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Abstract

The authors show the Gevrey class regularity of the solutions for the two-dimensional
Newton-Boussinesq Equations. Based on this fact, an approximate inertial manifold for the
system is constructed, which attracts all solutions to an exponentially thin neighborhood of it
in a finite time.
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§1. Introduction

Approximate inertial manifolds are related to the study of long time behaviour of solutions

of dissipative partial differential equations. We recall that an approximate inertial manifold

is a finite dimensional smooth manifold such that every solution enters a thin neighborhood of

it in a finite time. In particular, the global attractor is contained in this neighborhood. The

existence of such manifolds has been obtained for many partial differential equations. In this

respect, we refer readers to Foias, Manley and Temam[1]; Temam[2]; Marion[3]; Debussche

and Marion[4]; Foias, Manley and Temam[5]; Liu[6] et al.

Our aim of this paper is to deal with approximate inertial manifolds for the following

two-dimensional Newton-Boussinesq Equations:

∂tξ + u∂xξ + v∂yξ = △ξ − Ra

Pr
∂xθ, (1.1)

△Ψ = ξ, u = Ψy, v = −Ψx, (1.2)

∂tθ + u∂xθ + v∂yθ =
1

Pr
△θ, (1.3)

where u⃗ = (u, v) is the velocity vector, θ is the flow temperature, Ψ is the flow function, ξ is

the vortex, Pr > 0 is the Prandtl number, and Ra > 0 is the Rayleigh number. The equations

(1.1)–(1.3) arose in the course of analysing many physical problems such as Benard flow (see

[7–9]). In [10], we constructed approximate inertial manifolds for system (1.1)–(1.3), and

showed that any orbit enters their very thin ( but not exponentially) neighborhoods. In the
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present paper, we first establish the Gevrey class regularity of the solutions for (1.1)–(1.3).

And then we show that the approximate inertial manifolds constructed in [10] attract all

solutions to their exponentially thin neighborhoods in a finite time, which strengthens the

results in [10].

This paper is organized as follows. In the next section, we first show the time analyticity

of the solution. And then we obtain the solution and its time derivative are bounded in

H1−norm. In Section 3, we recall the approximate inertial manifold constructed in [10].

By the time analyticity, we obtain the same results as in [10], but weaken the requirement

of smoothness for initial data. The Gevrey class regularity of the solution is established

in Section 4. As a result, we deduce that the approximate inertial manifold constructed

attracts all solutions to an exponentially thin neighborhood of it.

For notational convenience, let Ω = (0, L1)×(0, L2), and denote by ∥·∥ the norm of L2(Ω)

with usual inner product (·, ·), by ∥·∥Y the norm of any Banach space Y. When no confusion

arising, we also denote by ∥ · ∥ and (·, ·) the norm and inner product of H = L2(Ω)×L2(Ω),

respectively. ∀m ≥ 0, let

Hm
per(Ω) =

{
u ∈ Hm(Ω) : u(k)(x+ L1, y) = u(k)(x, y + L2) = u(k)(x, y),

for 0 ≤ k ≤ m and a.e. x, y
}
.

In the sequel, we frequently use the Agmon inequality

∥u∥∞ ≤ C∥u∥ 1
2 ∥u∥

1
2

H2 ≤ C∥u∥H2 , ∀u ∈ H2(Ω), (1.4)

and the Poincare inequality

∥u∥ ≤ C∥∇u∥, where

∫
Ω

u(x)dx = 0, (1.5)

and

C1∥u∥H2 ≤ ∥u∥+ ∥△u∥ ≤ C2∥u∥H2 , ∀u ∈ H2(Ω), (1.6)

where C1, C2 and C are positive constants.

§2. Time Analyticity of the Solutions

We observe that system (1.1)–(1.3) can be rewritten as

∂

∂t
ξ −△ξ + J(Ψ, ξ) +

Ra

Pr

∂θ

∂x
= 0, (2.1)

△Ψ = ξ, (2.2)

∂

∂t
θ − 1

Pr
△θ + J(Ψ, θ) = 0, (2.3)

where J(u, v) = uyvx − uxvy. These equations are supplemented with the initial condition:

ξ
∣∣∣
t=0

= ξ0(x, y), θ
∣∣∣
t=0

= θ0(x, y), (2.4)

and the periodic boundary condition:

ξ(x+ L1, y) = ξ(x, y + L2) = ξ(x, y),

θ(x+ L1, y) = θ(x, y + L2) = θ(x, y). (2.5)
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It is known from [11] that for (ξ0, θ0) ∈ L2
per(Ω)×L2

per(Ω), the problem (2.1)–(2.5) possesses

a unique solution (ξ, θ) defined for all t ≥ 0 such that

ξ ∈ L∞(R+;L2
per(Ω)) ∩ L2(0, T ;H1

per(Ω)),

θ ∈ L∞(R+;L2
per(Ω)) ∩ L2(0, T ;H1

per(Ω)).

A particular feature of equation (2.3) is that the average of the solution is conservative for

all t ≥ 0, that is,

m(θ(t)) =
1

|Ω|

∫ ∫
Ω

θ(x, y)dxdy =
1

|Ω|

∫ ∫
Ω

θ0(x, y)dxdy = m(θ0). (2.6)

Thus, there can not exist bounded absorbing sets in the whole space H. To overcome this

difficulty, we introduce the subset of H :

Hα = {(ξ, θ) ∈ L2
per × L2

per : |m(θ)| ≤ α}

for some fixed α.

For later purpose, we first establish

Lemma 2.1. Assume that (ξ0, θ0) ∈ Hα, θ0 ∈ H1
per. Then for the solution (ξ, θ) of

problem (2.1)–(2.5) we have ∥ξ(t)∥, ∥θ(t)∥ ≤ K1, ∀t ≥ t1, where K1 denotes a constant

depending only on the data (α,Ω, Pr, Rα), t1 depends on the data (α,Ω, Pr, Rα) and R when

∥ξ0∥ ≤ R and ∥θ0∥ ≤ R.

Proof. For convenience, we denote

θ̃ = θ −m(θ), (2.7)

where

m(θ) =
1

|Ω|

∫ ∫
Ω

θ(x, y, t)dxdy, (2.8)

and then we have
1

|Ω|

∫ ∫
Ω

θ̃(x, y, t)dxdy =
1

|Ω|

∫ ∫
Ω

θ(x, y, t)dxdy − 1

|Ω|

∫ ∫
Ω

m(θ)dxdy = 0. (2.9)

We easily see that

∥θ∥2 = ∥θ̃∥2 + ∥m(θ)∥2. (2.10)

By (2.6), we get

∥m(θ)∥2 = |Ω||m(θ)|2 ≤ α2|Ω|. (2.11)

We note that (2.3), (2.6) and (2.7) imply that

∂

∂t
θ̃ − 1

Pr
△θ̃ + J(Ψ, θ̃) = 0. (2.12)

Taking the inner product of (2.12) with θ̃ in L2, we find that

1

2

d

dt
∥θ̃∥2 + 1

Pr
∥∇θ̃∥2 + (J(Ψ, θ̃), θ̃) = 0. (2.13)

d

dt
∥θ̃∥2 + 2

Pr
∥∇θ̃∥2 = 0. (2.14)

It comes from (2.9) and (1.5) that

d

dt
∥θ̃∥2 + 2

C2Pr
∥θ̃∥2 ≤ 0.
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By Gronwall inequality we infer that

∥θ̃(t)∥2 ≤ ∥θ̃(0)∥2e−C1t ≤ R2e−C1t ≤ α2,

∀t ≥ t∗ =
2

C1
ln

R

α

(
C1 =

2

C2Pr

)
. (2.15)

By (2.10), (2.11) and (2.15) we have

∥θ∥2 ≤ α2|Ω|+ α2, ∀t ≥ t∗. (2.16)

Taking the inner product of (2.1) with ξ in L2 we see that

1

2

d

dt
∥ξ∥2 + ∥∇ξ∥2 + (J(Ψ, ξ), ξ) +

Rα

Pr

(∂θ

∂x
, ξ
)
= 0. (2.17)

By the arguments similar to the above we can deduce that

∥ξ(t)∥2 ≤ C, ∀t ≥ t∗, (2.18)

where t∗ depends on the data and R when ∥ξ0∥ ≤ R and ∥θ0∥ ≤ R. (2.16) and (2.18)

conclude Lemma 2.1.

Lemma 2.2. Suppose that the conditions of Lemma 2.1 hold, then we have

∥∇ξ(t)∥, ∥∇θ(t)∥ ≤ K2, ∀t ≥ t2,

where K2 depends only on the data, t2 depends on the data and R when ∥ξ0∥ ≤ R and

∥θ0∥ ≤ R.

Proof. Taking the inner product of (2.1) with △ξ in L2, we find that

d

dt
∥∇ξ∥2 + ∥△ξ∥2 = (J(Ψ, ξ),△ξ) +

Ra

Pr

(∂θ

∂x
,△ξ

)
. (2.19)

After simple computations we find that

d

dt
∥∇ξ∥2 ≤ 2C1∥∇ξ∥4 + 2C3∥∇θ∥4 + 2C4. (2.20)

Taking the inner product of (2.3) with △θ in L2, we find that

d

dt
∥∇θ∥2 + 1

Pr
∥△θ∥2 = (J(Ψ, θ),△θ). (2.21)

From the above we can deduce that
d

dt
∥∇θ∥2 ≤ 2C5∥∇ξ∥4 + 2C6∥∇θ∥4. (2.22)

By (2.20) and (2.22) and the uniform Gronwall lemma we can conclude Lemma 2.2.

As an immediate consequence of Lemma 2.1 and Lemma 2.2, we have

∥ξ(t)∥H1 , ∥θ(t)∥H1 ≤ K, ∀t ≥ t∗, (2.23)

where K depends only on the data (α,Ω, Pr, Ra), t∗ as before.

In order to show the time analyticity of the solution, we first rewrite system (2.1)–(2.3)

as an abstract equation. Let

u = (ξ, θ), D =

(
1 0
0 1

Pr

)
.

Then by (2.1)–(2.3) we see that

du(t)

dt
+DAu(t) +R(u(t)) = 0, (2.24)



No.2 Guo, B. L. & Wang, B. X. GEVREY REGULARITY FOR N-B EQUATIONS 183

where A = −△ is an unbounded self-adjoint operator with domain D(A) = H2
per(Ω), and

AΨ = −ξ, R(u) =

(
J(Ψ, ξ) + Ra

Pr

∂θ
∂x

J(Ψ, θ)

)
, (2.25)

which is a nonlinear operator from H1
per ×H1

per to L2
per × L2

per. In fact we have

∥R(u)∥ ≤ ∥J(Ψ, ξ)∥+ Ra

Pr
∥∇θ∥+ ∥J(Ψ, θ)∥

≤ C∥∇△Ψ∥∥∇ξ∥+ Ra

Pr
∥∇θ∥+ C∥∇△Ψ∥∥∇θ∥

≤ C∥∇ξ∥2 + Ra

Pr
∥∇θ∥+ C∥∇ξ∥∥∇θ∥

≤ C1∥u∥2H1 + C2∥u∥H1 . (2.26)

And then we find that

|(R(u), Au+ u)| ≤ ∥R(u)∥(∥Au∥+ ∥u∥)
≤ C1∥u∥2H1∥Au∥+ C2∥u∥H1∥Au∥+ C1∥u∥3H1 + C2∥u∥2H1

≤ ϵ∥Au∥2 + C(ϵ)∥u∥4H1 + C, ∀ϵ > 0. (2.27)

By (2.26) And (2.27) we have

Theorem 2.1. Assume that (ξ0, θ0) ∈ Hα, θ0 ∈ H1
per. Then there exist β0 and T0 such

that the solution (ξ(t), θ(t) of problem (2.1)–(2.5) has a D(A) valued analytic extension in

a complex region of the form

△1 =
{
t+ seiβ : t ≥ t1, |β| ≤ β0, 0 ≤ s ≤ T0

}
,

where t1 as in (2.23), β0 and T0 depend on the data and |β0| ≤ π/4. In addition, there exists

a constant K depending on the data such that ∀z ∈ ∆2,

∥ξ(z)∥, ∥θ(z)∥, ∥A1/2ξ(z)∥, ∥A1/2θ(z)∥, ∥Aξ(z)∥, ∥Aθ(z)∥ ≤ K, (2.28)

where

△2 = {z : Re z ≥ a, |Im z| ≤ b}.

Here a and b are constants depending on the data and R when ∥ξ0∥ ≤ R, ∥θ0∥ ≤ R.

Proof. We notice that (2.23) and (2.27) show that the conditions of Theorem 1.1 in

[12] hold. Thus, by Theorem 1.1 there we can easily obtain this theorem. The details are

omitted here.

§3. Approximate Inertial Manifolds

In this section, we introduce an approximate inertial manifold for the system (2.1)–(2.5).

We first note that there exists an orthonormal basis {wj}∞j=1 of H consisting of eigenvectors

of A = −△ such that

Awj = λjwj , 0 = λ1 < λ2 ≤ · · · ≤ λj → ∞, as j → ∞.

Given m, denote by P = Pm : H → span{w1, · · · , wm} the projector, Q = Qm = I − Pm.

Applying Pm and Qm to (2.1)–(2.3) we obtain the following coupled system for ξ1 = Pmξ,
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ξ2 = Qmξ, θ1 = Pmθ, θ2 = Qmθ:

d

dt
ξ1 +Aξ1 + PmJ(Ψ, ξ) +

Ra

Pr
Pm

∂θ

∂x
= 0,

d

dt
ξ2 +Aξ2 +QmJ(Ψ, ξ) +

Ra

Pr
Qm

∂θ

∂x
= 0, (3.1)

d

dt
θ1 +

1

Pr
Aθ1 + PmJ(Ψ, ξ) = 0,

d

dt
θ2 +

1

Pr
Aθ2 +QmJ(Ψ, ξ) = 0. (3.2)

Lemma 3.1. Assume that (ξ0, θ0) ∈ Hα, θ0 ∈ H1
per. Then there exists a constant K

depending only on the data such that

∥A1/2ξ2(t)∥ ≤ Kλ−1
m+1, ∥A1/2θ2(t)∥ ≤ Kλ−1

m+1, ∀t ≥ t1,

where t1 depends on the data and R when ∥ξ0∥ ≤ R and ∥θ0∥ ≤ R.

Proof. The proof of this lemma is standard, so is omitted here.

We observe that Theorem 2.1, Lemma 3.1 and Cauchy formula imply that there exists a

constant K1 depending on the data such that∥∥∥A1/2 d

dt
ξ2(t)

∥∥∥, ∥∥∥A1/2 d

dt
θ2(t)

∥∥∥ ≤ K1λ
−1
m+1, ∀t ≥ t∗. (3.3)

We now construct an approximate inertial manifold. To the end, we define a mapping Φ

from PmH to QmH such that for (ξ1, θ1) ∈ PmH, Φ(ξ1, θ1) = (f, g) is given by

Af +QmJ(Ψ1, ξ1) +
Ra

Pr
Qm

∂θ1
∂x

= 0, (3.4)

−AΨ1 = ξ1, (3.5)

1

Pr
Ag +QmJ(Ψ1, θ1) = 0. (3.6)

Let Σ = graph (Φ). Then we can show that Σ is an approximate inertial manifold. More

precisely, we have

Theorem 3.1. Suppose (ξ0, θ0) ∈ Hα, θ0 ∈ H1
per. Then there exists a constant K

depending only on the data (α,Ω, Pr, Ra) such that any solution (ξ(t), θ(t)) of problem (2.1)–

(2.5) remains at a distance in H of Σ bounded by Kλ−2
m+1 for t ≥ t∗, where t∗ depends on

the data and R when ∥ξ0∥ ≤ R, ∥θ0∥ ≤ R.

Proof. The procedure of the proof of this theorem is similar to that of Theorem 4.2

below, so we omit the details here.

We remark that Theorem 3.1 improves the results of [10], where the distance is only

bounded by Kλ
−3/2
m+1 and the initial values are required to be more smooth.

§4. Gevrey Class Regularity

In this section, we show that the solution of (2.1)–(2.5) is analytic with a value not only

in D(A), but also in a Gevrey class of functions on Ω, and hence in C∞(Ω). Based on this

fact, we strengthen Theorem 3.1.

For simplicity, in the following, we assume that Ω = (0, 2π)2 and∫
Ω

u(x, t)dx = 0, ∀t > 0. (4.1)
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Lemma 4.1. Suppose that u = (ξ, θ) and w = (w1, w2) are both given in D(eτA
1/2

A),

τ > 0. Then we have

|(eτA
1/2

R(u), eτA
1/2

Aw)|

≤ C∥eτA
1/2

A1/2u∥2∥eτA
1/2

Aw∥+ C∥eτA
1/2

A1/2u∥∥eτA
1/2

Aw∥,

where C is an appropriate constant.

Proof. We set

Ψ =
∑
k,l∈Z

Ψk,le
i(kx+ly), (4.2)

Ψ∗ = eτA
1/2

Ψ =
∑
k,l∈Z

Ψ∗
k,le

i(kx+ly),

Ψ∗
k,l = eτ |(k,l)|Ψk,l; (4.3)

w1 =
∑

p,q∈Z

wp,qe
i(px+qy), (4.4)

w∗
1 = eτA

1/2

w1 =
∑
p,q

w∗
p,qe

i(px+qy),

w∗
p,q = eτ |(p,q)|wp,q. (4.5)

And then we have

ξ = △Ψ = −
∑
k,l

Ψk,l(k
2 + l2)ei(kx+ly), (4.6)

ξ∗ = △Ψ∗ = −
∑
k,l

Ψ∗
k,l(k

2 + l2)ei(kx+ly). (4.7)

By (2.25) we have

(eτA
1/2

R(u), eτA
1/2

Aw)

= (eτA
1/2

J(Ψ, ξ), eτA
1/2

Aw1) +
Ra

Pr

(
eτA

1/2 ∂θ

∂x
, eτA

1/2

Aw1

)
+ (eτA

1/2

J(Ψ, θ), eτA
1/2

Aw2). (4.8)

We now majorize every term in the right-hand side of (4.8) as follows. By (3.7) we have

(J(Ψ, ξ), w1) =

∫ ∫
Ω

Ψyξxw1dxdy −
∫ ∫

Ω

Ψxξyw1dxdy. (4.9)

Since ∫ ∫
Ω

Ψyξxw1dxdy

= −
∫ ∫

Ω

∑
k,l

Ψk,lile
i(kx+ly)

∑
r,s

Ψr,s(r
2 + s2)irei(rx+sy)

∑
p,q

wp,qe
−i(px+qy)dxdy

= 4π2
∑

k+r=p, l+s=q

(Ψk,l · l)Ψr,s(r
2 + s2)rwp,q, (4.10)

and similarly,∫ ∫
Ω

Ψxξyw1dxdy = 4π2
∑

k+r=p, l+s=q

(Ψk,l · k)Ψr,ss(r
2 + s2)wp,q, (4.11)
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we see that

(eτA
1/2

J(Ψ, ξ), eτA
1/2

Aw1)

= (J(Ψ, ξ), e2τA
1/2

Aw1)

= 4π2
∑

k+r=p, l+s=q

(Ψk,l · l)Ψr,sr(r
2 + s2)e2τ |(p,q)|(p2 + q2)wp,q

− 4π2
∑

k+r=p, l+s=q

(Ψk,l · k)Ψr,ss(r
2 + s2)e2τ |(p,q)|(p2 + q2)wp,q

= 4π2
∑

k+r=p, l+s=q

(Ψ∗
k,l · l)Ψ∗

r,sr(r
2 + s2)w∗

p,q(p
2 + q2)eτ(|(p,q)|−|(k,l)|−|(r,s)|)

− 4π2
∑

k+r=p, l+s=q

(Ψ∗
k,l · k)Ψ∗

r,ss(r
2 + s2)w∗

p,q(p
2 + q2)eτ(|(p,q)|−|(k,l)|−|(r,s)|).

(4.12)

Due to p = k + r, q = l + s, we see that |(p, q)| ≤ |(k, l)|+ |(r, s)|, and then

eτ(|(p,q)|−|(k,l)|−|(r,s)|) ≤ 1. (4.13)

And thus by (4.12) and (4.13) we find that

|(eτA
1/2

J(Ψ, ξ), eτA
1/2

Aw1)|

≤ 4π2
∑

k+r=p, l+s=q

|Ψ∗
k,l · l| · |Ψ∗

r,sr(r
2 + s2)| · |w∗

p,q(p
2 + q2)|

+ 4π2
∑

k+r=p, l+s=q

|Ψ∗
k,l · k| · |Ψ∗

r,ss(r
2 + s2)| · |w∗

p,q(p
2 + q2)|. (4.14)

Let

α(x, y) =
∑
k,l

|Ψ∗
k,l| · |l|ei(kx+ly), (4.15)

β(x, y) =
∑
r,s

|Ψ∗
r,s|(r2 + s2)|r|ei(rx+sy), (4.16)

η(x, y) =
∑
p,q

|Ψ∗
p,q|(p2 + q2)ei(px+qy). (4.17)

Then we see that

4π2
∑

k+r=p, l+s=q

|Ψ∗
k,l · l| · |Ψ∗

r,sr(r
2 + s2)| · |w∗

p,q(p
2 + q2)|

=

∫ ∫
Ω

α(x, y)β(x, y)η(x, y)dxdy

≤ ∥α(x, y)∥∞∥β(x, y)∥∥η(x, y)∥
≤ C∥α(x, y)∥H2∥β(x, y)∥∥η(x, y)∥
≤ C(∥α(x, y)∥+ ∥△α(x, y)∥)∥β(x, y)∥∥η(x, y)∥
≤ C∥∇△Ψ∗∥2∥△w∗

1∥ = C∥∇ξ∗∥2∥△w∗
1∥. (4.18)

Similarly, the second term in the right-hand side of (4.14) can also be bounded by (4.18).

And then it follows from (4.14) and (4.18) that∣∣∣(eτA1/2

J(Ψ, ξ), eτA
1/2

Aw1)
∣∣∣ ≤ C∥eτA

1/2

A1/2ξ∥2∥eτA
1/2

Aw1∥

≤ C∥eτA
1/2

A1/2u∥2∥eτA
1/2

Aw∥. (4.19)
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Similarly, we can also deduce that∣∣∣Ra

Pr

(
eτA

1/2 ∂θ

∂x
, eτA

1/2

Aw1

)∣∣∣ ≤ C1∥eτA
1/2

A1/2u∥∥eτA
1/2

Aw∥, (4.20)∣∣∣(eτA1/2

J(Ψ, θ), eτA
1/2

Aw2

)∣∣∣ ≤ C2∥eτA
1/2

A1/2u∥2∥eτA
1/2

Aw∥. (4.21)

By (4.8) and (4.19)–(4.21) we conclude Lemma 4.1.

We note that if u(t) = (ξ(t), θ(t)) is a solution of problem (2.1)–(2.5), then Lemma 4.1

implies that

|(eτA
1/2

R(u), eτA
1/2

Au)|

≤ C∥eτA
1/2

A1/2u∥2∥eτA
1/2

Au∥+ C∥eτA
1/2

A1/2u∥∥eτA
1/2

Au∥

≤ ε∥eτA
1/2

Au∥2 + C(ε)∥eτA
1/2

A1/2u∥4 + C1, ∀ε > 0. (4.22)

This inequality shows Lemma 3.1 in [12], and thus by Theorem 3.1 in that paper we obtain

Theorem 4.1. Assume that (ξ0, θ0) ∈ Hα, θ0 ∈ H1
per. Then there exists a constant σ

depending on the data (α,Ω, Pr, Ra) such that any solution (ξ(t), θ(t)) of problem (2.1)–(2.5)

has a D(A1/2 exp(σA1/2)) valued analytic extension in a complex region of the form

△ = {t+ seiβ : t ≥ t∗, |β| ≤ β0, 0 ≤ s ≤ T0}. (4.23)

Moreover,

∥eσA
1/2

A1/2ξ(z)∥ ≤ K, ∥eσA
1/2

A1/2θ(z)∥ ≤ K, for z ∈ △, (4.24)

where, β0, T0, and K depend on the data, |θ0| ≤ π
4 , t∗ depends on the data and R when

∥ξ0∥ ≤ R, ∥θ0∥ ≤ R.

Proof. (2.23) and (4.22) verify the conditions of Theorem 3.1 in [12], and hence this

theorem follows from that result.

Lemma 4.2. Assume (ξ0, θ0) ∈ Hα, θ0 ∈ H1
per. Then there exists a constant K depending

only on the data such that

∥A1/2ξ2(t)∥, ∥A1/2θ2(t)∥ ≤ Kλ
−1/2
m+1 e

−σλ
1/2
m+1 , ∀t ≥ t0,

where t0 depends on the data and R when

∥ξ0∥ ≤ R, ∥θ0∥ ≤ R.

Proof. The proof of this lemma is standard now, and hence is omitted here.

Based on Lemma 4.2, we can easily deduce

Theorem 4.2. Assume that (ξ0, θ0) ∈ Hα, θ0 ∈ H1
per. Then there exists a constant K

depending on the data such that any solution (ξ(t), θ(t)) of problem (2.1)–(2.5) remains at a

distance in H of
∑

bounded by Kλ
−3/2
m+1 e−σλ

1/2
m+1 when t ≥ t∗, where t∗ depends on the data

and R when

∥ξ0∥ ≤ R, ∥θ0∥ ≤ R.

Proof. The proof of this theorem is omitted.

We remark that Theorem 4.2 states that Σ attracts any solution to an exponentially thin

neighborhood of it. And therefore Theorem 4.2 is stronger than Theorem 3.1.
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