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BIFURCATIONS OF LIMIT CYCLES FROM A

HETEROCLINIC CYCLE OF HAMILTONIAN SYSTEMS**
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Abstract

This paper is concerned with the bifurcations of limit cycles from a heteroclinic cycle of

planar Hamiltonian systems under perturbations. The author obtains a simple condition which
guarantees the existence of at most two limit cycles near the heteroclinic cycle.
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§1. Normal Forms of Displacement Functions

Consider a planar C∞ system of the form

ẋ = f(x) + λf0(x, δ, λ) ≡ f(x, δ, λ), (1.1)

where x ∈ R2, λ ∈ R, δ ∈ Rm, and trDf(x) = 0. Suppose that for λ = 0 (1.1)

has a heteroclinic cycle L consisting of two hyperbolic saddle points S0
i (i = 1, 2) and

two separatrice Li(1 = 1, 2). For definiteness, we assume that L is oriented clockwise

and that L1 starts at S0
1 and ends at S0

2 . Choose points A1 ∈ L2, A2 ∈ L1 near S0
1 ,

and A3 ∈ L2, A4 ∈ L1 near S0
2 . Let li be a cross section through Ai and parallel to

the vector ni = −gradH(Ai)/ | gradH(Ai) | (i = 1, 2, 3, 4). We define Poincarè maps

F1 : l1 → l2, F2 : l2 → l4 using positive orbits, and G1 : l1 → l3, G2 : l3 → l4 using negative

orbits. Let F0(u, δ, λ) = F2 ◦ F1 −G2 ◦G1 which is called a displacement function of (1.1).

Our goal in this section is to give a normal form of F0.

Let Si(δ, λ) be the saddle point of (1.1) near S
0
i . Set y = x−S1(δ, λ). We have from (1.1)

ẏ = f(y + S1(δ, λ), δ, λ). (1.2)

Let α11(δ, λ) > 0, −α21(δ, λ) < 0 be eigenvalues of B1(δ, λ) = Dxf(S1, δ, λ). Then there

exists a reversible matrix T (δ, λ) such that

TB1T
−1 = diag(α11,−α21). (1.3)

From [1,2], for any natural number n, there exists a coordinate change:

Tδ,λ : z = Tδ,λ(y) = T (δ, λ)y +O(| y |2) (1.4)
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which carries locally (1.2) into the C∞ system

ż1 = α0
11z1 +

n∑
i=0

ai1z1(z1z2)
i
+ z1(z1z2)

n+1
R1,

ż2 = −α0
11z2 +

n∑
i=0

bi1z2(z1z2)
i
+ z2(z1z2)

n+1
R2, (1.5)

where α0
11 = α11(δ, 0), a01 = α11 − α0

11, b01 = α0
11 − α21. From (1.5) we have

dz2
dz1

=
z2
z1

[
− 1 +

n+1∑
i=1

Ci1(z1z2)
i−1

+ (z1z2)
n+1

R
]
, (1.6)

where

C11 =
1

α11
(α11 − α21). (1.7)

Define l1 = {z2 = −ε, 0 ≤ z1 ≤ ε}, l2 = {z1 = ε,−ε ≤ z2 ≤ 0} for ε > 0. Let

Qr = (ε,−q(r, δ, λ)) be the first intersection point of l2 with the positive orbit of (1.5)

through P r = (r,−ε) ∈ l1. This defines the Dulac map q. Letting zi = εvi in (1.6), from

[1,5] we have

q(r, δ, λ) = r + C11[rω1 + · · · ] + Cn1ε
n−1[rnω1 + · · · ] + φn1, (1.8)

where ω1 =
∫ 1

r/ε
t−1−C11dt, φn1 is of Cn for 0 ≤ r ≤ ε and n-flat at r = 0. Every bracket in

(1.8) consists of finite combinations of terms riωj
1(0 ≤ j ≤ i ≤ n) with [riω1+· · · ] = riω1(1+

o(1)). It is easy to see that the separatrice Ls
2, L

u
1 of (1.2) near L2, L1 have T−1(0, 1)T and

T−1(1, 0)T as their directional vectors respectively. Let P 0 = (0,−ε), Q0 = (ε, 0) satisfy

A1 = T−1
0 (P 0), A2 = T−1

0 (Q0), (1.9)

where T0 = Tδ,0. Let Pu(Qu) be the intersection point of l1(l2) with the orbit of (1.2) passing

through T−1
δ,λ (P r) near y = 0. Then we can write

Pu = A1 + un1, Qu = A2 + F1(u, δ, λ)n2. (1.10)

Using the similar method in proving Lemma 7.11 (see [2]) we have

Lemma 1.1. It holds that u =W1(r, δ, λ) and F1 =W2(q, δ, λ), where

Wi = Ni(δ, λ) +Mi(δ, λ)r +O(r2), Ni(δ, 0) = 0,

Mi(δ, 0) = βi sin θ1 + o(1) for 0 < ε≪ 1, i = 1, 2,

β1 =| T−1(δ, 0)(1, 0)T |, β2 =| T−1(δ, 0)(1, 0)T |,

and θ1 is the angle between L1 and L2 at S0
1 .

We have immediately from (1.8) and Lemma 1.1

Lemma 1.2. F1(u, δ, λ) = N2 +M2(r + C11[rω1 + · · · ] + · · · + Cn1ε
n−1[rnω1 + · · · ]) +

ψn1 + r2pn1, where r ≥ 0 satisfies u = W1(r, δ, λ), ψn1 is n-flat at r = 0, and pn1 is a

polynomial with respect to r.

Lemma 1.3. For ε > 0 small we have

| f(A1) |= β2α
0
11ε+O(ε2), | f(A2) |= β1α

0
11ε+O(ε2).
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Proof. Since f(S0
1) = 0, we have from (1.3), (1.4) and (1.9)

f(A1) = Df(S0
1)A1 +O(| A1 |2)

= B1(δ, 0)T
−1(δ, 0)P 0 +O(| P 0 |2)

= εα0
11T

−1(δ, 0)(0, 1)T +O(ε2).

Then the first equality follows. The second can be proved similarly.

Let diag(−α22, α12) be Jordan form of Dxf(S2, δ, λ) with α12 > 0. In a similar way to

(1.5), we can obtain a normal form of (1.1) at S2. Then by changing the sign of the time

we have the following expression of G2 similar to that of F1 in Lemma 1.2:

G2(v, δ, λ) = N4 +M4(r̃ + C12[r̃ω2 + · · · ] + · · ·+ Cn2ε
n−1[r̃nω1 + · · · ])

+ ψ̃n2(r̃, δ, λ) + r̃p̃n2(r̃, δ, λ), (1.11)

where ω2 =
∫ 1

r̃/ε
t−1−C12dt,

C12 =
1

α22
(α22 − α12),

v = N3(δ, λ) +M3(δ, λ)r̃ +O(r̃2) ≡W3(r̃1, δ, λ), (1.12)

Ni(δ, 0) = 0, Mi(δ, 0) = βi sin θ2 + o(1) for 0 < ε≪ 1, i = 3, 4,
(1.13)

and θ2 is the angle between L1 and L2 at S0
2 , ψ̃n2 is n-flat as r̃ = 0, p̃n2 is a polynomial

with respect to r̃.

Also, similar to Lemma 1.3 we have

| f(A3) |= β4α
0
22ε+O(ε2), | f(A4) |= β3α

0
22ε+O(ε2), (1.14)

where α0
22 = α22(δ, 0). Let Xi(t) be a representation of Li and let t2 < t4, t1 > t3 be such

that

X1(tj) = Aj , j = 2, 4, X2(tj) = Aj , j = 1, 3. (1.15)

Then it is easy to see that

Z(t2) = −n2, Z(t4) = −n4, (1.16)

where Z(θ) = (−V2(θ), V1(θ))T , (V1(θ), V2(θ)) = X ′
1(θ)/ | X ′

1(θ) |, t2 ≤ θ ≤ t4. By

introducing the change of variables

x = X1(θ) + Z(θ)ρ, t2 ≤ θ ≤ t4, (1.17)

to (1.1) we obtain (see [1, 2])

dρ

dθ
= R0(θ, δ)λ+A(θ)ρ+O(| ρ, λ |2), (1.18)

where R0(θ, δ) = ZT f0(X1, δ, 0), A(θ) = trDf(X1)− (ln | f(X1) |)′. It is direct that

| f(X1) | ZT f0(X1, δ, 0) = f(X1) ∧ f0(X1, δ, 0).

Let ρ(θ, δ, λ) be the solution of (1.18) satisfying ρ(t2, δ, λ) = −a. Then from (1.15)–(1.17)

we have

F2(a, δ, λ) = −ρ(t4, δ, λ) = I1a− I2(δ)λ+O(| a, λ |2), (1.19)
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where

I1 =
| f(A2) |
| f(A4) |

, I2(δ) =
1

| f(A4) |

∫ t4

t2

f(X1) ∧ f0(X1, δ, 0)dθ. (1.20)

In the same way, we have

G1(a, δ, λ) = J1a− J2(δ)λ+O(| a, λ |2), (1.21)

where

J1 =
| f(A1) |
| f(A3) |

, J2(δ) =
1

| f(A3) |

∫ t3

t1

f(X2) ∧ f0(X2, δ, 0)dθ. (1.22)

From (1.19) and Lemma 1.2 it follows that

(F2 ◦ F1)(u, δ, λ) = a1 + a2r + a2C̃11[rω + · · · ] + · · ·+ a2C̃n1ε
n−1[rnω1 + · · · ]

+ ψ̃n1 + r2p̃n1 ≡ F̃ (r, δ, λ), (1.23)

where

u = N1 +M1r +O(r2), a1 = I1N2 − I2λ+O(λ2),

a2 = I1M2(1 +O(λ)), C̃i1 = C̃i1(1 +O(λ)), i = 1, · · · , n, (1.24)

and ψ̃n1 is n-flat at r = 0, p̃n1 is a polynomial in r. From (1.11) we have

(G2 ◦G1)(u, δ, λ) = N4 +M4r̃ +M4C12[r̃ω2 + · · · ] + · · ·+M4Cn2[r̃
nω2 + · · · ]

+ ψ̃n2 + r̃2ψ̃n2 ≡ G̃(r̃, δ, λ), (1.25)

where, from (1.12), r̃ satisfies G1(u, δ, λ) = N3+M3r̃+O(r̃2). Hence from (1.21) and (1.24)

we obtain

r̃ =
1

M3
(G1(u, δ, λ)−N3)(1 +O(| G1 −N3 |))

= b1(δ, λ) + b2(δ, λ)r +O(r2), (1.26)

where

b1 =
1

M3
(J1N1 − J2λ−N3) +O(λ2), b2 = J1M1/M3. (1.27)

Then we can give the following normal form F0 from (1.23), (1.25) and (1.26):

F0(u, δ, λ) = F0(r, δ, λ) = F̃ (r, δ, λ)− G̃(r̃, δ, λ) = F (r, δ, λ)−G(r̃, δ, λ), (1.28)

where u =W1(r, δ, λ), and

G(r̃, δ, λ) = G̃(r̃, δ, λ)−N4 −M4r̃ − r̃2p̃n2

=M4C12[r̃ω2 + · · · ] + · · ·+M4Cn2ε
n−1[r̃nω2 + · · · ] + ψ̃n2,

(1.29)

F (r, δ, λ) = F̃ (r, δ, λ)−N4 −M4r̃ − r̃2ψ̃n2

= a1 + a2r + a2C̃11[rω1 + · · · ] + · · ·+ a2C̃n1ε
n−1[rnω1 + · · · ]

+ ψ̃n1 + r2p̃n1, (1.30)

a1 = a1 −N4 −M4b1 +O(λ2), a2 = a2 −M4b2 +O(λ). (1.31)

For | λ | small, (1.1) has a periodic orbit near L if and only if F 0 has a root r > 0 with

r̃ > 0, and has a homoclinic or heteroclinic loop if and only if F 0 has a root r ≥ 0 with
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rr̃ = 0 such that r + r̃ > 0 (homoclinic case) or r = r̃ = 0 (heteroclinic case). From [2] we

have

a1 −N4 = − M1(δ)

| f(A4) |
λ+O(λ2),

G1(N1, δ, λ)−N3 =
M2(δ)

| f(A3) |
λ+O(λ2), (1.32)

where

M i(δ) =

∫ ∞

−∞
f(X1) ∧ f0(X1, δ, 0)dt, i = 1, 2. (1.33)

From (1.21) and (1.27),

M3b1 =
M2(δ)

| f(A3) |
λ+O(λ2). (1.34)

§2. Bifurcations Near the Heteroclinic Cycle

Let A∗ = A4+(G2 ◦G1)(u, δ, λ)n4, B
∗ = A4+(F2 ◦F1)(u, δ, λ)n4, where u =W1(r, δ, λ).

We have

H(B∗)−H(A∗) = λ

∮
Lh

f ∧ f0(x, δ, 0)dt+O(λ2),

where h = h(r), Lh ⊂ {H = h}, and Lh = L for r = 0. On the other hand, the mean value

theorem implies that

H(B∗)−H(A∗) = DH(A∗)(B∗ −A∗) +O(| B∗ −A∗ |2)
= − | f(A4) | F 0(r, δ, λ)(1 + o(1)).

Then we can write

F 0(r, δ, λ) = λF ∗
0 (r, δ, λ), (2.1)

where

F ∗
0 (0, δ, 0) = − 1

| f(A4) |

2∑
i=1

∮
Li

f ∧ f0(x, δ, 0)dt ≡ − 1

| f(A4) |
[M1(δ) +M2(δ)]. (2.2)

Since (1.1) is Hamiltonian for λ = 0, we can suppose

Ci2 = λC∗
i2(δ, λ), C̃i1 = λC∗

i1(δ, λ), i = 1, · · · , n,
ai = λa∗i (δ, λ), ψ̃ni = λψ∗

ni, i = 1, 2.
(2.3)

It follows from (1.29)–(1.30) and (2.1) that

F ∗
0 (r, δ, λ) = F (r, δ, λ)−G(r̃, δ, λ), (2.4)

where

G(r̃, δ, λ) =M4C
∗
12[r̃ω2 + · · · ] + · · ·+M4C

∗
n2ε

n−1[r̃nω2 + · · · ] + ψ∗
n2, (2.5)

F (r, δ, λ) = a∗1 + a∗2r+ a2C
∗
11[rω1 + · · · ] + · · ·+ a2C

∗
n1ε

n−1[rnω1 + · · · ] +ψ∗
n1 + r2p∗n1. (2.6)

It is direct from (1.26), (2.2) and (2.4)–(2.7) that

a∗1(δ, 0) = − 1

| f(A4) |
(M1(δ) +M2(δ)). (2.7)
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Hence we know from (2.1), (2.4)–(2.7) that a necessary condition for L to generate a cycle

is M1(δ0) +M2(δ0) = 0 for some δ0 ∈ Rm. Hence, we make the following assumption

M1(δ0) +M2(δ0) = 0, C∗
1j(δ0, 0) = (C1j)

′
λ(δ0, 0) ̸= 0, j = 1, 2. (2.8)

From (1.26), there is a unique function given by

r = −b1
b2
(1 +O(b1)) ≡ r0(δ, λ) (2.9)

such that

r̃ ≥ 0 if and only if r ≥ r0(δ, λ). (2.10)

Notice that from (2.4), (2.6) and (2.10)

F ∗
0 |r̃=0= F (r0(δ, λ), δ, λ), F ∗

0 |r=0= a∗ −G(b1, δ, λ).

If b1 < 0, the homoclinic loop at S1 is formed if and only if

F (r0(δ, λ), δ, ε) = 0. (2.11)

If b1 > 0, the homoclinic loop at S2 is formed if and only if a∗1 − G(b, δ, λ) = 0. And from

(1.31), (2.3), (1.32) and (1.34), the heteroclinic cycle is formed if and only if

a1 −N4 = 0, M3b1 = 0. (2.12)

Consider the following two curves

K1 : y = F (r, δ, λ) and K2 : y = G(r̃, δ, λ). (2.13)

It is easy to see that the curves K1 and K2 has at most one intersection point if C∗
11C

∗
12 < 0,

which implies the uniquenss of limit cycles near L (see [3]). Hence, we may suppose

C∗
11C

∗
12 > 0, C11 > 0, γ0 =

C∗
11(δ0, 0)

C∗
12(δ0, 0)

. (2.14)

From (2.5), (1.36) and [4,5], we have

F ′
r = a2C

∗
11ω1(1 + (o(1)), F ”

r = −a2C∗
11ε

C11r−1−C11(1 + o(1)),
G′

r =M4b2C
∗
12ω2(1 + o(1)), G”

r = −M4b
2
2C

∗
12ε

C12 r̃−1−C12(1 + o(1)).
(2.15)

Lemma 2.1. Let (2.8) and (2.14) hold. If γ0 ̸= 1, for any small number ε1 > 0, there is

0 < ε0 < ε such that

C∗
11(1− γ0)(F −G) < 0 for ε0 ≤ r ≤ ε1, | δ − δ0 |≤ ε0, | λ |≤ ε0.

Proof. It suffices to prove that C∗
11(1− γ0)(F −G) < 0 for δ = δ0, λ = 0 and 0 < r ≪ 1.

In fact, from (1.31), (2.3), (2.5)-(2.8), we have

a2 =M4b2,
F

G
= γ0(1 + o(1)) for λ = 0 and | δ − δ0 |≪ 1. (2.16)

Then the conclusion follows.

Let

u(δ, λ) =

{
F (r0, δ, λ), for b1 ≤ 0,
a∗1 −G(b1, δ, λ), for b1 ≥ 0.

(2.17)

Theorem 2.1. Let (2.8) and (2.14) hold, and let γ0 ̸= 1 and b1(1− γ0) ≤ 0. Then (1.1)

has at most one limit cycle near L for | δ − δ0 | and | λ |> 0 small. More precisely, (1.1)

has a unique limit cycle if and only if C∗
11(1 − γ0)u(δ, λ) > 0, and has a homoclinic loop

(heteroclinic loop) if and only if u(δ, λ) = 0, b1 ̸= 0, u(δ, λ) = b1 = 0.
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Proof. We suppose b1 ≤ 0, γ0 < 1. It follows that r̃ ≤ b2r +O(r2). Then from (2.15),

F ”
r

G”
r

≤ a2C
∗
11

M4b22C
∗
12

(b2 +O(r))
1+C12rC12−C11 .

Note that rC12−C11 < 1 from (2.14). We have

F ”
r

G”
r

≤ γ0(1 + o(1)) < 1 for 0 < r ≪ 1. (2.18)

Therefore, the curves K1 and K2 in (2.13) have at most two intersection points for r ≥ 0.

In the case of b1 < 0, we have

G = 0, 0 < C∗
11F

′
r <∞, C∗

11G
′
r = +∞ for r = r0.

It implies from (2.18) and Lemma 2.1 that K1 and K2 have no point (a unique point (r∗, y∗))

in common for r ≥ r0 when uC∗
11 < 0(≥ 0). Moreover, r∗ > (=)r0 if u ̸= (=)0. Hence,

noting (2.11), the conclusion follows. In the case of b1 = 0, we can prove that F ′
r/G

′
r → 0

as r → 0, and the conclusion follows in the same way.

Lemma 2.2. Let (2.8) and (2.14) hold. If γ0 ̸= 1, then the function (F −G)
”
r has at

most one root with respect to r for | δ − δ0 |, | λ |, r > 0 and r̃ > 0 all small.

Proof. From (2.5), (2.6) and [4,5], we have

F ”
r

G”
r

= εC12−C11
a2C

∗
11r

−1−C11(A(λ) + g1(r))

M4b22C
∗
12r̃

−1−C12(B(λ) + g2(r̃))
,

where

A(0) = B(0) = 1, g1(0) = g2(0) = 0, rg′1(r) = o(1), r̃g′2(r̃) = o(1). (2.19)

Hence, F ”
r −G”

r = 0 if and only if

g(r) =
( a2C

∗
11

M4b22C
∗
12

εC12−C11
) 1

1+C11

r̃
1+C12
1+C11 (B + g2)

− 1
1+C11 − r(A+ g1)

− 1
1+C11 = 0.

Notice that r̃′r = b2 +O(r). By (2.19), we have

g′(r) = γ0r̃
C12−C11
1+C11 (1 + g̃2(λ, r̃))− (1 + g̃1(λ, r)),

where g̃i = o(1), i = 1, 2. It gives that g′(r) < 0(> 0) if γ0 < 1(> 1) since r̃
C12−C11
1+C11 < 1(> 1)

if γ0 < 1(> 1).

This finishes the proof.

Theorem 2.2. Let (2.8) and (2.14) hold, γ0 ̸= 1, b1(1 − γ0) > 0. Then there exists

u∗(δ, λ) satisfying C∗
11(1 − γ0)(u

∗ − u(δ, λ)) < 0 such that for | δ − δ0 | and | λ |> 0 small

and in a neighbourhood of L (1.1) has

(i) a unique limit cycle if C∗
11(1− γ0)u > 0;

(ii) a unique homoclinic loop and a unique limit cycle if u = 0;

(iii) exactly two limit cycles if C∗
11(1− γ0)u

∗ < C∗
11(1− γ0)u < 0;

(iv) a unique semistable limit cycle if u∗ = u;

(v) no cycles if C∗
11(1− γ0)u < C∗

11(1− γ0)u.

Proof. Without loss of generality, we suppose that γ0 < 1, C∗
11 > 0 and b1 > 0. Then

from (2.17), if u > 0, we have F > G for r = 0. Notice that C∗
11F

′
r = +∞, 0 < C∗

11G
′
r <∞

at r = 0. By Lemmas 2.1 and 2.2, the curves K1 and K2 have a unique intersection point
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for r > 0. When u = 0, the end point (r, y) = (0, 0) of K1 and K2 is also a intersection

point.

For u < 0, let h(r, a∗1, b1, δ, λ) = F − G. We have ∂h
∂a∗

1
= 1. From the above discussion,

when a∗1 = G(b1, δ, λ), K1 and K2 have exactly two intersection points (including the end

point) for r ≥ 0. By Lemma 2.2 we can prove that when 0 < −h(0, a∗1, b1, δ, λ) ≪ 1, K1 and

K2 have exactly two intersection points Pi(ri, yi) with r2 > r1. Obviously

(−1)
i
(F −G)

′
r |r=ri< 0, i = 1, 2.

It follows that there exists A∗(b1, δ, λ) such that P1 ̸= P2(P1 = P2 ≡ P ) if a∗1 > A∗(a∗1 = A∗),

and P disappears if a∗1 < A∗. Then the theorem follows by letting u∗ = A∗(b1, δ, λ) −
G(b1, δ, λ). The proof is completed.

Remark 2.1. Suppose that δ ∈ r, M1(δ0) ̸= 0, and (M1 +M2)
′
(δ0) ̸= 0. From (2.7) and

(2.17), we can solve δ = δ∗1(λ) = δ0 + o(1) from u(δ, λ) = 0, and δ = δ∗2(λ) = δ0 + o(1) from

u∗(δ, λ) = u(δ, λ). They correspond to homoclinic loop and semistable cycle bifurations. If

δ ∈ R2, M i(δ0) = 0, i = 1, 2, and det ∂
∂δ (M1,M2) ̸= 0 at δ = δ0, then equation (2.12) has a

unique solution δ = δ̃(λ) = δ0 +O(λ) which gives the heteroclinic loop bifurcation. We can

also give bifurcation surfaces for two homoclinic loops and the semistable cycle.

The following is immediate from Theorems 2.1 and 2.2.

Theorem 2.3. Let (2.8) and (2.14) hold. If γ0 ̸= 1, (1.1) has at most two limit cycles

near L for | δ − δ0 | and | λ |> 0 small.

Remark 2.2. Recently Han Maoan and Zhng Zhifen prove that Theorem 2.3 is true if

C∗
11(δ0, 0) ̸= C∗

12(δ0, 0).
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