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Abstract

The author discusses Bernstein type inequalities for degenerate U-statistics. As applications
of these results, Cramer type large deviations for studentized U-statistics are obtained under
mild conditions.
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61. Introduction and Main Results

Let X1, Xa, -+, X, - be independent and identically distributed (i.i.d.) random vari-
ables with common distribution function P. Let h : R™ — R be measurable and symmetric
in its arguments. The U-statistics corresponding to the kernel h is defined by

(n —m)!
U’I:,n(h) = o Z h(Xil’ T ’Xim)v (1'1)
(i1, ,im)ELR,
where I,:,LL = {(il,"' ,im) : ij (S N,l < ij < n,ij 75 ik, lf] 75 k‘}

The kernel h( - ) is called r-degenerate for P, 0 <r <m — 1, if
max{l > 0; E(h(X1, -, Xn)|G)) =0 as.}=r, (1.2)

where G is the field generated by X1, ---, X;; G is the trivial field. For r = 0 we deal with
so-called centered non-degenerate kernel; m — 1 degenerate kernel is called also P-canonical
(see [1]).

Exponential bounds for P(U;*(h) > z) are studied by many authors under different set
of assumations. A far more comeplete list of papers containing results of this kind includes
Hoeffding!*%, Borisov[¥, Christofides!®), Arcones and Ginel', Miao and Zhang!'?!, Cheng!™,
as well as Arcones['%.

In the previous results, for degenerate U-statistics Arcones and Ginel!l got:
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Theorem A. Let h( - ) be P-canonical with |h| < A. Then, there exist constants Cy,Cy
depending only on m such that for all n > m,

m

P ((”)1/2 U™ (h)| > x) < Oy exp (—Cg(x/A)2/m) . (1.3)

The followimg Theorem is due to Cheng!™.
Theorem C. Let h( - ) be P-canonical with B = Eexp(|h|) < co. Then for all n > m,

n G+ 1)! nx
P(U™ ()| > z) < 2 (0.55 - )
(U ()] = o) < 2exp (OB E— Iy 050y 5~ 29 1gn
1 1n
In this paper, we obtain the exact estimate of constants C7,Cy in Theorem A. Also, we

discuss Bernstein type inequalities for degenerate U-statistics under E exp(|h|?°) < oo for
some 0o < § < 1, which extend and sharpen Theorem C with many other similar results.
To establish our main results, the upper bounds of E(U]*(h))? for any real number p > 2
are better estimated (see the following Lemma 1.1) which are interesting in itself. In the
third section, we discuss Cramer type deviation for studentized U-statistics by using these
exponential inequalities, which improve the similar results given in [15].

Theorem 1.1. Let h( - ) be P-canonical with |h| < C. Then for any x > Age™/?,n > m,

P((n) wron= o) om (<512 (5)")) 15

where Ag = @C (%mQ)m.
In the following Theorem 1.2 we relax the conditions of Theorem 1.1.
Theorem 1.2 Let h( - ) be P-canonical with

a = Fexp(|h|*?) < oo, for some 0 <§ < 1. (1.6)
Then for all x > [2¢(Co + 1)]™2, n > ng,
1/2 —1,..2/m
P((2) o)z ea) <ew (- Be) me (L7)
m Co+ (Bxl/m[%]—é/Q)

where A, = g (%mQ)m, B! = min[v2eC%6,2¢(Cy + 1)C%5], ng, Co, C are chosed as those
of Lemma 2.2.

Remark 1.1. Let h( - ) be P-canonical with E exp(|h|) < co. It follows from Theorem
C that there exists constant C' > 0 such that

1/2 1-m/2
P<<n> U,T(MIZI) SeXp(—M), for all z > 0. (1.8)

m logn

It is easy to see that inequality (1.7) is better than (1.8) in the range 22/™ < n!/2,

In the following, we define for k =1,--- ;m

[1nG@, o) = (8o, = P)-+- (0 — P) P, (1.9)
k,m
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where Ql : th = ffh(xh : ~£L'm)dQ1(l'1) : de(xm) Then

m

U:’(h)zz(’:)Uﬁ ]“Hmh , (1.10)

k=0

where [] h( - ) is a P-canonical function of k-variable,

k,m
U”:(Hh) - ;gk)! Z Hh(Xiu"' , Xiy,) (1.11)

k,m (i1, ik )EIY kym

and the first 7 summands of the sum in (1.11) vanish if A( - ) is r-degenerate for P.
It is well-known that |h| < A implies |IIj k| < A, and conditions (1.6) imply

25
Eexp (’ Hh‘ ) < oo, forsome 0<d<1 (1.12)
k,m

by using Jensen’s inequality. Therefore, combining (1.10)—(1.12) and Theorems 1.1 and 1.2,
we obtain easily the following results.

Corollary 1.1. Let h( - ) be r-degenerate for P,0 < r < m—1 with |h| < C and P™h =0
if r=0. Then for all x >0, n > m,

P (n(”ﬂ)/z ’Ug“(h)| > x) < Z exp (fC’(m, k)xz/kn(kfrfl)/k) , (1.13)
k=r+1
where positive constants C(m,k) depend on m, k only.
Corollary 1.2. Let h be r-degenerate (1 < r < m —1) for P and (1.6) hold. Then for
allz >0, n>m

P (n(r+1)/2 |U£+1(h)‘ > x)

22/ K (k=r=1)/k )

1+ (:cl/kn(k—r—l—é)/Q)2/(k5+1)

< i”: exp ( — Cy(m, k)

k=r+1

(1.14)

where positive constants C1(m, k) depend on m, k only.
Remark 1.2. Inequality (1.14) generalizes the main results given by Borisov*!, where
the author established (1.14) for degenerate U-statistics satisfying

|h($171'2, T ,.’Em)‘ S g(xl) o g(.’ﬂm)
§2. Lemmas and Proofs of Main Results

To prove the Theorems, we need the following lemmas.
Lemma 2.1. Let A( - ) be P-canonical. Then for all real p > 2,

(”)1/2Um>

m

P (5] »/2

1
E SCWMPE m hz(ij—&-la co 7X(j+1)m) (21)
Jj=1

SCpElh(Xy, - X)) [P (2.2)
where C, , = (ﬁ)p (§m2)mp (p— 1)mP/2,

2 e
Remark 2.1. The upper bounds of E|()Ur(h)[P are studied by many authors (see,
for example, [6, 7, 9]). But, inequality (2.1) seems to be new and inequality (2.2) is more
accurate than the previous results
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Proof. Let a;, ... ;,, be elements in a Banach space (B, |.||),
Y = Z 67;1 e Gimaih“' yim )
1< <o <im <
where €;,j > 1 are a squence of i.i.d. Rademacher random variables. In View of Khinchin-
type inequalities for the Rademacher chaos (see, for example, [3]), it is evident that for any
real fixed p > 2
mp/2 2 »/2
E[Y]P <(p-1)"" ( >oooal m) : (2.3)
1<i < <im<n
Now we apply Theorem 1.2 and Corollary 1 in [17] for a convex function ¢(x) = |z|P, and
then (2.3) with a;, ... ;,, = h(X;,,---, X;,,), to obtain
P p
g Y b X)) <wmEl S ke x)
1< <o <im < 1<i < <im<n
( where {Xf}?zl, k=1,---,m are independent copies of {X;}7_;)
P
< (2m)mpE‘ Z h(XL, - X )eb -
1< < <im<n
( by symmetrization, cf. Ledoux and Talagrand (1991),

where{e?}?zl, k=1,---,m are independent copies of {¢;}7_; )

g(2m)mp[4m—1<m_1)!]pE‘ S (X X e 6,

1<i; < <im<n

< Cm,pE( Z hz(Xm . ’Xim))p/z (2.4)

1<ip < <im<n

1
(using that k! < v2rkkFe™* exp(@) ).

Since (:1)_1 > h?(X;,, -+, X;, ) is the average of W(X;,,---,X;, ) over all the
1<i1 < <im<n
permutations iy,--- ,i, of 1,--- ,n with

k—1
I/I/'(xl7 e 71'77,) — k*l Z h2(ij+1’ e 7X(j+1)m)
j=0

and k = [Z] (see [14]), we have, by convexity of zF/2 (z > 0),

() "o

1 p/2
n
< Cm,pE <m> Z hQ(XiU T 7Xim)
1<ip < <im<n
1 (7] , /2
< Cm,pE[@ > R X, 7X(j+1)m)} (2.5)
ml j=1

Inequality (2.2) follows from Holder’s inequality. This proves Lemma 2.1.
Lemma 2.2. Let X, X;,j > 1 be a sequence of nonnegative i.i.d. random variables with
A= Eexp(|X|°) < oo for some 0 < 6 < 1. Then,



No.2 Wang, Q. Y. BERNSTEIN TYPE INEQUALITIES FOR U-STATISTICS 161

(1) for ally > Cy and n > ny,

1 n
P(5 30X, 2 y) < expl—(eny)’); (2.6)
j=1
(2) for all realp > 1,
1 — p B p/s
E(ﬁ Xj) < CP + (Cn) P(%) , (2.7)
j=1

where
B { (1—20)/2Y/+2  ifo<é <1,

1/4(2A + 1), o =1,
Co = { VA2V D(1/6+1),  if0<8<1,
max(2EX;,1+ EXy), if6 =1,
ny { L(0Y°(1—6)T(A/5+1)72,  if0<d<1,
2, if6=1.

Proof. Since A = Fexp(X) < oo is equivalent to EX* < Ak! for all integer k > 2,

inequality (2.6) follows from Bernstein’s inequality (for 6 = 1) and Schmuckenschlaeger’s

inequality!3].

It follows from (2.6) that for all real p > 1,

fGn) = PG

< CP 4 (Cn)~? (B)p/é. (2.8)

Lemma 2.2 is complete.
Now we prove the theorems.

Proof of Theorem 1.1. It follows from Lemma 2.1 and Marcov’s inequality that for all
real p > 2,

1/2
n
P <<m> U (h)] = x) <zP(p—1)"P/2AD

< exp ( —plogx + %log(p —-1) +plogA0).
(2.9)

Inequality (1.5) follows by minimizing the exponent with respect p in (2.9) and noting p > 2.
Proof of Theorem 1.2. Let

X; =P (Xjms1,» X(jt1)m)-

Then X;,j > 1 are a sequence of i.i.d. random variables with E exp(|X1|?) < oo, for some
0 < 6 < 1. Therefore, combining (2.1), (2.7) and Marcov’s inequality, we obtain that for all
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real p > 1
o\ 172 n\ /2 2p
P (( ) o = a:A1> < ATy W |( ) v
m m
-p p/é
<= () ()
m (2.10)
Now we take
(26)6;1512/”"’ if p2/m < [%]63—17
p= (20)~ 1o/ e 9fm < (18Rl (2.11)
CO+(Bm1/7n[%]75/2)2/(77154»1)7 if x > [H] B~
Recall that
B~! = min[v'2eC%5,2¢(Co + 1)C?4].
Elementary calculation shows that if 22/™ < [2]°B~1,
-p p/é
Cr + (C’[%D (%) < CP 4 1< (Co+ 1)P; (2.12)
if 22/™ > [2]9B~! (note that Cy > 1),
p < (26)*137 oD mm?sid [2] AT ,
m
2mp
v ([P (PN < cr v omrs- 20252 (per [P E)
Cr + (o[m}) (5) <P+ C 7?5 %(2) 5B~ % (Ba [m}
2mp
<G+ (Baw L) 8™
m
1. N ) ﬁ e
< {00+ (Baw[2]7%) } . (2.13)
m
Inequality (1.7) follows from (2.10)—(2.13) immediately. Theorem 1.2 is complete.

§3. Cramer Type Large Deviations for Studentized U-Statistics

Cramer type deviations for non-degenerate U-statistics were studied by many authors
(see [2] for details). In this section, we discuss Cramer type deviations for studentized
U-statistics. Explicitly, we establish the following theorem.

Theorem 3.1. Let h( - ) be non-degenerate kernel of degree 2 (i.e., in (1.1) m = 2) with
o2 = Var[E(h(X1, X2)|X1)] > 0,

Eexp(|h|?) < oo, for some 0 < § < % (3.1
Then
P(*/ﬁ(U”(h) _th(Xl’X2)> > x) = (1-®(x))(1+o(1)) (3.2)

uniformly in the range 0 < x < p(n)n®/22=%) with p(n) — 0,where

2
Sg_mz (n =17 SR, X;) ~ U |
2

®(x) denotes the standard normal distribution function.
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Remark 3.1. Condition (3.1) is equivalent to the condition that there exists a constant
A > 0 such that for all k =1,2,---

E|h(X1,X5) — E(X1, Xo)|F < AER/2, (3.3)

Vandemaele and Veraverbekel'?! proved that under the condition (3.3) relation (3.2) holds
uniformly in the range 0 < z < p(n)n’ with

) : 1
) 2@ if 6 > g,
R [ ifo<t
2(2-9)° =7

Corollary 3.1. Let h( - ) be a non-degenerate kernel of degree 2 with o} > 0, E exp(|h|) <
00. Then, (3.2) holds uniformaly in the range 0 < x < p(n)n/ with p(n) — 0.

Remark 3.2. Condition Eexp(|h|) < oo is not the optimal. But, it is difficult to remove
for studentized U-statistics.

For the proof of Theorem 3.1, we need the following Lemma 3.1.

Lemma 3.1. Let A,, B,,C, be sequences of random variables. If for some a > 0,

P(A, >2)=(1-®(x))(1+o0(1)) (3.4)

uniformly in the range 0 < x < p(n)n® with p(n) — 0, and if
P(B, >n™%) =o(1 — ®(z)), (3.5)
P(C2 — 1] > n™2) = o(1 - &(x)) (3.6)

uniformly in the range 0 < x < p(n)n® with p(n) — 0,then
P(C Ay + By > 2) = (1 — ®(2))(1 4 o(1)) (3.7)
uniformly in the range 0 < x < p(n)n® with p(n) — 0.
Proof. Since |C2 — 1] < n™2“ is equivalent to
(1 _ n—2a>1/2 < Cn < (1 +n—2a)1/2’
similar to the proof of Lemma 4 in [15], we have

P(C'A, > x) = (1 — &(2))(1 +o(1)) (3.8)
uniformly in the range 0 < x < p(n)n® with p(n) — 0. Relation (3.7) follows from (3.5),(3.8)
and classical methods (see, for example, [11]).

Proof of Theorem 3.1. From [2], we have that
p(‘/ﬁ(U"(h) — Bh(X, X3)) r) = (1 - ®(@)(1 + (1)) (3.9)

20y
uniformly in the range 0 < z < p(n)n/?(2=9 with p(n) — 0. By using Lemma 3.1, to prove
(3.2) it is enough to show that

i% _ —6/(2=6)) — _
P(‘4g§ 1‘ >n ) = o(1 — ®()) (3.10)
uniformly in the range 0 < z < p(n)n?/22=9) with p(n) — 0. Let
9(X;) = E(h(Xi, X;)|X;),
9(X;) = E[(Xi, X;)g(X:) X1,
(X5, Xj) = MXi, X;j) — 9(Xs) — 9(X;) + Eh(X;, X;)
) = 4(g°(X;) — a3) +83(X;).
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It follows from [5] that
Sy =40, + T, + Ry, (3.11)
where
1 n n
To=— SF(X)),  Ru=> R, (3.12)
Jj=1 j=1
with
o\ L
R —4(2) S g(Xa)g(X)),
i<j
—1
n . -
Roa =) Sl + )00 X) - 506 - 3]
i<j
8 n—1\""
Rp3 = n ; Q(Iz)( 9 ) ;w(Xme) )
-1 ()
4 K| /(n—1\ "
= — X, X)) v(X;, X
Rn4 —9 yim ( 2 ) %w( [z ])w( 75 m) )
. 2
dn(n—1) | (n\
ns = ——— v Xi, Xp)|
1<J
dn n\ "
Ry = —— 2(X5, X5).
1<J
(k)
Remark that for above notation we write > for >
r<m 1<r<m<n
r#k,m#k
Elementary calculus shows that for any positive constant C' > 0,
<1- q)(pl/Q(n)né/Z(Q—é))
=o(l — ®(x)),as n - x (3.13)
uniformly in the range 0 < = < p(n)n®/22=9 with p(n) — 0.
In view of (3.11)—(3.13), relation (3.10) follows from the following lemma.
Lemma 3.2. Assume (3.1). Then,
(1)
P (Tn > n—5/<2—5>) = o(1 - B()) (3.14)
uniformly in the range 0 < x < p(n)n®/2=%) with p(n) — 0.
(2) there exist constants C,Cy > 0 (depend on 6 only) such that for j =1,--- 6,
P (|an| > n=9/ <2—5>) < Oy exp(—Cn®/ =), (3.15)

Proof of Lemma 3.2. In view of (3.3), relation (3.14) follows from (14) in [15].
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Next we prove (3.15). Let A(X;, X;) denote the one of the following variables
It is easy to show that for all i # j,
E(A(X;, X;)1Xi) = E(A(X;, X;)[X;) =0 (3.16)
and for some 0 < § < 1/2,

Eexp(|A(X1, X5)[°) < o0, (3.17)
Eexp(|g(X1)|25) < 00, (3.18)
Eexp(|t(X1, X2)[*) < o0 (3.19)

by using Jensen’s inequality.
It follows from (3.16)—(3.19) and Corollary 1.2 that there exists a constant C' > 0 such
that if 0 < § < 1/2,

P(|Rni| > n=%7%)) < P(n|Ryy| > Cn?(1=0/(0))
< exp (_Cn(e—55)5/2(5+1)(2—5)>
< exp(—Cn =) for k=1,2. (3.20)
Similarly, we obtain that if 0 < § < 1/2,

-1
P(|Rys| > n™"/70) < P (Z> | >0, Xp)| 208
i<j
< exp(—Cnd/ @), )

P(|Rna| 2 0=/ 7%)

n G
n-1y —5/(2-9)
< ;P ( 2 ) ‘ Z ¢(XJ’XT)7/}(Xj>Xm) >Cn

r<m
< exp (—Cn(6*55)5/2(5+1)(275)>
< nexp(~Cn®/2), (3.22)
P(|Ry3| > n=%/(2=9)
. n—1\"" (7)
<27 ( 2 > ‘g(Xj) > w(Xme)’ > On—0/2=9)
=1

r<m

1)

1
—1\ "2 _
<np(n| =) cap | (M5 1) ] 0 x| 2 cnte
r<m
& 25 5(1—68)6
< nexp(—n2-3)Eexp(|g(X1)|*°) + nexp (—szfw)(z—&))
< C) exp(—Cn®/ 2=9), (3.23)

Next we prove (3.15) for j = 6. Note that (3.19) implies there exists a constant A > 0 such
that for all real p > 1,

Elp (X1, Xo)|?P < ApP/°. (3.24)
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Therefore, similar to the proof of (2.5), we obtain for all real p > 2

—1
P(|Rps| >0~y < p <Z> Z¢2(Xi,Xj) > On2(1-9)/(2-6)

1<j
1 p
. _20-0p n
<CPnTE R (2> > VXL X))
1<J
< O R Bl (X, Xo)
< An~ SRR pplioe, (3.25)
Choosing p = e~ 'n~ = C?, it follows from (3.25) that if 0 < § < 1/2,
P(|Rps| > n=%/(279) < Aexp(—Cn®/ (3=9), (3.26)

Combining (3.21)—(3.25), we prove Lemma 3.2. The proof of Theorem 3.1 is complete.
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