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BIFURCATIONS OF LIMIT CYCLES FROM A
HETEROCLINIC CYCLE OF HAMILTONIAN SYSTEMS**
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Abstract

This paper is concerned with the bifurcations of limit cycles from a heteroclinic cycle of
planar Hamiltonian systems under perturbations. The author obtains a simple condition which
guarantees the existence of at most two limit cycles near the heteroclinic cycle.
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§1. Normal Forms of Displacement Functions

Consider a planar C* system of the form

&= f(z)+Afolz,8,7) = f(z,0,)), (L.1)
where * € R?2, A\ € R, § € R™, and trDf(z) = 0. Suppose that for A = 0 (1.1)
has a heteroclinic cycle L consisting of two hyperbolic saddle points SP(i = 1,2) and

two separatrice L;(1 = 1,2). For definiteness, we assume that L is oriented clockwise
and that L; starts at S{ and ends at SY. Choose points A; € Ly, Ay € Ly near S,
and Az € Ly, Ag € Ly near S9. Let I; be a cross section through A; and parallel to
the vector n; = —gradH(A;)/ | gradH(4;) | (i = 1,2,3,4). We define Poincaré maps
Fy 1y = 1y, Fy:ly — 1y using positive orbits, and G : I1 — I3, G : l3 — l4 using negative
orbits. Let Fy(u,d,\) = Fy o F; — G5 o Gy which is called a displacement function of (1.1).
Our goal in this section is to give a normal form of Fj.

Let S;(8,\) be the saddle point of (1.1) near S?. Set y = z—S1(, \). We have from (1.1)

g = fly+51(6,A),0,)). (1.2)
Let a11(6,A\) > 0, —a21(5,A) < 0 be eigenvalues of By(§,\) = D, f(S1,6,A\). Then there
exists a reversible matrix 7'(d, \) such that
TB,T~' = diag(ai1, —ag1). (1.3)
From [1,2], for any natural number n, there exists a coordinate change:
Tsn: 2=Ton(y) =T(Ny+O0(ly|*) (1.4)
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which carries locally (1.2) into the C'™° system

n

s =al 2 + Zai121(2122>i + 21(2122)n+1R1,
i=0

22 = 704(1)122 + ZbilZQ(ZlZQ)i -+ 22(zlzg)n+1R2, (15)
i=0

where a(l)l = 0411(5, 0), app = 11 — Oé(lJl, b01 = 05(1)1 — 0921. From (].5) we have

dzo 22 [ - i—1 n+1
oy o +§ 1(z122) + (z122) (1.6)
where
1
011 = 7(0411 — 0421). (17)
a11
Define [} = {20 = —¢, 0 < z; < e}, lp = {21 = ¢,—¢ < 2z < 0} for e > 0. Let

Q, = (e,—q(r,6,)\)) be the first intersection point of I with the positive orbit of (1.5)
through P, = (r,—¢) € ;. This defines the Dulac map ¢. Letting z; = ev; in (1.6), from
[1,5] we have

q(r,6,\) =74+ Crifrwy + -] + Cr1e™ 1 r"wr + -+ - 4 ©n1, (1.8)

where w; = frl/a t=1=Cudt, p,; is of O™ for 0 < r < ¢ and n-flat at » = 0. Every bracket in
(1.8) consists of finite combinations of terms riw! (0 < j < i < n) with [riwy +- - -] = rivy (14
o(1)). It is easy to see that the separatrice L3, LY of (1.2) near Lo, L; have T71(0,1)T and
T=1(1,0)T as their directional vectors respectively. Let Py = (0, —¢), Qq = (¢,0) satisfy

A =T 1 (Po), A2 =T5 ' (Qy), (1.9)
where Ty = T5. Let P,(Q.) be the intersection point of /1 (I2) with the orbit of (1.2) passing
through 7 Al (P,) near y = 0. Then we can write

Pu:Al +’LL711, Qu:A2+F1(u,5,)\)n2. (110)

Using the similar method in proving Lemma 7.11 (see [2]) we have
Lemma 1.1. It holds that uw = W1(r,d,\) and Fy = Wa(q,d, A), where
Wi = Ni(6,A) + M; (8, \)r + O(r%),  N;(6,0) =0,
M;(6,0) = B;sinfy + o(1) for0 <e <1, i=1,2,
Bi=|T7H8,0)(1,0)" [, B2 =|T71(5,0)(1,0)" |,
and 0y is the angle between Ly and Lo at SY.
We have immediately from (1.8) and Lemma 1.1
Lemma 1.2. Fy(u,0,\) = No + Ma(r + Cii[rwy + -] + -+ + Cp1e™ rwy +---]) +

Yn1 + 72pp1, where v > 0 satisfies u = Wi(r,6,\), ¥n1 is n-flat at v = 0, and p,1 is a
polynomial with respect to r.

Lemma 1.3. For € > 0 small we have

| f(A1) |= Beatie + O(e?), | f(A2) |= Bratie + O(?).
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Proof. Since f(S?) = 0, we have from (1.3), (1.4) and (1.9)
f(A1) = Df(S]) A1 +O( A ")

= B1(6,0)T1(3,0)Po + O(| Py

=ca?, T71(5,0)(0,1)T + O(?).

2
|

)

Then the first equality follows. The second can be proved similarly.

Let diag(—aws, a12) be Jordan form of D, f(Ss,d,\) with ayo > 0. In a similar way to
(1.5), we can obtain a normal form of (1.1) at Ss. Then by changing the sign of the time
we have the following expression of Go similar to that of F; in Lemma 1.2:

Go(v,8,A) = Nu+ My(F + Cra[fwg + -] + - 4 Cpoe" [T wr +---])
+1Zn2(777 6a )‘> +F§n2(F7 67 >\)7 (111)

where wy = ff/e t—1-Cragy,

T
1
Cro = 7(0422 - 0112),
Q22

U=N3((5,>\)+M3(5,)\)?+ O(?‘Q) EW3(7’~1,(5,>\), (112)

N;(0,0) =0, M;(6,0)=g;sinfy+o0(l) for 0<e<x 1, i=3,4,
(1.13)

and 6 is the angle between L; and Lo at S, {an is n-flat as ¥ = 0, pn2 is a polynomial
with respect to 7.

Also, similar to Lemma 1.3 we have
| f(A3) |= Baagee + O(e?), | f(Aa) |= Baadae + O(e?), (1.14)

where a9, = a92(d,0). Let X;(¢) be a representation of L; and let to < t4, t; > t3 be such
that

Xi(t;) =A4;, j=2,4, Xo(t;) =A4,, j=1,3. (1.15)
Then it is easy to see that
Z(t2) = —na, Z(tg) = —na, (1.16)
where Z(0) = (=V2(0),Vi(0))", (Vi(0),V2(0)) = Xi(0)/ | X{(0) |, t2 < 0 < ts. By
introducing the change of variables

r=X1(0) + Z(0)p, ty <0 <y, (1.17)

to (1.1) we obtain (see [1, 2])
dp

25 = Bo(0, )X+ A(0)p+ O(| p, A %), (1.18)

where Ry(0,0) = ZT fo(X1,6,0), A(f) =trDf(X1) — (In | f(X1) |)’. It is direct that
| F(X1) | 27 fo(X1,6,0) = f(X1) A fo(X1,6,0).

Let p(6,d,\) be the solution of (1.18) satisfying p(t2,d,A) = —a. Then from (1.15)—(1.17)
we have

Fy(a,0,)) = —p(ts,6,0) = Lia — ()X + O(] a, A |?), (1.19)
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where
| f(A2) | 1
h=vrany 2O= 1y ), & Ao d 0. (1.20)
In the same way, we have
G1(a,6,\) = Jia — Jo ()X + O(] a, A [*), (1.21)
where
_ Ay 1
=Ty 2O T /t F(X2) A fo(X2,6,0)db. (1.22)

From (1.19) and Lemma 1.2 it follows that
(Fpo F1)(u,0,\) = a1 + asr + agéll[rw +o ]+t agénlsn_l[r"wl +--]
+ Zan + 7n2,ﬁn1 = ﬁ'(?", 5; A)a (123)

where
’l,L:]\/vl—|—]\41’I“—‘r0(’l"2)7 ay :IlNQ—IQ)\+O()\2), (1 24)
GQZIlMQ(l—‘rO()\)), Ci :Cil(l—l-O(/\)), t1=1,---.,n, '
and @an is n-flat at r = 0, p,1 is a polynomial in r. From (1.11) we have
(G2 (¢] Gl)(u,5, )\) = N4 -+ M4F+ M4012[7’:w2 + .- ] + -4+ M4Cn2[FnLJ2 + - ]
+ o + P2 = G(7, 6,1), (1.25)

where, from (1.12), 7 satisfies G1 (u, 6, \) = N3+ M37+ O(7?). Hence from (1.21) and (1.24)
we obtain

7= MLB(Gl(u,é, A)— N3)(1+O(] Gy — N3 |))

= b1 (3, \) + b2 (6, \)r + O(r?), (1.26)
where
by = ML?’(JIN1 — JoA = N3) + O(\?), by = J M;/Ms. (1.27)
Then we can give the following normal form Fy from (1.23), (1.25) and (1.26):
Fo(u,6,\) = Fo(r,0,A) = F(r,8,\) — G(7,8,\) = F(r,6,\) — G(F, 6, ), (1.28)

where u = Wi (r, 0, A), and
G(7,0,0) = G(7,0,\) — Ny = My¥ — s
= MyCha[fwg + -] 4+ + MyCroe™ ' [Fwy + - -] + QZnQ’

(1.29)
F(r,86,\) = F(r,8,\) — Ny — My — 71hns
= a1 + asr + azau[’l“wl + - ] + -4+ agénlﬁn_l[anl + - ]
+ U1 + 7Pt (1.30)
@1 =a; — Ny — Myby + O(N?), @y = ag — Myby + O(N). (1.31)

For | A | small, (1.1) has a periodic orbit near L if and only if Fy has a root r > 0 with
7 > 0, and has a homoclinic or heteroclinic loop if and only if Fy has a root r > 0 with
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r7 = 0 such that r» +7 > 0 (homoclinic case) or r = 7 = 0 (heteroclinic case). From [2] we

have
_ _ _ Ml((s) 2
ay — Ny = [ 7(AD) |)\—|—O()\ ),
o My(9) 2
G1(N1,0,\) — N3 = A | |)\+O(>\ )s (1.32)
where
() :/m FOXO) A fo(X0,5,0)dt,  i=1,2. (1.33)
From (1.21) and (1.27),
_ M»(9) 2
Msb, = TF(A3) l/\+0()\ ). (1.34)

§2. Bifurcations Near the Heteroclinic Cycle

Let A* = Ay 4+ (G20G1)(u, 6, \)na, B* = Ay + (Fy0 Fy)(u, 6, \)ng, where u = Wi(r,J, A).
We have

H(B*)—H(A*)=X¢ fA folz,8,0)dt + O(\?),
Ly,

where h = h(r), L, C {H = h}, and L, = L for r = 0. On the other hand, the mean value
theorem implies that

H(B*)— H(A*) =DH(A")(B* — A*)+O(]| B* — A" |2)
= — | f(A4) | Fo(r,6,\)(1+ o(1)).
Then we can write
Fo(r,8,\) = AF§ (1,8, )), (2.1)
where

T P o 602 —— L TT(6) 4 T
F3 (0,6,0) = UMO@;éfMMﬁmﬁ|ﬂ&MMMHWMM~ (2:2)

Since (1.1) is Hamiltonian for A = 0, we can suppose
Cia = ANC5(6, ), Cit = ACH(6,N), i=1,---,n,

a; = Aaj(0,7), Ui = AP =12 23
It follows from (1.29)—(1.30) and (2.1) that
Ej(r,0,\) = F(r,0,\) — G(7, 6, \), (2.4)
where
G(F,6,0) = MiClylfin + -] + -+ MiClge™ [ + -] £ 0, (25)

F(r,0,\) = aj +a5r + axCl[rwy +- -]+ + anglsn_l[T"wl +]HYr 4 7‘2p;1. (2.6)

It is direct from (1.26), (2.2) and (2.4)—(2.7) that
* _ 1 T Vs
43(6.0) =~ (O (9)+ TTa(9). (2.7
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Hence we know from (2.1), (2.4)—(2.7) that a necessary condition for L to generate a cycle
is M1(80) + M2(dp) = 0 for some 6y € R™. Hence, we make the following assumption

M1(80) + M3(80) =0,  Cf;(80,0) = (C15)}(60,0) #0, j=1,2. (2.8)
From (1.26), there is a unique function given by
r:—%ﬂ+0@»5mwj) (2.9)
such that
7> 0 if and only if r > ro(d, A). (2.10)

Notice that from (2.4), (2.6) and (2.10)
EJ |l7=0= F(ro(6,A),0,A), F§ |r=0=a" — G(b1,4,\).
If b1 < 0, the homoclinic loop at S; is formed if and only if
F(ro(5,A),0,e) =0. (2.11)

If by > 0, the homoclinic loop at Sy is formed if and ouly if af — G(b,5,\) = 0. And from
(1.31), (2.3), (1.32) and (1.34), the heteroclinic cycle is formed if and only if

a; — N4 = O, M3b1 =0. (212)
Consider the following two curves
Ky :y=F(r,0,\) and K : y = G(7,5, \). (2.13)

It is easy to see that the curves K; and K has at most one intersection point if C7;CYy < 0,
which implies the uniquenss of limit cycles near L (see [3]). Hence, we may suppose
C11(%0,0)

C1iCiy >0, C 0 == 2.14
11tz > U, 1n>U 7 1, (30, 0) (2.14)
From (2.5), (1.36) and [4,5], we have
Fl = asChiw(1+ (0(1)),  F, = —agCie“r 17 (1 4+ 0(1)), (2.15)
G! = MybyCiowa(1+ 0(1)), G, = —Myb3Cirer27=17C12(1 4 0(1)). '

Lemma 2.1. Let (2.8) and (2.14) hold. If yo # 1, for any small number 1 > 0, there is
0 < g9 < e such that

Clil =) (F—G) <0 foreg <r<e1, |[d—00|<e0, |A|<eo.

Proof. Tt suffices to prove that C; (1 —79)(F—G) <0for § =dp, A=0and 0 < r < 1.
In fact, from (1.31), (2.3), (2.5)-(2.8), we have

F
as = M4b2, a = ’}/0(1 —+ 0(].)) for A =0 and | o — 50 |<< 1. (216)
Then the conclusion follows.

Let
| F(ro,6,A), for b1 <0,
(@, A) = {a; —G(b1,5,)), for by >0,
Theorem 2.1. Let (2.8) and (2.14) hold, and let vo # 1 and by(1 — ) < 0. Then (1.1)
has at most one limit cycle near L for | 6 — g | and | A |> 0 small. More precisely, (1.1)

(2.17)

has a unique limit cycle if and only if C31(1 — yo)u(d, \) > 0, and has a homoclinic loop
(heteroclinic loop) if and only if u(d,\) =0, by # 0, u(d,\) =b; =0.
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Proof. We suppose b; < 0,7 < 1. It follows that 7 < byr + O(r?). Then from (2.15),

F: CLQCikl
— S
G~ Mb3Cy,

r

Note that r©12=¢11 < 1 from (2.14). We have

(b + O(r)) 12 Cra=Cn,

9

F
G’T” <v(1l+o0(1) <1 for0<r<1. (2.18)

T

Therefore, the curves Ky and K> in (2.13) have at most two intersection points for r > 0.

In the case of b; < 0, we have
G=0,0<C} F <00, C{G, =+0c0 for r=r.

It implies from (2.18) and Lemma 2.1 that K; and K5 have no point (a unique point (r*, y*))
in common for r > 9 when uCj; < 0(> 0). Moreover, r* > (=)rg if u # (=)0. Hence,
noting (2.11), the conclusion follows. In the case of by = 0, we can prove that F//G] — 0
as r — 0, and the conclusion follows in the same way.

Lemma 2.2. Let (2.8) and (2.14) hold. If vo # 1, then the function (F — G)T has at
most one root with respect to r for | § — g |,| A|,7 >0 and 7 > 0 all small.

Proof. From (2.5), (2.6) and [4,5], we have

9

FT = 5012_011 aQCile_l_CH (A()‘) +gl(r)

G, Myb3C1yT—1=12(B(A) + g2(7))

where
A(0)=B(0)=1, ¢1(0)=g2(0)=0, rgi(r)=0(1), 7g5(F)=o(1). (2.19)
Hence, F, — G, = 0 if and only if

1
g(r) = (4“2511* Cu—cn> TR (B4 o) T — r(A 4 g)) T =0,
Myb5CTy

Notice that 7. = by + O(r). By (2.19), we have
Ci10—-C
g'(r) =07 T (L4 @2 (WD) — (L+ G (A1),

where g; = o(1), ¢ = 1,2. It gives that ¢’(r) < 0(> 0) if vo < 1(> 1) since Fitont < 1(>1)
if vo < 1(>1).

This finishes the proof.

Theorem 2.2. Let (2.8) and (2.14) hold, vo # 1,b1(1 — v9) > 0. Then there exists
u* (0, A) satisfying C71(1 — vo)(u* — u(0,A)) < 0 such that for | § — oo | and | A |> 0 small
and in a neighbourhood of L (1.1) has

(1) a unique limit cycle if C71(1 —~yo)u > 0;

(ii) @ unique homoclinic loop and a unique limit cycle if u = 0;

(iil) ezactly two limit cycles if Cf1(1 — vo)u* < CF1 (1 —vo)u < 0;

(iv) a unique semistable limit cycle if u* = u;

(v) no cycles if Ci1(1 —vo)u < Cf1(1 — yo)u.

Proof. Without loss of generality, we suppose that v9 < 1, C7; > 0 and b; > 0. Then
from (2.17), if u > 0, we have F' > G for r = 0. Notice that C}; F} = 400, 0 < Cf;GL. < 0
at r = 0. By Lemmas 2.1 and 2.2, the curves K; and K> have a unique intersection point
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for > 0. When u = 0, the end point (r,y) = (0,0) of K7 and K3 is also a intersection
point.

For uw < 0, let h(r,af,b1,0,\) = F — G. We have gah,{ = 1. From the above discussion,
when af = G(b1,0, ), K1 and K3 have exactly two intersection points (including the end
point) for > 0. By Lemma 2.2 we can prove that when 0 < —h(0,af,b1,0,\) < 1, K7 and

K5 have exactly two intersection points P;(r;,y;) with ro > r;. Obviously

(~1)(F = G). |,=r,< 0, =12
It follows that there exists A*(by,d, A) such that Py # Py(Py = P, = P) if a7 > A* (a7 = A"),
and P disappears if af < A*. Then the theorem follows by letting u* = A*(by1,6,\) —
G(b1,6, ). The proof is completed.

Remark 2.1. Suppose that 6 € r, M1(8) # 0, and (M, + MQ)I((So) # 0. From (2.7) and
(2.17), we can solve § = 67(\) = g + o(1) from u(d, \) = 0, and § = §5(\) = dg + o(1) from
u* (3, \) = u(d, ). They correspond to homoclinic loop and semistable cycle bifurations. If
§€ R? M;(0p) =0, i=1,2, and det%(ﬂl,ﬂg) # 0 at 6 = dp, then equation (2.12) has a
unique solution & = 6(\) = dy + O(A) which gives the heteroclinic loop bifurcation. We can

also give bifurcation surfaces for two homoclinic loops and the semistable cycle.

The following is immediate from Theorems 2.1 and 2.2.

Theorem 2.3. Let (2.8) and (2.14) hold. If v9 # 1, (1.1) has at most two limit cycles
near L for | § — 6o | and | X |> 0 small.

Remark 2.2. Recently Han Maoan and Zhng Zhifen prove that Theorem 2.3 is true if
C11(80,0) # CT(d0, 0).
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