), if δ = 1,

C0 =

{ √
A22/(δ+1) Γ(1/δ + 1), if 0 < δ < 1,

max(2EX1, 1 + EX1), if δ = 1,

n0 =

{ 4
A (δ1/δ(1− δ) Γ(1/δ + 1))−2, if 0 < δ < 1,

2, if δ = 1.

Proof. Since A ≡ E exp(X) < ∞ is equivalent to EXk ≤ Ak! for all integer k ≥ 2,

inequality (2.6) follows from Bernstein’s inequality (for δ = 1) and Schmuckenschlaeger’s

inequality[13].

It follows from (2.6) that for all real p ≥ 1,

E
( 1
n

n∑
j=1

Xj

)p
=

∫ ∞

0

P
( 1
n

n∑
j=1

Xj ≥ y
)
dyp

≤ Cp
0 +

∫ ∞

c0

exp[−(cny)δ]dyp

≤ Cp
0 + (Cn)−p

∫ ∞

0

exp(−t)dtp/δ

≤ Cp
0 + (Cn)−p

(p
δ

)p/δ
. (2.8)

Lemma 2.2 is complete.

Now we prove the theorems.

Proof of Theorem 1.1. It follows from Lemma 2.1 and Marcov’s inequality that for all

real p ≥ 2,

P

((
n

m

)1/2

|Um
n (h)| ≥ x

)
≤ x−p(p− 1)mp/2Ap

0

≤ exp
(
− p log x+

mp

2
log(p− 1) + p logA0

)
.

(2.9)

Inequality (1.5) follows by minimizing the exponent with respect p in (2.9) and noting p ≥ 2.

Proof of Theorem 1.2. Let

Xj = h2(Xjm+1, · · · , X(j+1)m).

Then Xj , j ≥ 1 are a sequence of i.i.d. random variables with E exp(|X1|δ) < ∞, for some

0 < δ ≤ 1. Therefore, combining (2.1), (2.7) and Marcov’s inequality, we obtain that for all
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real p ≥ 1

P

((
n

m

)1/2

|Um
n (h)| ≥ xA1

)
≤ A−2p

1 x−2pE

∣∣∣∣∣
(
n

m

)1/2

Um
n (h)

∣∣∣∣∣
2p

≤ x−2p(2p)mp
[
Cp

0 +
(
C
[ n
m

])−p(p
δ

)p/δ]
.

(2.10)

Now we take

p =


(2e)−1x2/m

C0+1 , if x2/m ≤ [ nm ]δB−1,

(2e)−1x2/m

C0+(Bx1/m[ n
m ]−δ/2)2/(mδ+1) , if x2/m ≥ [ nm ]δB−1.

(2.11)

Recall that

B−1 = min[
√
2eCδδ, 2e(C0 + 1)Cδδ].

Elementary calculation shows that if x2/m ≤ [ nm ]δB−1,

Cp
0 +

(
C
[ n
m

])−p(p
δ

)p/δ
≤ Cp

0 + 1 ≤ (C0 + 1)p; (2.12)

if x2/m ≥ [ nm ]δB−1 (note that C0 > 1),

p ≤ (2e)−1B− 2
(mδ+1)x

2δ
mδ+1 [

n

m
]

δ
mδ+1 ,

Cp
0 +

(
C
[ n
m

])−p(p
δ

)p/δ
≤ Cp

0 + C−pδ−
p
δ (2e)−

p
δB− 2p

δ

(
Bx

1
m

[ n
m

]− δ
2

) 2mp
mδ+1

≤ Cp
0 +

(
Bx

1
m [

n

m
]−

δ
2

) 2mp
mδ+1

≤
[
C0 +

(
Bx

1
m [

n

m
]−

δ
2

) 2
mδ+1

]mp

. (2.13)

Inequality (1.7) follows from (2.10)–(2.13) immediately. Theorem 1.2 is complete.

§3. Cramer Type Large Deviations for Studentized U-Statistics

Cramer type deviations for non-degenerate U -statistics were studied by many authors

(see [2] for details). In this section, we discuss Cramer type deviations for studentized

U -statistics. Explicitly, we establish the following theorem.

Theorem 3.1. Let h( · ) be non-degenerate kernel of degree 2 (i.e., in (1.1) m = 2) with

σ2
g ≡ Var[E(h(X1, X2)|X1)] > 0,

E exp(|h|2δ) <∞, for some 0 < δ ≤ 1

2
. (3.1)

Then

P
(√n(U2

n(h)− Eh(X1, X2))

Sn
≥ x

)
= (1− Φ(x))(1 + o(1)) (3.2)

uniformly in the range 0 ≤ x ≤ ρ(n)nδ/2(2−δ) with ρ(n) → 0,where

S2
n =

4(n− 1)

(n− 2)2

n∑
j=1

(n− 1)−1
n∑

i=1
i ̸=j

h(Xi, Xj)− U2
n(h)


2

,

Φ(x) denotes the standard normal distribution function.



No.2 Wang, Q. Y. BERNSTEIN TYPE INEQUALITIES FOR U -STATISTICS 163

Remark 3.1. Condition (3.1) is equivalent to the condition that there exists a constant

A > 0 such that for all k = 1, 2, · · ·

E|h(X1, X2)− E(X1, X2)|k ≤ Akk/2δ. (3.3)

Vandemaele and Veraverbeke[15] proved that under the condition (3.3) relation (3.2) holds

uniformly in the range 0 ≤ x ≤ ρ(n)nδ with

α =

{ δ
2(3δ+1) , if δ ≥ 1

4 ,

δ
2(2−δ) , if δ ≤ 1

4 .

Corollary 3.1. Let h( · ) be a non-degenerate kernel of degree 2 with σ2
g > 0, E exp(|h|) <

∞. Then, (3.2) holds uniformaly in the range 0 ≤ x ≤ ρ(n)n1/6 with ρ(n) → 0.

Remark 3.2. Condition E exp(|h|) <∞ is not the optimal. But, it is difficult to remove

for studentized U -statistics.

For the proof of Theorem 3.1, we need the following Lemma 3.1.

Lemma 3.1. Let An, Bn, Cn be sequences of random variables. If for some α > 0,

P (An ≥ x) = (1− Φ(x))(1 + o(1)) (3.4)

uniformly in the range 0 ≤ x ≤ ρ(n)nα with ρ(n) → 0, and if

P (Bn ≥ n−α) = o(1− Φ(x)), (3.5)

P (|C2
n − 1| ≥ n−2α) = o(1− Φ(x)) (3.6)

uniformly in the range 0 ≤ x ≤ ρ(n)nα with ρ(n) → 0,then

P (C−1
n An +Bn ≥ x) = (1− Φ(x))(1 + o(1)) (3.7)

uniformly in the range 0 ≤ x ≤ ρ(n)nα with ρ(n) → 0.

Proof. Since |C2
n − 1| ≤ n−2α is equivalent to

(1− n−2α)1/2 ≤ Cn ≤ (1 + n−2α)1/2,

similar to the proof of Lemma 4 in [15], we have

P (C−1
n An ≥ x) = (1− Φ(x))(1 + o(1)) (3.8)

uniformly in the range 0 ≤ x ≤ ρ(n)nα with ρ(n) → 0. Relation (3.7) follows from (3.5),(3.8)

and classical methods (see, for example, [11]).

Proof of Theorem 3.1. From [2], we have that

P
(√n(U2

n(h)− Eh(X1, X2))

2σg
≥ x

)
= (1− Φ(x))(1 + o(1)) (3.9)

uniformly in the range 0 ≤ x ≤ ρ(n)nδ/2(2−δ) with ρ(n) → 0. By using Lemma 3.1, to prove

(3.2) it is enough to show that

P
(∣∣∣ S2

n

4σ2
g

− 1
∣∣∣ ≥ n−δ/(2−δ)

)
= o(1− Φ(x)) (3.10)

uniformly in the range 0 ≤ x ≤ ρ(n)nδ/2(2−δ) with ρ(n) → 0. Let

g(Xj) = E(h(Xi, Xj)|Xj),

g̃(Xj) = E[ψ(Xi, Xj)g(Xi)|Xj ],

ψ(Xi, Xj) = h(Xi, Xj)− g(Xi)− g(Xj) + Eh(Xi, Xj)

f(Xj) = 4(g2(Xj)− σ2
g) + 8g̃(Xj).
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It follows from [5] that

S2
n = 4σ2

g + Tn +Rn, (3.11)

where

Tn =
1

n

n∑
j=1

f(Xj), Rn =
n∑

j=1

Rnj (3.12)

with

Rn1 = −4

(
n

2

)−1∑
i<j

g(Xi)g(Xj),

Rn2 = 4

(
n

2

)−1∑
i<j

[(g(Xi) + g(Xj))ψ(Xi, Xj)− g̃(Xi)− g̃(Xj)],

Rn3 = − 8

n

n∑
i=1

g(xi)(n− 1

2

)−1 (i)∑
r<m

ψ(Xr, Xm)

 ,
Rn4 =

4

n− 2

n∑
i=1

((n− 1)

2

)−1 (i)∑
r<m

ψ(Xi, Xj)ψ(Xi, Xm)

 ,
Rn5 = −4n(n− 1)

(n− 2)2

(n
2

)−1∑
i<j

ψ(Xi, Xr)

2

,

Rn6 =
4n

(n− 2)2

(
n

2

)−1∑
i<j

ψ2(Xi, Xj).

Remark that for above notation we write
(k)∑
r<m

for
∑

1≤r<m≤n
r ̸=k,m ̸=k

.

Elementary calculus shows that for any positive constant C > 0,

exp(−cnδ/(2−δ)) ≤ exp
(
− ρ(n)

2
nδ/(2−δ)

)
≤ 1− Φ(ρ1/2(n)nδ/2(2−δ))

= o(1− Φ(x)), as n→ ∞ (3.13)

uniformly in the range 0 ≤ x ≤ ρ(n)nδ/2(2−δ) with ρ(n) → 0.

In view of (3.11)–(3.13), relation (3.10) follows from the following lemma.

Lemma 3.2. Assume (3.1). Then,

(1)

P
(
Tn ≥ n−δ/(2−δ)

)
= o(1− Φ(x)) (3.14)

uniformly in the range 0 ≤ x ≤ ρ(n)nδ/2(2−δ) with ρ(n) → 0.

(2) there exist constants C,C1 > 0 (depend on δ only) such that for j = 1, · · · , 6,

P
(
|Rnj | ≥ n−δ/(2−δ)

)
≤ C1 exp(−Cnδ/(2−δ)). (3.15)

Proof of Lemma 3.2. In view of (3.3), relation (3.14) follows from (14) in [15].
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Next we prove (3.15). Let A(Xi, Xj) denote the one of the following variables

g(Xi)g(Xj), (g(Xi) + g(Xj))ψ(Xi, Xj)− g̃(Xi)− g̃(Xj), ψ(Xk, Xi)ψ(Xk, Xj), i, j ̸= k.

It is easy to show that for all i ̸= j,

E(A(Xi, Xj)|Xi) = E(A(Xi, Xj)|Xj) = 0 (3.16)

and for some 0 < δ ≤ 1/2,

E exp(|A(X1, X2)|δ) <∞, (3.17)

E exp(|g(X1)|2δ) <∞, (3.18)

E exp(|ψ(X1, X2)|2δ) <∞ (3.19)

by using Jensen’s inequality.

It follows from (3.16)–(3.19) and Corollary 1.2 that there exists a constant C > 0 such

that if 0 < δ ≤ 1/2,

P (|Rnk| ≥ n−δ/(2−δ)) ≤ P (n|Rnk| ≥ Cn2(1−δ)/(2−δ))

≤ exp
(
−Cn(6−5δ)δ/2(δ+1)(2−δ)

)
≤ exp(−Cnδ/(2−δ)), for k = 1, 2. (3.20)

Similarly, we obtain that if 0 < δ ≤ 1/2,

P (|Rn5| ≥ n−δ/(2−δ)) ≤ P

(n
2

)−1∣∣∣∑
i<j

ψ(Xi, Xj)
∣∣∣ ≥ n−δ/(2−δ)


≤ exp(−Cnδ/(2−δ)), (3.21)

P (|Rn4| ≥ n−δ/(2−δ))

≤
n∑

j=1

P

(n− 1

2

)−1∣∣∣ (j)∑
r<m

ψ(Xj , Xr)ψ(Xj , Xm)
∣∣∣ ≥ Cn−δ/(2−δ)


≤ exp

(
−Cn(6−5δ)δ/2(δ+1)(2−δ)

)
≤ n exp(−Cnδ/(2−δ)), (3.22)

P (|Rn3| ≥ n−δ/(2−δ)

≤
n∑

j=1

P

(n− 1

2

)−1∣∣∣g(Xj)

(j)∑
r<m

ψ(Xr, Xm)
∣∣∣ ≥ Cn−δ/(2−δ)


≤ nP (|g(X1)| ≥ n

1
2(2−δ) ) + nP

(n− 1

2

)− 1
2 ∣∣∣ (1)∑

r<m

ψ(Xr, Xm)
∣∣∣ ≥ Cn

3−4δ
2(2−δ)


≤ n exp(−n

δ
2−δ )E exp(|g(X1)|2δ) + nexp

(
−Cn

5(1−δ)δ
(2δ+1)(2−δ)

)
≤ C1 exp(−Cnδ/(2−δ)). (3.23)

Next we prove (3.15) for j = 6. Note that (3.19) implies there exists a constant A > 0 such

that for all real p ≥ 1,

E|ψ(X1, X2)|2p ≤ App/δ. (3.24)
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Therefore, similar to the proof of (2.5), we obtain for all real p ≥ 2

P (|Rn6| ≥ n−δ/(2−δ)) ≤ P

(n
2

)−1∑
i<j

ψ2(Xi, Xj) ≥ Cn2(1−δ)/(2−δ)


≤ C−pn−

2(1−δ)p
2−δ E

(n
2

)−1∑
i<j

ψ2(Xi, Xj)

p

≤ C−pn−
2(1−δ)p

2−δ E|ψ(X1, X2)|2p

≤ An− 2(1−δ)p
2−δ pp/δC−p. (3.25)

Choosing p = e−1n−
2(1−δ)δ

2−δ Cδ, it follows from (3.25) that if 0 < δ ≤ 1/2,

P (|Rn6| ≥ n−δ/(2−δ)) ≤ A exp(−Cnδ/(2−δ)). (3.26)

Combining (3.21)–(3.25), we prove Lemma 3.2. The proof of Theorem 3.1 is complete.
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