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Abstract

This paper deals via variational methods with the existence of infinitely many homoclinic
orbits for a class of first order time dependent Hamiltonian systems

ż = JHz(t, z)

without any periodicity assumption on H, providing that H(t, z) is even with respect to z ∈
IR2N , superquadratic or subquadratic as |z| → ∞, and satisfies some additional assumptions.
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§1. Introduction and Main Results

This paper is an extension of the work [8].

We consider the existence of infinitely many homoclinic orbits for the first order time

dependent Hamiltonian systems

ż = JHz(t, z), (HS)

where z = (p, q) ∈ IR2N , H ∈ C1(IR×IR2N , IR), H(t, 0) ≡ 0, and J is the standard symplectic

structure on IR2N ,

J =

(
0 −IN
IN 0

)
with IN being the N × N identity matrix. By a homoclinic orbit we mean a solution

z ∈ C1(IR, IR2N ) of (HS) which satisfies z(t) ̸≡ 0 and the asymptotic condition z(t) → 0 as

|t| → ∞.

The existence of homoclinic orbits of systems like (HS) is a very classical problem. Up

to about 1990, apart from a few isolated results, the only method for dealing with such a

problem was the small perturbation techniques of Melinkov. In very recent years this kind

of problem has been deeply investigated via variational methods pioneered by Rabinowitz,

Coti-Zelati, Ekeland, Séré, Hofer, Wysocki and others (see, for example, [2,4–7, 10–11, 13–

17]).
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These papers for the first order systems (HS) considered the Hamiltonian of the form

H(t, z) =
1

2
Az · z +R(t, z),

where A is a 2N ×2N symmetric and constant matrix such that each eigenvalue of JA has a

non-zero real part, and R(t, z) is periodic in t and globally superquadratic in z. They showed

that (HS) has at least one homoclinic orbit. The existence of infinitely many homoclinic

orbits of (HS) was also established in [15,16] if, in addition, R(t, z) is convex in z.

Recall that, for a particular case of second order systems of the type

−q̈ = −L(t)q +Wq(t, q),

where L ∈ C(IR, IRN2

) is a symmetric matrix valued function, the works [14] (among other

results) and [6,11] obtained some existence results of homoclinic orbits without any period-

icity assumption on the Hamiltonian

H(t, p, q) =
1

2
|p|2 − 1

2
L(t)q · q +W (t, q), (p, q) ∈ IR2N ,

providing instead that the smallest eigenvalue of L(t) → ∞ as |t| → ∞, and W (t, q) satisfies

some growth assumptions.

Motivated by the works of [6,11,14], we studied in [8] the following Hamiltonian

H(t, z) = −1

2
M(t)z · z +R(t, z), (1.1)

where

M(t) =

(
0 L(t)

L(t) 0

)
with L being an N × N symmetric matrix valued function. We proved that (HS) has at

least one homoclinic orbit under the assumptions:

(L1) the smallest eigenvalue of L(t) → ∞ as |t| → ∞, i.e.,

l(t) ≡ inf
ξ∈IRN ,|ξ|=1

L(t)ξ · ξ → ∞ as |t| → ∞;

(L2) L ∈ C1(IR, IRN2

) and there exists T0 > 0 such that 2L(t) ± d
dtL(t) are nonnegative

definite for all |t| ≥ T0;

(R1) R ∈ C1(IR× IR2N , IR) and there exists µ > 2 such that

0 < µR(t, z) ≤ Rz(t, z)z, ∀t ∈ IR and z ̸= 0;

(R2) 0 < b ≡ inf
t∈IR,|z|=1

R(t, z);

(R3) |Rz(t, z)| = o(|z|) as z → 0 uniformly in t;

(R4) there exists 0 ≤ a1(t) ∈ L1(IR) ∩ C(IR), γ > 1 and a2 > 0 such that

|Rz(t, z)|γ ≤ a1(t) + a2Rz(t, z)z, ∀(t, z).

Moreover, in [8] the case that R(t, z) is subquadratic growth as |z| → ∞ is also considered.

The purpose of this paper is to show that (HS) possesses infinitely many homoclinic orbits

if H(t, z) is even in z and satisfies the above assumptions or others.

Our first result reads as follows.

Theorem 1.1. Let H be of the form (1.1) with L satisfying (L1)–(L2) and R satisfying

(R1)–(R4). Suppose, in addition, that R(t, z) = R(t,−z) for all (t, z) ∈ IR×IR2N . Then (HS)
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possesses infinitely many homoclinic orbits {zk} such that∫
IR

[
− 1

2
Jżk · zk −H(t, zk)

]
dt → ∞ as k → ∞.

Our second result handles the case that R(t, z) is subquadratic in z. We need the following

assumptions:

(L3) there exists α < 2 such that l(t)|t|α−2 → ∞ as |t| → ∞;

(R5) R ∈ C1(IR× IR2N , IR) and there is 1 < β ∈ ( 2
3−α , 2) such that

0 ≤ Rz(t, z) · z ≤ βR(t, z), ∀(t, z);

(R6) there exists a3 > 0 such that

a3|z|β ≤ R(t, z), ∀(t, z);

(R7) there exists a4 > 0 such that

|Rz(t, z)| ≤ a4|z|β−1, ∀t ∈ IR and |z| ≤ 1;

(R8) |Rz(t, z)| ∈ L∞(IR × BR) for any R > 0, where BR = {z ∈ IR2N ; |z| ≤ R}, and
|z|−1|Rz(t, z)| → 0 as |z| → ∞ uniformly in t ∈ IR.

Theorem 1.2. Let H be of the form (1.1) with L satisfying (L2)–(L3) and R satisfying

(R5)–(R8), and suppose, in addition, that R(t, z) = R(t,−z) for all (t, z) ∈ IR× IR2N . Then

(HS) possesses infinitely many homoclinic orbits {zk} such that

0 <

∫
IR

[1
2
Jżk · zk +H(t, zk)

]
dt → 0 as k → ∞.

Typical examples fitting in with our situation are L(t) = |t|θIN with θ > 1 and R(t, z) =

b(t)W (z), where b ∈ C(IR, IR) satisfying b ≤ b(t) ≤ b̄ for some positive constants b ≤ b̄ and

all t ∈ IR, and W (z) =
m∑
i=1

ci|z|µi , for some integer m > 0, with ci > 0(1 ≤ i ≤ m) and

1 < µ1 ≤ µ2 ≤ · · · ≤ µm. Clearly, R(t, z) is even in z, and satisfies (R1)–(R4) if µ1 > 2,

(R5)–(R8) if m = 1 and µ1 ∈ ( 2
3−α , 2).

§2. Preliminary Results

The following two critical point propositions will be used for proving the previous Theorem

1.1 and Theorem1.2.

Let E be a real Hilbert space with the norm ∥ · ∥. Suppose that E has an orthogonal

decomposition E = E1 ⊕E2 with both E1 and E2 being infinite dimensional. Suppose {vn}
(resp. {wn}) is an orthonormal basis for E1 (resp. E2), and set

Xn = span {v1, · · · , vn} ⊕ E2, Xm = E1 ⊕ span {w1, · · · , wm}.

For a functional I ∈ C1(E, IR) we denote by In = I|Xn the restriction of I on Xn. Recall that

we say I satisfies (PS)∗ conditon if any sequence {un} with un ∈ Xn for which 0 ≤ I(un) ≤
const. and I ′n(un) ≡ ∇In(un) → 0 as n → ∞ possesses a convergent subsequence. We

also say that I satisfies (PS)∗∗ condition if for each n ∈ IN, In satisfies the Palais-Smale

condition, i.e., any sequence {uk} ⊂ Xn for which I(uk) is bounded and I ′n(uk) → 0 as

k → ∞ possesses a convergent subsequence.

Proposition 2.1. Let E be as above and let I ∈ C1(E, IR) be even, satisfy (PS)∗ and

(PS)∗∗, and I(0) = 0. Suppose moreover that I satisfies, for any m ∈ IN,



170 CHIN. ANN. OF MATH. Vol.19 Ser.B

(I1) there is Rm > 0 such that I(u) ≤ 0, ∀u ∈ Xm with ∥u∥ ≥ Rm;

(I2) there are rm > 0, am > 0 with am → ∞ as m → ∞ such that

I(u) ≥ am, ∀u ∈ (Xm−1)⊥ with ∥u∥ = rm;

(I3) I is bounded from above on bounded sets of Xm.

Then I has a positive critical value sequence {ck} satisfying ck → ∞ as k → ∞.

Proof. This proposition is a special case of [3, Theorem 3.1]. However, in the present

form its proof is simple and we sketch it here for the reader’s convenience. Set Xm
n =

Xn ∩Xm = span{v1, · · · , vn, w1, · · · , wm} and

Qm
n = {u ∈ Xm

n ; ∥u∥ ≤ Rm}, Sm = {u ∈ (Xm−1)⊥; ∥u∥ = rm},
Γm
n = {γ ∈ C(Qm

n , Xn); γ is odd and γ|∂Qm
n
= id}.

Then γ(Qm
n ) ∩ Sm ̸= ∅ for all γ ∈ Γm

n . In fact, let V = {u ∈ Qm
n ; ∥γ(u)∥ < rm}. Since γ

is odd, 0 ∈ V. By (I1)–(I2), Rm > rm and so V ∩ ∂Qm
n = ∅. Thus V is open in Xm

n . Let

P : Xn → Xm−1
n be the projector. Then P ◦γ|V : V → Xm−1

n is odd and continuous. Hence

there is u ∈ ∂V such that P ◦ γ(u) = 0, i.e., ∥γ(u)∥ = rm and γ(u) ∈ (Xm−1)⊥. Now define

cmn = inf
γ∈Γm

n

max
u∈Qm

n

I(γ(u)).

Then we have, by (I2) and (I3),

am ≤ cmn ≤ bm, (2.1)

where bm = sup
u∈Xm,∥u∥≤Rm

I(u) < ∞. By (PS)∗∗, a standard argument (see [1, 12]) shows

that cmn is a critical value of In. Letting n → ∞ in (2.1) yields am ≤ cm ≤ bm and cm is a

positive critical value of I by (PS)∗. Since am → ∞, the proposition follows immediately.

Proposition 2.2. Let E be as above and let I ∈ C1(E, IR) be even, satisfy (PS)∗ and

(PS)∗∗, and I(0) = 0. Suppose moreover that I satisfies, for each m ∈ IN,

(I4) there exist rm > 0, am > 0 such that am ≤ I(u), ∀u ∈ Xm with ∥u∥ = rm;

(I5) there is bm > 0 with bm → 0 as m → ∞ such that I(u) ≤ bm, ∀u ∈ (Xm−1)⊥.

Then I possesses a positive critical value sequence {ck} such that ck → 0 as k → ∞.

Proof. Let Σ denote the class of closed (in E) subsets of E \ {0} symmetric with respect

to the origin, and let γ : Σ → IN ∪ {0,∞} be the genus map. Set

Σm
n = {A ∈ Σ;A ⊂ Xn and γ(A) ≥ n+m}.

Define

cmn = sup
A∈Σm

n

inf
u∈A

I(u).

Since for each A ∈ Σm
n , A ⊂ Xn and γ(A) ≥ n+m, A ∩ (Xm−1)⊥ ̸= ∅. Thus

inf
u∈A

I(u) ≤ sup
u∈(Xm−1)⊥

I(u) ≤ bm (2.2)

by (I5). Since γ(∂Brm ∩Xm
n ) = n+m where Brm = {u ∈ E; ∥u∥ ≤ rm}, ∂Brm ∩Xm

n ∈ Σm
n

and by (I4)

inf
∂Brm∩Xm

n

I(u) ≥ am. (2.3)

Combining (2.2) and (2.3) shows

am ≤ cmn ≤ bm. (2.4)
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Since I satisfies (PS)∗∗, by using the genus theory and a positive rather than a negative

gradient flow, a standard argument[1,12] shows that cmn is a critical value of In. By (2.4),

letting n → ∞, we see that cmn → cm and, by (PS)∗, cm is a critical value of I satisfying

am ≤ cm ≤ bm, which, together with (I5), gives the conclusion of the proposition.

The proof is complete.

We now consider the symmetric matrix valued functions M ∈ C(IR, IR2N×2N ) of the form

M(t) =

(
0 L(t)

L(t) 0

)
.

Suppose that L satisfies (L1) and (L2). Let A ≡ −J d
dt + M be the selfadjoint operator

with the domain D(A) ⊂ L2 ≡ L2(IR, IR2N ), defined as a sum of quadratic forms. Let

{E(λ);−∞ < λ < ∞} be the resolution of A, and U = I−E(0)−E(−0). Then U commutes

with A, |A| and |A|1/2, and A = |A|U is the polar decomposition of A (see [9]). D(A) =

D(|A|) = D(I + |A|) is a Hilbert space equipped with the norm

∥z∥1 = ∥(I + |A|)z∥L2 , ∀z ∈ D(A),

where ∥ · ∥L2 is the norm of L2. It is easy to check that D(A) is continuously embedded in

W 1,2 ≡ W 1,2(IR, IR2N ) (see [8]). Moreover we have

Lemma 2.3. Let L satisfy (L1) and (L2). Then D(A) is compactly embedded in L2.

Proof. See [8, Lemma 2.1].

Remark 2.4. In virtue of Lemma 2.3, (I+|A|)−1 : L2 → L2 is a compact linear operator.

Therefore a standard argument shows that σ(A), the spectrum of A, consists of eigenvalues

numbered by (counted in their multiplicities):

· · · ≤ λ−2 ≤ λ−1 ≤ 0 < λ1 ≤ λ2 ≤ · · ·

with λ±k → ±∞ as k → ∞, and a corresponding system of eigenfunctions {ek} of A forms

an orthonormal basis in L2.

Now we set E = D(|A|1/2) = D((I + |A|)1/2). E is a Hilbert space under the following

inner product

(z1, z2)0 = (|A|1/2z1, |A|1/2z2)L2 + (z1, z2)L2

and norm

∥z∥0 = (z, z)
1/2
0 = ∥(I + |A|)1/2z∥L2 ,

where (·, ·, )L2 denotes the L2 inner product.

Let E◦ = KerA, E+ = ClE(span{e1, e2, · · · , }), and E− = (E◦ ⊕ E+)⊥E , where ClES

stands for the closure of S in E and S⊥E the orthogonal complementary subspace of S in

E. Then

E = E− ⊕ E◦ ⊕ E+. (2.5)

Since, by Lemma 2.3, 0 is at most an isolated eigenvalue of A, for the later convenience, we

introduce on E the following inner product

(z1, z2) = (|A|1/2z1, |A|1/2z2)L2 + (z01 , z
0
2)L2

for all zi = z−i + z0i + z+i ∈ E− ⊕ E0 ⊕ E+(i = 1, 2), and norm

∥z∥ = (z, z)1/2 (2.6)
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for all z ∈ E. Clearly, ∥ · ∥ is equivalent to ∥ · ∥0. Moreover, E is continuously embedded in

H1/2(IR, IR2N ), the Sobolev space of fractional order (see [8]).

Lemma 2.5. Let L satisfy (L1) and (L2). Then E is compactly embedded in Lp for all

p ∈ [2,∞).

Proof. See [8, Lemma 2.2].

Recall that the assumption (L3) is stronger than (L1). By (L3), since α < 2, we see
2

3−α < 2. Corresponding to this case we have

Lemma 2.6. Let L satisfy (L2) and (L3). Then E is compactly embedded in Lp for all

1 ≤ p ∈ ( 2
3−α ,∞).

Proof. See [8, Lemma 2.3].

Finally we introduce

a(z, x) = (|A|1/2Uz, |A|1/2x)L2 (2.7)

for all z, x ∈ E. a(·, ·) is the quadratic form associated with A. Clearly, for z ∈ D(A) and

x ∈ E we have

a(z, x) = (Az, x)L2 =

∫
IR

(−Jż +M(t)z)x. (2.8)

Plainly, E−, E0 and E+ are orthogonal to each other with respect to a(·, ·), and moreover

a(z, x) = ((P+ − P−)z, x), ∀z, x ∈ E,

a(z, z) = ∥z+∥2 − ∥z−∥2, ∀z ∈ E,
(2.9)

where P± : E → E± are the orthogonal projectors and z = z− + z0 + z+ ∈ E− ⊕E0 ⊕E+.

§3. Proof of Theorem 1.1

Throughout this section, let the assumptions of Theorem 1.1 be satisfied. Let E =

D(|A|1/2) with the norm (2.6). By (R4) one has

|Rz(t, z)| ≤ C(1 + |z|γ
′−1), ∀(t, z), (3.1)

where γ′ = γ
γ−1 , which, jointly with (R3), yields that for any ϵ > 0 there is Cϵ > 0 such that

|Rz(t, z)| ≤ ϵ|z|+ Cϵ|z|γ
′−1, ∀(t, z), (3.2)

and

|R(t, z)| ≤ ϵ|z|2 + Cϵ|z|γ
′
, ∀(t, z). (3.3)

Here (and after) C (or Ci) stands for generic positive constants not depending on t and z.

By (R1) and (R2) one also has

R(t, z) ≥ b|z|µ, ∀t ∈ IR and |z| ≥ 1. (3.4)

Note that (3.1) and (3.4) imply γ′ ≥ µ > 2.

Let

φ(z) =

∫
IR

R(t, z), ∀z ∈ E.

(3.1)–(3.4) imply that φ is well defined, φ ∈ C1(E, IR) and

φ′(z)x =

∫
IR

Rz(t, z)x, ∀x, z ∈ E (3.5)
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by Lemma 2.5. In addition, φ′ is a compact map. To see this, let zn → z weakly in E. By

Lemma 2.5 one can assume that zn → z strongly in Lp for p ∈ [2,∞). By (3.5)

∥φ′(zn)− φ′(z)∥ = sup
∥x∥=1

∣∣∣ ∫
IR

(Rz(t, zn)−Rz(t, z))x
∣∣∣.

By (3.2) and the Hölder inequality, for any R > 0,∣∣∣ ∫
|t|≥R

(Rz(t, zn)−Rz(t, z))x
∣∣∣

≤ C

∫
|t|≥R

(|zn|+ |z|+ |zn|γ
′−1 + |z|γ

′−1)|x|

≤ C
[
∥x∥L2

(∫
|t|≥R

|zn|2 + |z|2
)1/2

+ ∥x∥Lγ′

(∫
|t|≥R

|zn|γ
′
+ |z|γ

′
)(γ′−1)/γ′]

.

(3.6)

For any ϵ > 0, by (3.6) one can take R0 large such that∣∣∣ ∫
|t|≥R0

(Rz(t, zn)−Rz(t, z))x
∣∣∣ < ϵ

2
(3.7)

for all ∥x∥ = 1 and n ∈ IN. On the other hand, it is well-known (see [12]) that since zn → z

strongly in L2,

∥Rz(·, zn)−Rz(·, z)∥L2(BR0 )
→ 0

as n → ∞ where BR0 = (−R0, R0). Therefore there is n0 ∈ IN such that∣∣∣ ∫
|t|≤R0

(Rz(t, zn)−Rz(t, z))x
∣∣∣ < ϵ

2
(3.8)

for all ∥x∥ = 1 and n ≥ n0. Combining (3.7) and (3.8) yields

∥φ′(zn)− φ′(z)∥ < ϵ, ∀n ≥ n0.

Hence φ′ is compact.

Let a(·, ·) be the quadratic form given by (2.7), and define

I(z) =
1

2
a(z, z)− φ(z), ∀z ∈ E.

By (2.9)

I(z) =
1

2
(∥z+∥2 − ∥z−∥2)− φ(z), ∀z ∈ E

for all z = z− + z0 + z+ ∈ E− ⊕ E0 ⊕ E+. Then I ∈ C1(E, IR). Noting that (2.8) holds, by

a standard argument we show that the nontrivial critical points of I on E are homoclinic

orbits of (HS).

Let E1 = E− ⊕ E0 and E2 = E+ with {vn = e−n}∞n=1 and {wm = em}∞m=1 respectively,

where {en}∞n=−∞ is the system of eigenfunctions of A (see Remark 2.4). Set also Xn =

span {v1, · · · , vn} ⊕E2, X
m = E1 ⊕ span {w1, · · · , wm}, and In = I|Xn . We will verify that

I satisfies the assumptions of Proposition 2.1.

Lemma 3.1. I satisfies the (PS)∗ and (PS)∗∗ conditions.

Proof. The verification procedure for (PS)∗ and (PS)∗∗ are the same, and so we only

check the (PS)∗. Suppose zn ∈ Xn such that 0 ≤ I(zn) ≤ C and ϵn = ∥I ′n(zn)∥ → 0. By
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definition and (R1),

I(zn)−
1

2
I ′(zn)zn =

∫
IR

(1
2
Rz(t, zn)zn −R(t, zn)

)
≥

(1
2
− 1

µ

)∫
IR

Rz(t, zn)zn ≥
(µ
2
− 1

)∫
IR

R(t, zn).

(3.9)

(3.9) and (R4) yield ∥Rz(t, zn)∥γLγ ≤ C(1 + ∥zn∥), and hence by Lemma 2.5,

∥z+n ∥2 = I ′(zn)z
+
n +

∫
IR

Rz(t, zn)z
+
n ≤ C∥z+n ∥(1 + ∥Rz(t, z)∥Lγ ),

or

∥z+n ∥ ≤ C(1 + ∥zn∥1/γ). (3.10)

Similarly one gets

∥z−n ∥ ≤ C(1 + ∥zn∥1/γ). (3.11)

If E0 = {0}, (3.10)–(3.11) imply ∥zn∥ ≤ const. Suppose E0 ̸= {0}. For z ∈ E, let

z1(t) =

{
z(t) if |z(t)| < 1,

0 if |z(t)| ≥ 1,
z2(t) =

{
0 if |z(t)| < 1,

z(t) if |z(t)| ≥ 1.
(3.12)

Since by Lemma 2.5 ∫
IR

|z1n|µ ≤
∫
IR

|z1n|2 ≤
∫
IR

|zn|2 ≤ C∥zn∥2,

one has

∥z1n∥Lµ ≤ C∥zn∥2/µ. (3.13)

By (3.4) and (3.9)

∥z2n∥Lµ ≤ C(1 + ∥zn∥1/µ). (3.14)

By L2 orthogonality and Hölder inequality with µ′ = µ
µ−1 ,

∥z0n∥2L2 = (z0n, zn)L2 ≤ ∥z0n∥Lµ′ (∥z1n∥Lµ + ∥z2n∥Lµ).

Hence, since dimE0 < ∞ and (3.13)–(3.14) hold, one sees

∥z0n∥ ≤ C(∥zn∥2/µ + ∥zn∥1/µ). (3.15)

The combination of (3.10)–(3.11) and (3.15) shows that again ∥zn∥ ≤ const. Finally, since

φ′ is compact, a standard argument shows that {zn} has a convergent subsequence, proving

the (PS)∗.

Lemma 3.2. I satisfies (I1).

Proof. By (3.4), (R1) and noting that |z|µ ≤ |z|2 for |z| ≤ 1, one has for any 0 < ϵ ≤ b,

R(t, z) ≥ ϵ(|z|µ − |z|2), ∀(t, z). (3.16)

Let d > 0 be such that ∥z∥2L2 ≤ d∥z∥2 for all z ∈ E (by Lemma 2.5) and take ϵ = min{ 1
4d , b}.

Then for z = z− + z0 + z+ ∈ Xm we have

I(z) =
1

2
∥z+∥2 − 1

2
∥z−∥2 −

∫
IR

R(t, z)

≤ 1

2
∥z+∥2 − 1

2
∥z−∥2 + ϵ∥z∥2L2 − ϵ∥z∥µLµ

≤ ∥z+∥2 − 1

4
∥z−∥2 + 1

4
∥z0∥2 − ϵ∥z∥µLµ .

(3.17)
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Since dim (E0 ⊕ span {w1, · · · , wm}) < ∞, we have

∥z0 + z+∥2L2 = (z0 + z+, z)L2 ≤ ∥z0 + z+∥Lµ′∥z∥Lµ ≤ C(m)∥z0 + z+∥L2∥z∥Lµ ,

and so ∥z0 + z+∥ ≤ C ′(m)∥z∥Lµ , or

C ′′(m)∥z0 + z+∥µ ≤ ∥z∥µLµ , (3.18)

where C(m), C ′(m) and C ′′(m) > 0 depending on m but not on z ∈ Xm. (3.17) and (3.18)

imply

I(z) ≤ ∥z0 + z+∥2 − 1

4
∥z−∥2 − ϵC ′′(m)∥z0 + z+∥µ (3.19)

for all z ∈ Xm. Since µ > 2, (3.19) implies that there is Rm > 0 such that

I(z) ≤ 0, ∀z ∈ Xm with ∥z∥ ≥ Rm,

proving (I1).

Lemma 3.3. I satisfies (I2).

Proof. Define

ηm = sup
z∈(Xm)⊥\{0}

∥z∥Lγ′

∥z∥
.

Clearly, ηm ≥ ηm+1 > 0. We claim that

ηm → 0 as m → ∞. (3.20)

Arguing indirectly, assume ηm → η > 0. Then there is a sequence zm ∈ (Xm)⊥ with

∥zm∥ = 1 and ∥zm∥Lγ′ ≥ η
2 . Since (zm, wk) → 0 as m → ∞ for each wk, one see that

zm → 0 weakly in E, and so by Lemma 2.5, ∥zm∥Lγ′ → 0, a contradiction. (3.20) is proved.

By (3.3) with ϵ = 1
4d and C = Cϵ one has, for z ∈ (Xm−1)⊥,

I(z) =
1

2
∥z∥2 −

∫
IR

R(t, z) ≥ 1

4
∥z∥2 − C∥z∥γ

′

Lγ′ ≥
1

4
∥z∥2 − Cηγ

′

m−1∥z∥γ
′
.

Taking rm = (2γ′Cηγ
′

m−1)
−1

γ′−2 and am = ( 14 − 1
2γ′ )r

2
m one obtains

I(z) ≥ am, ∀z ∈ (Xm−1)⊥ with ∥z∥ = rm.

Since γ′ > 2, (3.20) shows that am → ∞ as m → ∞. (I2) follows.

Lemma 3.4. I satisfies (I3).

Proof. (I3) follows directly from (3.19).

Now we are in a position to give the following

Proof of Theorem 1.1. Clearly I(0) = 0 and I is even since R(t, z) is even with respect

to z ∈ IR2N . Lemma 3.1–Lemma 3.4 show that I satisfies all the assumptions of Proposition

2.1. Hence I has a positive critical value sequence ck with ck → ∞. Let zk be the critical

point of I such that I(zk) = ck. Then zk are homoclinic orbits of (HS) and∫
IR

(
− 1

2
Jżk · zk −H(t, zk)

)
dt = I(zk) = ck → ∞

as k → ∞. The proof is complete.

§4. Proof of Theorem 1.2

In this section, let the assumptions of Theorem 1.2 be satisfied. We prove Theorem 1.2

via Proposition 2.2. Let E = D(|A|1/2) be as before.
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By (R5)–(R8) there are ā ≥ a3 such that

a3|z|β ≤ R(t, z) ≤ ā|z|β , ∀(t, z) ∈ IR× IR2N . (4.1)

Moreover, one has

|Rz(t, z)| ≤ C(|z|β−1 + |z|), ∀(t, z). (4.2)

Define again

φ(z) =

∫
IR

R(t, z), ∀z ∈ E.

(4.1)–(4.2) imply that φ is well-defined, φ ∈ C1(E, IR) and

φ′(z)x =

∫
IR

Rz(t, z)x, ∀z, x ∈ E. (4.3)

By Lemma 2.6, in addition, φ′ is compact. To show this let zn ∈ E be such that zn → z

weakly in E. By Lemma 2.6, one can assume zn → z strongly in Lp for 1 ≤ p ∈ ( 2
3−α ,∞)

without loss of generality. By (4.3)

∥φ′(zn)− φ′(z)∥ = sup
∥x∥=1

∣∣∣ ∫
IR

(Rz(t, zn)−Rz(t, z))x
∣∣∣. (4.4)

For any R > 0, by (4.2)∣∣∣ ∫
|t|≥R

(Rz(t, zn)−Rz(t, z))x
∣∣∣

≤ C

∫
|t|≥R

(|zn|β−1 + |z|β−1 + |zn|+ |z|)|x|

≤ C
[
∥x∥Lβ

(∫
|t|≥R

|zn|β + |z|β
)(β−1)/β

+ ∥x∥L2

(∫
|t|≥R

|zn|2 + |z|2
)1/2]

.

Hence by Lemma 2.6 for any ϵ > 0 one can take R0 large such that∣∣∣ ∫
|t|≥R0

(Rz(t, zn)−Rz(t, z))x
∣∣∣ < ϵ

2
(4.5)

for all ∥x∥ = 1 and n ∈ IN. On the other hand, it is easy to see that

∥Rz(·, zn)−Rz(·, z)∥L2(BR0
) → 0 as n → ∞

(see [12]). Hence there exists n0 such that∣∣∣ ∫
|t|<R0

(Rz(t, zn)−Rz(t, z))x
∣∣∣ < ϵ

2

for all ∥x∥ = 1 and n ≥ n0, which, together with (4.4) and (4.5), shows

∥φ′(zn)− φ′(z)∥ < ϵ, ∀n ≥ n0.

Therefore φ′ is compact.

Now we define the following functional

I(z) = φ(z)− 1

2
a(z, z) = φ(z)− 1

2
∥z+∥2 + 1

2
∥z−∥2

for all z = z−+z0+z+ ∈ E−⊕E0⊕E+ = E. The above argument shows that I ∈ C1(E, IR).

Again by (2.8) a standard argument shows that the nontrivial critical points of I on E give

rise to homoclinic orbits of (HS).
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Let E1, E2, Xn and Xm be as in Section 3, and set In = I|Xn . We verify that I satisfies

the assumptions of Proposition 2.2.

Lemma 4.1. I satisfies (PS)∗ and (PS)∗∗.

Proof. The proof has essentially been shown in [8]. For reader’s convenience we present

it here. Since the reasonings for (PS)∗ and (PS)∗∗ are the same, we only show (PS)∗. Let

zn ∈ Xn be such that 0 ≤ I(zn) ≤ const. and I ′n(zn) → ∞. By (R5)

I(zn)−
1

2
I ′n(zn)zn =

∫
IR

(
R(t, zn)−

1

2
Rz(t, zn)zn

)
≥

(
1− β

2

)∫
IR

R(t, zn).

It then follows from (R6) that

C(1 + ∥zn∥) ≥ a3∥z∥βLβ . (4.6)

Since dim E0 < ∞, we have ∥z0n∥2L2 = (z0n, zn)L2 ≤ C∥z0n∥L2∥zn∥Lβ , which, together with

(4.6), shows

∥z0n∥ ≤ C(1 + ∥zn∥1/β). (4.7)

By (R6) and (R8), for any ϵ > 0, there is Cϵ > 0 such that |Rz(t, z)| ≤ ϵ|z|+Cϵ|z|β−1, ∀(t, z).
Hence one gets

∥z+n ∥2 =

∫
IR

Rz(t, zn)z
+
n − I ′(zn)z

+
n

≤ ϵ∥zn∥L2∥z+n ∥L2 + Cϵ∥zn∥β−1
Lβ ∥z+n ∥Lβ + C∥z+n ∥

≤ ϵd∥zn∥∥z+n ∥+ CϵC(1 + ∥zn∥β−1)∥z+n ∥.

(4.8)

Similarly we have

∥z−n ∥ ≤ ϵd∥zn∥+ CϵC(1 + ∥zn∥β−1). (4.9)

It then follows from (4.7)–(4.9), letting ϵ > 0 small enough, that ∥zn∥ is bounded. Now

since φ′ is compact, the form of I shows that {zn} has a convergent subsequence, proving

the (PS)∗.

Lemma 4.2. I satisfies (I4).

Proof. For any z ∈ Xm, we have by (R6)

I(z) =

∫
IR

R(t, z)− 1

2
∥z+∥2 + 1

2
∥z−∥2 ≥ a3∥z∥βLβ − 1

2
∥z+∥2 + 1

2
∥z−∥2. (4.10)

Again since dim (E0 ⊕ span {w1, · · · , wm}) < ∞, one has (β′ = β
β−1 > 2)

∥z0 + z+∥2L2 = (z0 + z+, z)L2 ≤ ∥z0 + z+∥Lβ′∥z∥Lβ ≤ C(m)∥z0 + z+∥L2∥z∥Lβ

and so there holds C ′(m)∥z0 + z+∥β ≤ a3∥z∥βLβ which, together with (4.10), yields I(z) ≥
C ′(m)∥z0 + z+∥β − 1

2∥z
0 + z+∥2 + 1

2∥z
−∥2 for all z = z− + z0 + z+ ∈ Xm. Therefore, since

β < 2, there are rm > 0 and am > 0 such that I(z) ≥ am, ∀z ∈ Xm with ∥z∥ = rm, i.e.,

I satisfies (I4).

Lemma 4.3. I satisfies (I5).

Proof. Let z ∈ (Xm−1)⊥. By (4.1) we have

I(z) =

∫
IR

R(t, z)− 1

2
∥z∥2 ≤ ā∥z∥β

Lβ − 1

2
∥z∥2. (4.11)

Let ζm be defined by

ζm = sup
z∈(Xm)⊥\{0}

∥z∥Lβ

∥z∥
.
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Similarly to the proof of Lemma 3.3, one has

0 < ζm → 0 as m → ∞. (4.12)

Now by (4.11), for z ∈ (Xm−1)⊥, there holds

I(z) ≤ āζβm−1∥z∥β − 1

2
∥z∥2. (4.13)

Let bm =
(
1− β

2

)
āζβm−1(āβζ

β
m−1)

β/(2−β). Then by (4.12), bm → 0 as m → ∞, and by (4.13)

I(z) ≤ bm, ∀z ∈ (Xm−1)⊥, i.e., I satisfies (I5).

Now we can give the following

Proof of Theorem 1.2. Clearly, I(0) = 0, and since R(t, z) is even with respect to

z ∈ IR2N , I is even. Lemma 4.1–Lemma 4.3 show that I satisfies all the assumptions of

Proposition 2.2. Therefore I possesses a sequence of positive critical values, {ck}, satisfying
ck → 0 as k → ∞. Let zk be the critical points of I associated with ck, i.e., I

′(zk) = 0 and

I(zk) = ck. Then zk are homoclinic orbits of (HS) such that

0 <

∫
IR

[1
2
Jżk · zk +H(t, zk)

]
dt = I(zk) = ck → 0

as k → ∞. The proof is complete.
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