INFINITELY MANY HOMOCLINIC ORBITS FOR A CLASS OF HAMILTONIAN SYSTEMS WITH SYMMETRY

DING YANHENG*

Abstract

This paper deals via variational methods with the existence of infinitely many homoclinic orbits for a class of first order time dependent Hamiltonian systems

$$\dot{z} = JH_z(t, z)$$

without any periodicity assumption on H, providing that H(t, z) is even with respect to $z \in \mathbb{R}^{2N}$, superquadratic or subquadratic as $|z| \to \infty$, and satisfies some additional assumptions.

Keywords Variational method, Homoclinic orbits, Hamiltonian systems
1991 MR Subject Classification 34B30, 34C25, 34C37
Chinese Library Classification 0175.12

§1. Introduction and Main Results

This paper is an extension of the work [8].

We consider the existence of infinitely many homoclinic orbits for the first order time dependent Hamiltonian systems

$$\dot{z} = JH_z(t, z),\tag{HS}$$

where $z = (p,q) \in \mathbb{R}^{2N}$, $H \in C^1(\mathbb{R} \times \mathbb{R}^{2N}, \mathbb{R})$, $H(t,0) \equiv 0$, and J is the standard symplectic structure on \mathbb{R}^{2N} ,

$$J = \begin{pmatrix} 0 & -I_N \\ I_N & 0 \end{pmatrix}$$

with I_N being the $N \times N$ identity matrix. By a homoclinic orbit we mean a solution $z \in C^1(\mathbf{R}, \mathbf{R}^{2N})$ of (HS) which satisfies $z(t) \neq 0$ and the asymptotic condition $z(t) \to 0$ as $|t| \to \infty$.

The existence of homoclinic orbits of systems like (HS) is a very classical problem. Up to about 1990, apart from a few isolated results, the only method for dealing with such a problem was the small perturbation techniques of Melinkov. In very recent years this kind of problem has been deeply investigated via variational methods pioneered by Rabinowitz, Coti-Zelati, Ekeland, Séré, Hofer, Wysocki and others (see, for example, [2,4–7, 10–11, 13–17]).

Manuscript received September 7, 1995. Revised September 3, 1996.

^{*}Institute of Mathematics, Academia Sinica, Beijing 100080, China.

These papers for the first order systems (HS) considered the Hamiltonian of the form

$$H(t,z) = \frac{1}{2}Az \cdot z + R(t,z),$$

where A is a $2N \times 2N$ symmetric and constant matrix such that each eigenvalue of JA has a non-zero real part, and R(t, z) is periodic in t and globally superquadratic in z. They showed that (HS) has at least one homoclinic orbit. The existence of infinitely many homoclinic orbits of (HS) was also established in [15,16] if, in addition, R(t, z) is convex in z.

Recall that, for a particular case of second order systems of the type

$$-\ddot{q} = -L(t)q + W_q(t,q),$$

where $L \in C(\mathbf{R}, \mathbf{R}^{N^2})$ is a symmetric matrix valued function, the works [14] (among other results) and [6,11] obtained some existence results of homoclinic orbits without any periodicity assumption on the Hamiltonian

$$H(t, p, q) = \frac{1}{2}|p|^2 - \frac{1}{2}L(t)q \cdot q + W(t, q), \qquad (p, q) \in \mathbb{R}^{2N}$$

providing instead that the smallest eigenvalue of $L(t) \to \infty$ as $|t| \to \infty$, and W(t, q) satisfies some growth assumptions.

Motivated by the works of [6,11,14], we studied in [8] the following Hamiltonian

$$H(t,z) = -\frac{1}{2}M(t)z \cdot z + R(t,z), \qquad (1.1)$$

where

$$M(t) = \begin{pmatrix} 0 & L(t) \\ L(t) & 0 \end{pmatrix}$$

with L being an $N \times N$ symmetric matrix valued function. We proved that (HS) has at least one homoclinic orbit under the assumptions:

(L₁) the smallest eigenvalue of $L(t) \to \infty$ as $|t| \to \infty$, i.e.,

j

$$l(t) \equiv \inf_{\xi \in \mathbf{R}^N, |\xi|=1} L(t) \xi \cdot \xi \to \infty \text{ as } |t| \to \infty;$$

(L₂) $L \in C^1(\mathbb{R}, \mathbb{R}^{N^2})$ and there exists $T_0 > 0$ such that $2L(t) \pm \frac{d}{dt}L(t)$ are nonnegative definite for all $|t| \ge T_0$;

(R₁) $R \in C^1(\mathbb{R} \times \mathbb{R}^{2N}, \mathbb{R})$ and there exists $\mu > 2$ such that

$$< \mu R(t, z) \le R_z(t, z)z, \quad \forall t \in \mathbb{R} \text{ and } z \neq 0;$$

 $(\mathbf{R}_2) \ 0 < \underline{b} \equiv \inf_{t \in \mathbf{R}, |z|=1} R(t, z);$

(R₃) $|R_z(t,z)| = o(|z|)$ as $z \to 0$ uniformly in t;

(R₄) there exists $0 \le a_1(t) \in L^1(\mathbb{R}) \cap C(\mathbb{R}), \gamma > 1$ and $a_2 > 0$ such that

$$|R_z(t,z)|^{\gamma} \le a_1(t) + a_2 R_z(t,z)z, \quad \forall (t,z).$$

Moreover, in [8] the case that R(t, z) is subquadratic growth as $|z| \to \infty$ is also considered.

The purpose of this paper is to show that (HS) possesses infinitely many homoclinic orbits if H(t, z) is even in z and satisfies the above assumptions or others.

Our first result reads as follows.

Theorem 1.1. Let H be of the form (1.1) with L satisfying $(L_1)-(L_2)$ and R satisfying $(R_1)-(R_4)$. Suppose, in addition, that R(t,z) = R(t,-z) for all $(t,z) \in \mathbb{R} \times \mathbb{R}^{2N}$. Then (HS)

possesses infinitely many homoclinic orbits $\{z_k\}$ such that

$$\int_{R} \left[-\frac{1}{2} J \dot{z}_{k} \cdot z_{k} - H(t, z_{k}) \right] dt \to \infty \quad as \quad k \to \infty.$$

Our second result handles the case that R(t, z) is subquadratic in z. We need the following assumptions:

(L₃) there exists $\alpha < 2$ such that $l(t)|t|^{\alpha-2} \to \infty$ as $|t| \to \infty$;

 $(\mathbf{R}_5) \ R \in C^1(\mathbf{R} \times \mathbf{R}^{2N}, \mathbf{R})$ and there is $1 < \beta \in (\frac{2}{3-\alpha}, 2)$ such that

$$0 \le R_z(t,z) \cdot z \le \beta R(t,z), \quad \forall (t,z);$$

(R₆) there exists $a_3 > 0$ such that

$$a_3|z|^{\beta} \le R(t,z), \quad \forall (t,z);$$

 (\mathbf{R}_7) there exists $a_4 > 0$ such that

$$|R_z(t,z)| \le a_4 |z|^{\beta-1}, \quad \forall t \in \mathbb{R} \text{ and } |z| \le 1;$$

(R₈) $|R_z(t,z)| \in L^{\infty}(\mathbb{R} \times B_R)$ for any R > 0, where $B_R = \{z \in \mathbb{R}^{2N}; |z| \leq R\}$, and $|z|^{-1}|R_z(t,z)| \to 0$ as $|z| \to \infty$ uniformly in $t \in \mathbb{R}$.

Theorem 1.2. Let H be of the form (1.1) with L satisfying $(L_2)-(L_3)$ and R satisfying $(R_5)-(R_8)$, and suppose, in addition, that R(t, z) = R(t, -z) for all $(t, z) \in \mathbb{R} \times \mathbb{R}^{2N}$. Then (HS) possesses infinitely many homoclinic orbits $\{z_k\}$ such that

$$0 < \int_{R} \left[\frac{1}{2} J \dot{z}_{k} \cdot z_{k} + H(t, z_{k}) \right] dt \to 0 \quad as \quad k \to \infty.$$

Typical examples fitting in with our situation are $L(t) = |t|^{\theta} I_N$ with $\theta > 1$ and R(t, z) = b(t)W(z), where $b \in C(\mathbf{R}, \mathbf{R})$ satisfying $\underline{b} \leq b(t) \leq \overline{b}$ for some positive constants $\underline{b} \leq \overline{b}$ and all $t \in \mathbf{R}$, and $W(z) = \sum_{i=1}^{m} c_i |z|^{\mu_i}$, for some integer m > 0, with $c_i > 0(1 \leq i \leq m)$ and $1 < \mu_1 \leq \mu_2 \leq \cdots \leq \mu_m$. Clearly, R(t, z) is even in z, and satisfies $(R_1)-(R_4)$ if $\mu_1 > 2$, $(R_5)-(R_8)$ if m = 1 and $\mu_1 \in (\frac{2}{3-\alpha}, 2)$.

§2. Preliminary Results

The following two critical point propositions will be used for proving the previous Theorem 1.1 and Theorem 1.2.

Let E be a real Hilbert space with the norm $\|\cdot\|$. Suppose that E has an orthogonal decomposition $E = E_1 \oplus E_2$ with both E_1 and E_2 being infinite dimensional. Suppose $\{v_n\}$ (resp. $\{w_n\}$) is an orthonormal basis for E_1 (resp. E_2), and set

$$X_n = \operatorname{span} \{v_1, \cdots, v_n\} \oplus E_2, \quad X^m = E_1 \oplus \operatorname{span} \{w_1, \cdots, w_m\}$$

For a functional $I \in C^1(E, \mathbb{R})$ we denote by $I_n = I|_{X_n}$ the restriction of I on X_n . Recall that we say I satisfies (PS)* conditon if any sequence $\{u_n\}$ with $u_n \in X_n$ for which $0 \leq I(u_n) \leq$ const. and $I'_n(u_n) \equiv \nabla I_n(u_n) \to 0$ as $n \to \infty$ possesses a convergent subsequence. We also say that I satisfies (PS)** condition if for each $n \in \mathbb{N}$, I_n satisfies the Palais-Smale condition, i.e., any sequence $\{u_k\} \subset X_n$ for which $I(u_k)$ is bounded and $I'_n(u_k) \to 0$ as $k \to \infty$ possesses a convergent subsequence.

Proposition 2.1. Let E be as above and let $I \in C^1(E, \mathbb{R})$ be even, satisfy (PS)^{*} and (PS)^{**}, and I(0) = 0. Suppose moreover that I satisfies, for any $m \in \mathbb{N}$,

- (I₁) there is $R_m > 0$ such that $I(u) \le 0$, $\forall u \in X^m$ with $||u|| \ge R_m$;
- (I₂) there are $r_m > 0, a_m > 0$ with $a_m \to \infty$ as $m \to \infty$ such that

$$I(u) \ge a_m, \quad \forall u \in (X^{m-1})^\perp \quad with \quad ||u|| = r_m;$$

(I₃) I is bounded from above on bounded sets of X^m .

Then I has a positive critical value sequence $\{c_k\}$ satisfying $c_k \to \infty$ as $k \to \infty$.

Proof. This proposition is a special case of [3, Theorem 3.1]. However, in the present form its proof is simple and we sketch it here for the reader's convenience. Set $X_n^m = X_n \cap X^m = \operatorname{span}\{v_1, \dots, v_n, w_1, \dots, w_m\}$ and

$$Q_n^m = \{ u \in X_n^m; ||u|| \le R_m \}, \quad S_m = \{ u \in (X^{m-1})^{\perp}; ||u|| = r_m \},$$

 $\Gamma_n^m = \{ \gamma \in C(Q_n^m, X_n); \gamma \text{ is odd and } \gamma |_{\partial Q_n^m} = id \}.$

Then $\gamma(Q_n^m) \cap S^m \neq \emptyset$ for all $\gamma \in \Gamma_n^m$. In fact, let $V = \{u \in Q_n^m; \|\gamma(u)\| < r_m\}$. Since γ is odd, $0 \in V$. By $(I_1)-(I_2)$, $R_m > r_m$ and so $V \cap \partial Q_n^m = \emptyset$. Thus V is open in X_n^m . Let $P: X_n \to X_n^{m-1}$ be the projector. Then $P \circ \gamma|_V : V \to X_n^{m-1}$ is odd and continuous. Hence there is $u \in \partial V$ such that $P \circ \gamma(u) = 0$, i.e., $\|\gamma(u)\| = r_m$ and $\gamma(u) \in (X^{m-1})^{\perp}$. Now define

$$c_n^m = \inf_{\gamma \in \Gamma_n^m} \max_{u \in Q_n^m} I(\gamma(u))$$

Then we have, by (I_2) and (I_3) ,

$$a_m \le c_n^m \le b_m,\tag{2.1}$$

where $b_m = \sup_{u \in X^m, ||u|| \leq R_m} I(u) < \infty$. By (PS)^{**}, a standard argument (see [1, 12]) shows that c_n^m is a critical value of I_n . Letting $n \to \infty$ in (2.1) yields $a_m \leq c^m \leq b_m$ and c^m is a positive critical value of I by (PS)^{*}. Since $a_m \to \infty$, the proposition follows immediately.

Proposition 2.2. Let E be as above and let $I \in C^1(E, \mathbb{R})$ be even, satisfy $(PS)^*$ and $(PS)^{**}$, and I(0) = 0. Suppose moreover that I satisfies, for each $m \in \mathbb{N}$,

(I₄) there exist $r_m > 0$, $a_m > 0$ such that $a_m \le I(u)$, $\forall u \in X^m$ with $||u|| = r_m$;

(I₅) there is $b_m > 0$ with $b_m \to 0$ as $m \to \infty$ such that $I(u) \le b_m$, $\forall u \in (X^{m-1})^{\perp}$. Then I possesses a positive critical value sequence $\{c_k\}$ such that $c_k \to 0$ as $k \to \infty$.

Proof. Let Σ denote the class of closed (in E) subsets of $E \setminus \{0\}$ symmetric with respect to the origin, and let $\gamma : \Sigma \to \mathbb{N} \cup \{0, \infty\}$ be the genus map. Set

$$\Sigma_n^m = \{ A \in \Sigma; A \subset X_n \text{ and } \gamma(A) \ge n+m \}.$$

Define

$$c_n^m = \sup_{A \in \Sigma_m^m} \inf_{u \in A} I(u).$$

Since for each $A \in \Sigma_n^m$, $A \subset X_n$ and $\gamma(A) \ge n + m$, $A \cap (X^{m-1})^{\perp} \neq \emptyset$. Thus

$$\inf_{u \in A} I(u) \le \sup_{u \in (X^{m-1})^{\perp}} I(u) \le b_m \tag{2.2}$$

by (I₅). Since $\gamma(\partial B_{r_m} \cap X_n^m) = n + m$ where $B_{r_m} = \{u \in E; ||u|| \le r_m\}, \partial B_{r_m} \cap X_n^m \in \Sigma_n^m$ and by (I₄)

$$\inf_{\partial B_{r_m} \cap X_n^m} I(u) \ge a_m.$$
(2.3)

Combining (2.2) and (2.3) shows

$$a_m \le c_n^m \le b_m. \tag{2.4}$$

Since I satisfies $(PS)^{**}$, by using the genus theory and a positive rather than a negative gradient flow, a standard argument^[1,12] shows that c_n^m is a critical value of I_n . By (2.4), letting $n \to \infty$, we see that $c_n^m \to c^m$ and, by $(PS)^*$, c^m is a critical value of I satisfying $a_m \leq c^m \leq b_m$, which, together with (I₅), gives the conclusion of the proposition.

The proof is complete.

We now consider the symmetric matrix valued functions $M \in C(\mathbf{R}, \mathbf{R}^{2N \times 2N})$ of the form

$$M(t) = \begin{pmatrix} 0 & L(t) \\ L(t) & 0 \end{pmatrix}.$$

Suppose that L satisfies (L₁) and (L₂). Let $A \equiv -J\frac{d}{dt} + M$ be the selfadjoint operator with the domain $D(A) \subset L^2 \equiv L^2(\mathbf{R}, \mathbf{R}^{2N})$, defined as a sum of quadratic forms. Let $\{E(\lambda); -\infty < \lambda < \infty\}$ be the resolution of A, and U = I - E(0) - E(-0). Then U commutes with A, |A| and $|A|^{1/2}$, and A = |A|U is the polar decomposition of A (see [9]). D(A) = D(|A|) = D(|A|) is a Hilbert space equipped with the norm

$$|z||_1 = ||(I+|A|)z||_{L^2}, \quad \forall z \in D(A),$$

where $\|\cdot\|_{L^2}$ is the norm of L^2 . It is easy to check that D(A) is continuously embedded in $W^{1,2} \equiv W^{1,2}(\mathbf{R}, \mathbf{R}^{2N})$ (see [8]). Moreover we have

Lemma 2.3. Let L satisfy (L_1) and (L_2) . Then D(A) is compactly embedded in L^2 . **Proof.** See [8, Lemma 2.1].

Remark 2.4. In virtue of Lemma 2.3, $(I+|A|)^{-1} : L^2 \to L^2$ is a compact linear operator. Therefore a standard argument shows that $\sigma(A)$, the spectrum of A, consists of eigenvalues numbered by (counted in their multiplicities):

$$\cdots \leq \lambda_{-2} \leq \lambda_{-1} \leq 0 < \lambda_1 \leq \lambda_2 \leq \cdots$$

with $\lambda_{\pm k} \to \pm \infty$ as $k \to \infty$, and a corresponding system of eigenfunctions $\{e_k\}$ of A forms an orthonormal basis in L^2 .

Now we set $E = D(|A|^{1/2}) = D((I + |A|)^{1/2})$. E is a Hilbert space under the following inner product

$$(z_1, z_2)_0 = (|A|^{1/2} z_1, |A|^{1/2} z_2)_{L^2} + (z_1, z_2)_{L^2}$$

and norm

$$|z||_0 = (z, z)_0^{1/2} = ||(I + |A|)^{1/2} z||_{L^2},$$

where $(\cdot, \cdot,)_{L^2}$ denotes the L^2 inner product.

Let $E^{\circ} = KerA$, $E^{+} = Cl_{E}(\text{span}\{e_{1}, e_{2}, \cdots, \})$, and $E^{-} = (E^{\circ} \oplus E^{+})^{\perp_{E}}$, where $Cl_{E}S$ stands for the closure of S in E and $S^{\perp_{E}}$ the orthogonal complementary subspace of S in E. Then

$$E = E^- \oplus E^\circ \oplus E^+. \tag{2.5}$$

Since, by Lemma 2.3, 0 is at most an isolated eigenvalue of A, for the later convenience, we introduce on E the following inner product

$$(z_1, z_2) = (|A|^{1/2} z_1, |A|^{1/2} z_2)_{L^2} + (z_1^0, z_2^0)_{L^2}$$

for all $z_i = z_i^- + z_i^0 + z_i^+ \in E^- \oplus E^0 \oplus E^+ (i = 1, 2)$, and norm
 $||z|| = (z, z)^{1/2}$ (2.6)

for all $z \in E$. Clearly, $\|\cdot\|$ is equivalent to $\|\cdot\|_0$. Moreover, E is continuously embedded in $H^{1/2}(\mathbf{R}, \mathbf{R}^{2N})$, the Sobolev space of fractional order (see [8]).

Lemma 2.5. Let L satisfy (L_1) and (L_2) . Then E is compactly embedded in L^p for all $p \in [2, \infty)$.

Proof. See [8, Lemma 2.2].

Recall that the assumption (L₃) is stronger than (L₁). By (L₃), since $\alpha < 2$, we see $\frac{2}{3-\alpha} < 2$. Corresponding to this case we have

Lemma 2.6. Let L satisfy (L₂) and (L₃). Then E is compactly embedded in L^p for all $1 \le p \in (\frac{2}{3-\alpha}, \infty)$.

Proof. See [8, Lemma 2.3].

Finally we introduce

$$a(z,x) = (|A|^{1/2} Uz, |A|^{1/2} x)_{L^2}$$
(2.7)

for all $z, x \in E$. $a(\cdot, \cdot)$ is the quadratic form associated with A. Clearly, for $z \in D(A)$ and $x \in E$ we have

$$a(z,x) = (Az,x)_{L^2} = \int_{\mathcal{R}} (-J\dot{z} + M(t)z)x.$$
(2.8)

Plainly, E^-, E^0 and E^+ are orthogonal to each other with respect to $a(\cdot, \cdot)$, and moreover

$$a(z,x) = ((P^+ - P^-)z, x), \quad \forall z, x \in E, a(z,z) = ||z^+||^2 - ||z^-||^2, \quad \forall z \in E,$$
(2.9)

where $P^{\pm}: E \to E^{\pm}$ are the orthogonal projectors and $z = z^{-} + z^{0} + z^{+} \in E^{-} \oplus E^{0} \oplus E^{+}$.

§3. Proof of Theorem 1.1

Throughout this section, let the assumptions of Theorem 1.1 be satisfied. Let $E = D(|A|^{1/2})$ with the norm (2.6). By (R₄) one has

$$|R_z(t,z)| \le C(1+|z|^{\gamma'-1}), \quad \forall (t,z),$$
(3.1)

where $\gamma' = \frac{\gamma}{\gamma - 1}$, which, jointly with (R₃), yields that for any $\epsilon > 0$ there is $C_{\epsilon} > 0$ such that

$$|R_z(t,z)| \le \epsilon |z| + C_\epsilon |z|^{\gamma'-1}, \quad \forall (t,z),$$
(3.2)

and

$$|R(t,z)| \le \epsilon |z|^2 + C_{\epsilon} |z|^{\gamma'}, \quad \forall (t,z).$$
(3.3)

Here (and after) C (or C_i) stands for generic positive constants not depending on t and z. By (R₁) and (R₂) one also has

$$R(t,z) \ge \underline{b}|z|^{\mu}, \quad \forall t \in \mathbb{R} \text{ and } |z| \ge 1.$$
(3.4)

Note that (3.1) and (3.4) imply $\gamma' \ge \mu > 2$.

Let

$$\varphi(z) = \int_{R} R(t, z), \quad \forall z \in E.$$

(3.1)–(3.4) imply that φ is well defined, $\varphi \in C^1(E, \mathbb{R})$ and

$$\varphi'(z)x = \int_{R} R_{z}(t,z)x, \quad \forall x, z \in E$$
(3.5)

by Lemma 2.5. In addition, φ' is a compact map. To see this, let $z_n \to z$ weakly in *E*. By Lemma 2.5 one can assume that $z_n \to z$ strongly in L^p for $p \in [2, \infty)$. By (3.5)

$$\|\varphi'(z_n) - \varphi'(z)\| = \sup_{\|x\|=1} \left| \int_{R} (R_z(t, z_n) - R_z(t, z))x \right|$$

By (3.2) and the Hölder inequality, for any R > 0,

$$\left| \int_{|t|\geq R} (R_{z}(t,z_{n}) - R_{z}(t,z))x \right|
\leq C \int_{|t|\geq R} (|z_{n}| + |z| + |z_{n}|^{\gamma'-1} + |z|^{\gamma'-1})|x|
\leq C \Big[\|x\|_{L^{2}} \Big(\int_{|t|\geq R} |z_{n}|^{2} + |z|^{2} \Big)^{1/2} + \|x\|_{L^{\gamma'}} \Big(\int_{|t|\geq R} |z_{n}|^{\gamma'} + |z|^{\gamma'} \Big)^{(\gamma'-1)/\gamma'} \Big].$$
(3.6)

For any $\epsilon > 0$, by (3.6) one can take R_0 large such that

$$\left| \int_{|t| \ge R_0} (R_z(t, z_n) - R_z(t, z))x \right| < \frac{\epsilon}{2}$$
 (3.7)

for all ||x|| = 1 and $n \in \mathbb{N}$. On the other hand, it is well-known (see [12]) that since $z_n \to z$ strongly in L^2 ,

$$||R_z(\cdot, z_n) - R_z(\cdot, z)||_{L^2(B_{R_0})} \to 0$$

as $n \to \infty$ where $B_{R_0} = (-R_0, R_0)$. Therefore there is $n_0 \in \mathbb{N}$ such that

$$\left| \int_{|t| \le R_0} (R_z(t, z_n) - R_z(t, z)) x \right| < \frac{\epsilon}{2}$$
(3.8)

for all ||x|| = 1 and $n \ge n_0$. Combining (3.7) and (3.8) yields

$$\|\varphi'(z_n) - \varphi'(z)\| < \epsilon, \quad \forall n \ge n_0.$$

Hence φ' is compact.

Let $a(\cdot, \cdot)$ be the quadratic form given by (2.7), and define

$$I(z) = \frac{1}{2}a(z,z) - \varphi(z), \quad \forall z \in E$$

By (2.9)

$$I(z) = \frac{1}{2}(||z^+||^2 - ||z^-||^2) - \varphi(z), \quad \forall z \in E$$

for all $z = z^- + z^0 + z^+ \in E^- \oplus E^0 \oplus E^+$. Then $I \in C^1(E, \mathbb{R})$. Noting that (2.8) holds, by a standard argument we show that the nontrivial critical points of I on E are homoclinic orbits of (HS).

Let $E_1 = E^- \oplus E^0$ and $E_2 = E^+$ with $\{v_n = e_{-n}\}_{n=1}^{\infty}$ and $\{w_m = e_m\}_{m=1}^{\infty}$ respectively, where $\{e_n\}_{n=-\infty}^{\infty}$ is the system of eigenfunctions of A (see Remark 2.4). Set also $X_n =$ span $\{v_1, \dots, v_n\} \oplus E_2$, $X^m = E_1 \oplus \text{span} \{w_1, \dots, w_m\}$, and $I_n = I|_{X_n}$. We will verify that I satisfies the assumptions of Proposition 2.1.

Lemma 3.1. I satisfies the $(PS)^*$ and $(PS)^{**}$ conditions.

Proof. The verification procedure for (PS)* and (PS)** are the same, and so we only check the (PS)*. Suppose $z_n \in X_n$ such that $0 \leq I(z_n) \leq C$ and $\epsilon_n = ||I'_n(z_n)|| \to 0$. By

definition and (R_1) ,

$$I(z_{n}) - \frac{1}{2}I'(z_{n})z_{n} = \int_{R} \left(\frac{1}{2}R_{z}(t,z_{n})z_{n} - R(t,z_{n})\right)$$

$$\geq \left(\frac{1}{2} - \frac{1}{\mu}\right)\int_{R} R_{z}(t,z_{n})z_{n} \geq \left(\frac{\mu}{2} - 1\right)\int_{R} R(t,z_{n}).$$
(3.9)

(3.9) and (R₄) yield $||R_z(t, z_n)||_{L^{\gamma}}^{\gamma} \leq C(1 + ||z_n||)$, and hence by Lemma 2.5,

$$||z_n^+||^2 = I'(z_n)z_n^+ + \int_R R_z(t, z_n)z_n^+ \le C||z_n^+||(1 + ||R_z(t, z)||_{L^{\gamma}})$$

or

$$||z_n^+|| \le C(1 + ||z_n||^{1/\gamma}).$$
(3.10)

Similarly one gets

$$\|z_n^-\| \le C(1 + \|z_n\|^{1/\gamma}).$$
(3.11)

If $E^0 = \{0\}$, (3.10)–(3.11) imply $||z_n|| \le \text{const.}$ Suppose $E^0 \ne \{0\}$. For $z \in E$, let

$$z^{1}(t) = \begin{cases} z(t) & \text{if } |z(t)| < 1, \\ 0 & \text{if } |z(t)| \ge 1, \end{cases} \quad z^{2}(t) = \begin{cases} 0 & \text{if } |z(t)| < 1, \\ z(t) & \text{if } |z(t)| \ge 1. \end{cases}$$
(3.12)

Since by Lemma 2.5

$$\int_{R} |z_{n}^{1}|^{\mu} \leq \int_{R} |z_{n}^{1}|^{2} \leq \int_{R} |z_{n}|^{2} \leq C ||z_{n}||^{2},$$

one has

$$\|z_n^1\|_{L^{\mu}} \le C \|z_n\|^{2/\mu}.$$
(3.13)

By (3.4) and (3.9)

$$\|z_n^2\|_{L^{\mu}} \le C(1 + \|z_n\|^{1/\mu}).$$
(3.14)

By L^2 orthogonality and Hölder inequality with $\mu'=\frac{\mu}{\mu-1},$

$$\|z_n^0\|_{L^2}^2 = (z_n^0, z_n)_{L^2} \le \|z_n^0\|_{L^{\mu'}} (\|z_n^1\|_{L^{\mu}} + \|z_n^2\|_{L^{\mu}}).$$

Hence, since $\dim E^0 < \infty$ and (3.13)–(3.14) hold, one sees

$$||z_n^0|| \le C(||z_n||^{2/\mu} + ||z_n||^{1/\mu}).$$
(3.15)

The combination of (3.10)–(3.11) and (3.15) shows that again $||z_n|| \leq \text{const.}$ Finally, since φ' is compact, a standard argument shows that $\{z_n\}$ has a convergent subsequence, proving the (PS)^{*}.

Lemma 3.2. I satisfies (I_1) .

Proof. By (3.4), (R₁) and noting that
$$|z|^{\mu} \leq |z|^2$$
 for $|z| \leq 1$, one has for any $0 < \epsilon \leq \underline{b}$,

$$R(t,z) \ge \epsilon(|z|^{\mu} - |z|^2), \quad \forall (t,z).$$
 (3.16)

Let d > 0 be such that $||z||_{L^2}^2 \le d||z||^2$ for all $z \in E$ (by Lemma 2.5) and take $\epsilon = \min\{\frac{1}{4d}, \underline{b}\}$. Then for $z = z^- + z^0 + z^+ \in X^m$ we have

$$I(z) = \frac{1}{2} ||z^{+}||^{2} - \frac{1}{2} ||z^{-}||^{2} - \int_{R} R(t, z)$$

$$\leq \frac{1}{2} ||z^{+}||^{2} - \frac{1}{2} ||z^{-}||^{2} + \epsilon ||z||_{L^{2}}^{2} - \epsilon ||z||_{L^{\mu}}^{\mu}$$

$$\leq ||z^{+}||^{2} - \frac{1}{4} ||z^{-}||^{2} + \frac{1}{4} ||z^{0}||^{2} - \epsilon ||z||_{L^{\mu}}^{\mu}.$$
(3.17)

Since dim $(E^0 \oplus \text{span} \{w_1, \cdots, w_m\}) < \infty$, we have

Ι

$$\|z^{0} + z^{+}\|_{L^{2}}^{2} = (z^{0} + z^{+}, z)_{L^{2}} \le \|z^{0} + z^{+}\|_{L^{\mu'}} \|z\|_{L^{\mu}} \le C(m) \|z^{0} + z^{+}\|_{L^{2}} \|z\|_{L^{\mu}},$$

and so $||z^0 + z^+|| \le C'(m) ||z||_{L^{\mu}}$, or

$$C''(m) \|z^0 + z^+\|^{\mu} \le \|z\|_{L^{\mu}}^{\mu}, \qquad (3.18)$$

where C(m), C'(m) and C''(m) > 0 depending on m but not on $z \in X^m$. (3.17) and (3.18) imply

$$I(z) \le ||z^{0} + z^{+}||^{2} - \frac{1}{4}||z^{-}||^{2} - \epsilon C''(m)||z^{0} + z^{+}||^{\mu}$$
(3.19)

for all $z \in X^m$. Since $\mu > 2$, (3.19) implies that there is $R_m > 0$ such that

$$(z) \le 0, \quad \forall z \in X^m \text{ with } ||z|| \ge R_m,$$

proving (I_1) .

Lemma 3.3. I satisfies (I_2) .

Proof. Define

$$\eta_m = \sup_{z \in (X^m)^\perp \setminus \{0\}} \frac{\|z\|_{L^{\gamma'}}}{\|z\|}.$$

Clearly, $\eta_m \ge \eta_{m+1} > 0$. We claim that

$$\eta_m \to 0 \text{ as } m \to \infty.$$
 (3.20)

Arguing indirectly, assume $\eta_m \to \eta > 0$. Then there is a sequence $z_m \in (X^m)^{\perp}$ with $||z_m|| = 1$ and $||z_m||_{L^{\gamma'}} \ge \frac{\eta}{2}$. Since $(z_m, w_k) \to 0$ as $m \to \infty$ for each w_k , one see that $z_m \to 0$ weakly in E, and so by Lemma 2.5, $||z_m||_{L^{\gamma'}} \to 0$, a contradiction. (3.20) is proved. By (3.3) with $\epsilon = \frac{1}{2}$ and C = C one has for $z \in (X^{m-1})^{\perp}$

By (3.3) with $\epsilon = \frac{1}{4d}$ and $C = C_{\epsilon}$ one has, for $z \in (X^{m-1})^{\perp}$,

$$I(z) = \frac{1}{2} \|z\|^2 - \int_R R(t, z) \ge \frac{1}{4} \|z\|^2 - C \|z\|_{L^{\gamma'}}^{\gamma'} \ge \frac{1}{4} \|z\|^2 - C\eta_{m-1}^{\gamma'} \|z\|^{\gamma'}.$$

Taking $r_m = (2\gamma' C \eta_{m-1}^{\gamma'})^{\frac{-1}{\gamma'-2}}$ and $a_m = (\frac{1}{4} - \frac{1}{2\gamma'})r_m^2$ one obtains

$$I(z) \ge a_m, \quad \forall z \in (X^{m-1})^\perp \text{ with } ||z|| = r_m.$$

Since $\gamma' > 2$, (3.20) shows that $a_m \to \infty$ as $m \to \infty$. (I₂) follows.

Lemma 3.4. I satisfies (I₃).

Proof. (I_3) follows directly from (3.19).

Now we are in a position to give the following

Proof of Theorem 1.1. Clearly I(0) = 0 and I is even since R(t, z) is even with respect to $z \in \mathbb{R}^{2N}$. Lemma 3.1–Lemma 3.4 show that I satisfies all the assumptions of Proposition 2.1. Hence I has a positive critical value sequence c_k with $c_k \to \infty$. Let z_k be the critical point of I such that $I(z_k) = c_k$. Then z_k are homoclinic orbits of (HS) and

$$\int_{R} \left(-\frac{1}{2} J \dot{z}_k \cdot z_k - H(t, z_k) \right) dt = I(z_k) = c_k \to \infty$$

as $k \to \infty$. The proof is complete.

§4. Proof of Theorem 1.2

In this section, let the assumptions of Theorem 1.2 be satisfied. We prove Theorem 1.2 via Proposition 2.2. Let $E = D(|A|^{1/2})$ be as before.

By $(R_5)-(R_8)$ there are $\bar{a} \ge a_3$ such that

$$a_3|z|^{\beta} \le R(t,z) \le \bar{a}|z|^{\beta}, \quad \forall (t,z) \in \mathbf{R} \times \mathbf{R}^{2N}.$$

$$(4.1)$$

Moreover, one has

$$|R_z(t,z)| \le C(|z|^{\beta-1} + |z|), \quad \forall (t,z).$$
(4.2)

Define again

$$\varphi(z) = \int_{R} R(t,z), \quad \forall z \in E.$$

(4.1)–(4.2) imply that φ is well-defined, $\varphi \in C^1(E, \mathbb{R})$ and

$$\varphi'(z)x = \int_{R} R_z(t, z)x, \quad \forall z, x \in E.$$
(4.3)

By Lemma 2.6, in addition, φ' is compact. To show this let $z_n \in E$ be such that $z_n \to z$ weakly in E. By Lemma 2.6, one can assume $z_n \to z$ strongly in L^p for $1 \leq p \in (\frac{2}{3-\alpha}, \infty)$ without loss of generality. By (4.3)

$$\|\varphi'(z_n) - \varphi'(z)\| = \sup_{\|x\|=1} \left| \int_R (R_z(t, z_n) - R_z(t, z))x \right|.$$
(4.4)

For any R > 0, by (4.2)

$$\begin{split} & \Big| \int_{|t|\geq R} (R_z(t,z_n) - R_z(t,z)) x \Big| \\ & \leq C \int_{|t|\geq R} (|z_n|^{\beta-1} + |z|^{\beta-1} + |z_n| + |z|) |x| \\ & \leq C \Big[\|x\|_{L^{\beta}} \Big(\int_{|t|\geq R} |z_n|^{\beta} + |z|^{\beta} \Big)^{(\beta-1)/\beta} + \|x\|_{L^2} \Big(\int_{|t|\geq R} |z_n|^2 + |z|^2 \Big)^{1/2} \Big]. \end{split}$$

Hence by Lemma 2.6 for any $\epsilon > 0$ one can take R_0 large such that

$$\left|\int_{|t|\geq R_0} (R_z(t,z_n) - R_z(t,z))x\right| < \frac{\epsilon}{2}$$

$$\tag{4.5}$$

for all ||x|| = 1 and $n \in N$. On the other hand, it is easy to see that

$$||R_z(\cdot, z_n) - R_z(\cdot, z)||_{L^2(B_{R_0})} \to 0 \text{ as } n \to \infty$$

(see [12]). Hence there exists n_0 such that

$$\left|\int_{|t|$$

for all ||x|| = 1 and $n \ge n_0$, which, together with (4.4) and (4.5), shows

$$\|\varphi'(z_n) - \varphi'(z)\| < \epsilon, \quad \forall n \ge n_0.$$

Therefore φ' is compact.

Now we define the following functional

$$I(z) = \varphi(z) - \frac{1}{2}a(z, z) = \varphi(z) - \frac{1}{2}||z^+||^2 + \frac{1}{2}||z^-||^2$$

for all $z = z^- + z^0 + z^+ \in E^- \oplus E^0 \oplus E^+ = E$. The above argument shows that $I \in C^1(E, \mathbb{R})$. Again by (2.8) a standard argument shows that the nontrivial critical points of I on E give rise to homoclinic orbits of (HS). Let E_1, E_2, X_n and X^m be as in Section 3, and set $I_n = I|_{X_n}$. We verify that I satisfies the assumptions of Proposition 2.2.

Lemma 4.1. I satisfies $(PS)^*$ and $(PS)^{**}$.

Proof. The proof has essentially been shown in [8]. For reader's convenience we present it here. Since the reasonings for (PS)* and (PS)** are the same, we only show (PS)*. Let $z_n \in X_n$ be such that $0 \le I(z_n) \le \text{const.}$ and $I'_n(z_n) \to \infty$. By (R₅)

$$I(z_n) - \frac{1}{2}I'_n(z_n)z_n = \int_R \left(R(t, z_n) - \frac{1}{2}R_z(t, z_n)z_n\right) \ge \left(1 - \frac{\beta}{2}\right)\int_R R(t, z_n).$$

Collows from (R₆) that

It then follows from (R_6) that

$$C(1 + ||z_n||) \ge a_3 ||z||_{L^{\beta}}^{\beta}.$$
(4.6)

Since dim $E^0 < \infty$, we have $||z_n^0||_{L^2}^2 = (z_n^0, z_n)_{L^2} \le C ||z_n^0||_{L^2} ||z_n||_{L^{\beta}}$, which, together with (4.6), shows

$$||z_n^0|| \le C(1 + ||z_n||^{1/\beta}).$$
(4.7)

By (R₆) and (R₈), for any $\epsilon > 0$, there is $C_{\epsilon} > 0$ such that $|R_z(t, z)| \le \epsilon |z| + C_{\epsilon} |z|^{\beta-1}$, $\forall (t, z)$. Hence one gets

$$\begin{aligned} \|z_n^+\|^2 &= \int_{\mathbb{R}} R_z(t, z_n) z_n^+ - I'(z_n) z_n^+ \\ &\leq \epsilon \|z_n\|_{L^2} \|z_n^+\|_{L^2} + C_\epsilon \|z_n\|_{L^\beta}^{\beta-1} \|z_n^+\|_{L^\beta} + C \|z_n^+\| \\ &\leq \epsilon d \|z_n\| \|z_n^+\| + C_\epsilon C (1 + \|z_n\|^{\beta-1}) \|z_n^+\|. \end{aligned}$$

$$\tag{4.8}$$

Similarly we have

$$||z_n^-|| \le \epsilon d||z_n|| + C_{\epsilon} C(1 + ||z_n||^{\beta - 1}).$$
(4.9)

It then follows from (4.7)–(4.9), letting $\epsilon > 0$ small enough, that $||z_n||$ is bounded. Now since φ' is compact, the form of I shows that $\{z_n\}$ has a convergent subsequence, proving the (PS)^{*}.

Lemma 4.2. I satisfies (I_4) .

Proof. For any $z \in X^m$, we have by (R₆)

$$I(z) = \int_{R} R(t,z) - \frac{1}{2} ||z^{+}||^{2} + \frac{1}{2} ||z^{-}||^{2} \ge a_{3} ||z||_{L^{\beta}}^{\beta} - \frac{1}{2} ||z^{+}||^{2} + \frac{1}{2} ||z^{-}||^{2}.$$
(4.10)

Again since dim $(E^0 \oplus \text{span} \{w_1, \cdots, w_m\}) < \infty$, one has $(\beta' = \frac{\beta}{\beta - 1} > 2)$

$$\|z^{0} + z^{+}\|_{L^{2}}^{2} = (z^{0} + z^{+}, z)_{L^{2}} \le \|z^{0} + z^{+}\|_{L^{\beta'}} \|z\|_{L^{\beta}} \le C(m) \|z^{0} + z^{+}\|_{L^{2}} \|z\|_{L^{\beta}}$$

and so there holds $C'(m) \|z^0 + z^+\|^{\beta} \le a_3 \|z\|_{L^{\beta}}^{\beta}$ which, together with (4.10), yields $I(z) \ge C'(m) \|z^0 + z^+\|^{\beta} - \frac{1}{2} \|z^0 + z^+\|^2 + \frac{1}{2} \|z^-\|^2$ for all $z = z^- + z^0 + z^+ \in X^m$. Therefore, since $\beta < 2$, there are $r_m > 0$ and $a_m > 0$ such that $I(z) \ge a_m$, $\forall z \in X^m$ with $\|z\| = r_m$, i.e., I satisfies (I₄).

Lemma 4.3. I satisfies (I₅). **Proof.** Let $z \in (X^{m-1})^{\perp}$. By (4.1) we have

$$I(z) = \int_{R}^{\infty} R(t, z) - \frac{1}{2} ||z||^{2} \le \bar{a} ||z||_{L^{\beta}}^{\beta} - \frac{1}{2} ||z||^{2}.$$
(4.11)

Let ζ_m be defined by

$$\zeta_m = \sup_{z \in (X^m)^\perp \setminus \{0\}} \frac{\|z\|_{L^\beta}}{\|z\|}.$$

Similarly to the proof of Lemma 3.3, one has

$$0 < \zeta_m \to 0 \quad \text{as} \quad m \to \infty.$$
 (4.12)

Now by (4.11), for $z \in (X^{m-1})^{\perp}$, there holds

$$I(z) \le \bar{a}\zeta_{m-1}^{\beta} ||z||^{\beta} - \frac{1}{2} ||z||^{2}.$$
(4.13)

Let $b_m = \left(1 - \frac{\beta}{2}\right) \bar{a} \zeta_{m-1}^{\beta} (\bar{a} \beta \zeta_{m-1}^{\beta})^{\beta/(2-\beta)}$. Then by (4.12), $b_m \to 0$ as $m \to \infty$, and by (4.13) $I(z) \leq b_m, \quad \forall z \in (X^{m-1})^{\perp}$, i.e., I satisfies (I_5) .

Now we can give the following

Proof of Theorem 1.2. Clearly, I(0) = 0, and since R(t, z) is even with respect to $z \in \mathbb{R}^{2N}$, I is even. Lemma 4.1–Lemma 4.3 show that I satisfies all the assumptions of Proposition 2.2. Therefore I possesses a sequence of positive critical values, $\{c_k\}$, satisfying $c_k \to 0$ as $k \to \infty$. Let z_k be the critical points of I associated with c_k , i.e., $I'(z_k) = 0$ and $I(z_k) = c_k$. Then z_k are homoclinic orbits of (HS) such that

$$0 < \int_{R} \left[\frac{1}{2} J \dot{z}_k \cdot z_k + H(t, z_k) \right] dt = I(z_k) = c_k \to 0$$

as $k \to \infty$. The proof is complete.

References

- Ambrosetti, A. & Rabinowitz, P. H., Dual variational methods in critical point theory and applications, J. Funct. Anal., 14(1973), 349–381.
- [2] Ambrosetti, A. & Coti-Zelati, V., Multiple homoclinic orbits for a class of conservative systems, Preprint, Sucola Normale Superiore, 1992.
- Bartsch, T. & Willem, M., Periodic solutions of non-autonomous Hamiltonian systems with symmetries, Preprint.
- [4] Coti-Zelati, V., Ekeland, I. & Séré, E., A variational approach to homoclinic orbits in Hamiltonian systems, Math. Ann., 288(1990), 133–160.
- [5] Coti-Zelati, V. & Rabinowitz, P. H., Homoclinic orbits for a second order Hamiltonian systems possessing superquadratic potentials, *Jour. Am. Math. Soc.*, 4(1991), 693–727.
- [6] Ding, Y., Existence and multiplicity results for homoclinic solutions to a class of Hamiltonian systems, Nonlinear Analysis T.M.A., 25(1995), 1095–1113.
- [7] Ding, Y. & Girardi, M., Periodic and homoclinic solutions to a class of Hamiltonian systems with the potentials changing sign, Dyn. Sys. and Appl., 2(1993), 131–145.
- [8] Ding, Y. & Li, S., Homoclinic orbits for first order Hamiltonian systems, J. Math. Anal and Appl., 189(1995), 585–601.
- [9] Edmunds, D. E. & Evans, W. D., Spectral theory and differential operators, Clarendon Press, Oxford, 1987.
- [10] Hofer, H. & Wysocki, K., First order elliptic systems and the existence of homoclinic orbits in Hamiltonian systems, Math. Ann., 288(1990), 483–503.
- [11] Omana, W. & Willem, M., Homoclinic orbits for a class of Hamiltonian systems, *Diff. and Int. Eq.*, 5(1992), 1115–1120.
- [12] Rabinowitz, P. H., Minimax methods in critical point theory with applications to differential equations, CBMS Reg. Conf. Ser. in Math., 65, A.M.S. Providence, 1986.
- [13] Rabinowitz, P. H., Homoclinic orbits for a class of Hamiltonian systems, Proceed, Royal. Soc. Edinburgh, 114A(1990), 33–38.
- [14] Rabinowitz, P. H. & Tanaka, K., Some results on connecting orbits for a class of Hamiltonian systems, Math. Z., 206(1991), 473–499.
- [15] Séré, E., Existence of infinitely many homoclinic orbits in Hamiltonian systems, Math. Z., 209(1992), 27–42.
- [16] Séré, E., Looking for the Bernoulli shift, Preprint, CEREMADE, 1992.
- [17] Tanaka, K., Homoclinic orbits in a first order superquadratic Hamiltonian system: convergence of subharmonic orbits, J. Diff. Eq., 94(1991), 315–339.