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Abstract
The author introduces a concept of curvature bound set relative to second order impul-

sive differential systems and based on this concept discusses the existence of solutions to the
Picard boundary value problem of the systems. Compared with the previous works finished
by Lakshmikantham and Erbe, the author’s results do not require the right-handed function
and impulsive functions with special structures such as monotonicity, etc. When the impulsive

effects are absent, these results could be viewed as new generalized forms of the two so-called
optimal results about second order scalar differential equations derived by Lees and Mawhin
respectively.
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§1. Introduction

This paper is devoted to the study of the existence of solutions for the problem

x′′ = f(t, x, x′), t ̸= ti, t ∈ (a, b), (1.1)

∆x(ti) = Ii(x(ti − 0)), i = 1, 2, · · · , k, (1.2)

∆x′(ti) = Ji(x
′(ti − 0)), i = 1, 2, · · · , k, (1.3)

x(a) = 0, x(b) = 0, (1.4)

where a = t0 < t1 < · · · < tk+1 = b are fixed numbers, k is a positive integer; f(t, x, y) =

fi(t, x, y) for t ∈ (ti−1, ti), x, y ∈ Rn, and fi : [ti−1, ti] × Rn × Rn → Rn are continuous,

i = 1, 2, · · · , k + 1;

∆x(ti) = x(ti + 0)− x(ti − 0), ∆x′(ti) = x′(ti + 0)− x′(ti − 0),

Ii, Ji : R
n → Rn are continuous for i = 1, 2, · · · , k.

To study the existence of solutions, we will turn the boundary value problem (1.1)–(1.4)

into an equivalent operator equation

x = Tx, (1.5)
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where

Tx =

∫ b

a

G(s, t)f(x, x(s), x′(s))ds+
∑
t>ti

Ii(x(ti))−
t− a

b− a

k∑
i=1

Ii(x(ti))

+

∫ b

a

∑
τ>ti

Ji(x
′(ti))dτ −

t− a

b− a

∫ b

a

∑
τ>ti

Ji(x
′(ti))dτ (1.6)

and

G(s, t) =
(s− a)(t− b)

b− a
, a ≤ s < t ≤ b,

=
(s− b)(t− a)

b− a
, a ≤ t < s ≤ b. (1.7)

The following result is helpful in discussing the operator equation (1.5), which can be found

in [1].

Lemma 1.1.[1, Theorem 1] Let X be a Banach space, H : X → X be a compact map such

that I − H is one to one,and Ω an open bounded subset of X such that 0 ∈ (I − H)(Ω).

Then the compact map T : Ω̄ → X has a fixed piont in Ω̄ if for any λ ∈ (0, 1), the equation

x = λTx+ (1− λ)Hx (1.8)

has no solution x on the boundary ∂Ω of Ω.

This lemma will be used to prove our main existence result, namely, Theorem 2.1 in

Section 2. In this section we will also give the definition of curvature bound set relative

to (1.1)–(1.3), which is a generalized version of [2, Definition V.2], and use it in the hy-

potheses of Theorem 2.1. Readers will find that all the results of this paper can be unified

in this concept. As applications of our main result, we generalize [1, Theorem 2] and [2,

Theorem V.25] to the impulsive case (1.1)–(1.4) and obtain Theorems 3.1 and 3.2. From

Theorem 3.1 we derive Corollaries 3.1 and 3.2, which are similar to the main results of [3,

4] obtained by S. Hu and V. Lakshmikantham , L. H. Erbe and X. Liu by use of the upper

and lower solution method,but any forms of monotonicity of f, Ii, Ji, i = 1, 2, · · · , k, which
are necessary in the papers, are not required here. In the last section we will give more

concrete conditions, under which the bound function ϕ of Corollary 3.1 will be constructed,

and derive Theorems 4.1 and 4.2, which improve two so-called “optimal” results obtained by

Gaines and Mawhin[2, Theorem V15] and Lees[5] respectively, even when the impulsive effects

are absent, i.e., Ii(x) ≡ Ji(x) ≡ 0 for i = 1, 2, · · · , k. As the last results we get from Theorem

4.2 Corollaries 4.1 and 4.2 associated with the solvability of (1.1) and (1.4), in which the

hypotheses are the ones breaking some restrictions of [6] for the scalar case n = 1.

Throughout this paper, each set we introduce is always meant to be nonempty. And a

map x : [a, b] → Rn is said to be a solution of (1.1)–(1.4) if x(t) is twice differentiable for

t ̸= ti, x
′(ti+0) and x′(ti−0) exist for i = 1, 2, · · · , k, and x(t) satisfies relations (1.1)–(1.4).

At this time we always denote x(ti) = x(ti − 0), x′(ti) = x′(ti − 0) for i = 1, 2, · · · , k.

§2. Curvature Bound Set and Main Result

In this section we will first enlarge the definition of curvature bound set relative to (1.1)

to the impulsive equations (1.1)–(1.3) and then make use of it to discuss the solvability of

(1.1)–(1.4).
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Definition 2.1. If G ⊂ [a, b] × Rn is open in the relative topology on [a, b] × Rn and

bounded, we will call G a curvature bound set relative to (1.1)–(1.3) if for any (t0, x0) ∈ ∂G

with t0 ∈ (a, b), there exists a continuous function V (t, x) = V (t0, x0; t, x) such that

(i) V (t, x) is twice differentiable for t ̸= ti, i = 1, 2, · · · , k, x ∈ Rn.

(ii) G ⊂ {(t, x) : V (t, x) < 0} and V (t0, x0) = 0.

(iii) We denote t̄o = t0 as t0 ̸= ti, i = 1, 2, · · · , k and t̄0 ∈ {t0, t0 + 0} as t0 ∈ {ti}ki=1.

Then

H(t̄0, x0)

(
1

y

)
·
(
1

y

)
+ gradV (t̄0, x0) ·

(
0

f (t̄0, x0, y)

)
> 0

for all y such that

gradV (t̄0, x0) ·
(
1

y

)
= 0,

where H(t, x) denotes the Hessian matrix of V at (t, x) and gradV (t, x) denotes the gradient

of V at (t, x). Moreover,

H(ti, x) = H(ti − 0, x), gradV (ti, x) = gradV (ti − 0, x), i = 1, 2, · · · , k.

(iv) If t0 = ti0 for some i0 ∈ {1, 2, · · · , k}, then

V (ti0 , x0 + Ii0(x0)) ≥ 0, and gradV (ti0 , x0 + Ii0(x0)) ·
(

1

y + Ji0(y)

)
> 0

if gradV (t0, x0) ·
(
1

y

)
> 0;

V (ti0 , x̄0) ≥ 0, gradV (ti0 , x̄0) ·
(
1

y

)
< 0

if x̄0 + Ii0(x̄0) = x0, ȳ + Ji0(ȳ) = y and gradV (ti0 , x0) ·
(
1

y

)
< 0.

Lemma 2.1. Let G be a curvature bound set relative to (1.1)–(1.3). If x(t) is a solution

to (1.1)–(1.3) on [a, b] with (a, x(a)), (b, x(b)) ∈ G and (t, x(t)) ∈ Ḡ for t ∈ [a, b], then

(t, x(t)) ∈ G for t ∈ [a, b] and (ti, x(ti + 0)) ∈ G for i = 1, 2, · · · , k.
Proof. If not, there are two cases:

(a) (t̄, x(t̄)) ∈ ∂G for some t̄ ∈ (a, b).

(b) (tio , x(ti0 + 0)) ∈ ∂G for some i0 ∈ {1, 2, · · · , k}.
For the first case, let ϕ(t) = V (t, x(t)), where V is as in Definition 2.1. Obviously, we

have ϕ(t) ≤ 0 for t ∈ [a, b] and ϕ(t̄) = 0. Thus

0 ≤ ϕ′(t̄) = gradV (t̄, x(t̄)) ·
(

1

x(t̄)

)
.

If ϕ′(t̄) = 0, then ϕ(t) reaches the local maximum value 0 at t = t̄ on a left neighbourhood

of t̄, and hence

0 ≥ ϕ′′(t̄− 0) = H(t̄, x(t̄))

(
1

x′(t̄)

)
·
(

1

x′(t̄)

)
+ gradV (t̄, x(t̄)) ·

(
0

f(t̄, x(t̄), x′(t̄))

)
,

which contradicts condition (iii) of Definition 2.1. If 0 < ϕ′(t̄), then t̄ = ti0 for some
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i0 ∈ {1, 2, · · · , k}, and from condition (iv) of Definition 2.1, on the one hand we have

gradV (t̄, x(t̄) + Ii0(x(t̄))) ·
(

1

x′(t̄) + Ji0(x
′(t̄))

)
> 0,

on the other hand it follows that ϕ(t̄+ 0) = 0, and

0 ≥ ϕ′(t̄+ 0) = gradV (t̄, x(t̄) + Ii0(x(t̄))) ·
(

1

x′(t̄) + Jio(x
′(t̄))

)
,

a contradiction. Thus case (a) can not occur.

Similarly we can show that case (b) will also lead to a contradiction. Hence, the proof is

finished.

Definition 2.2. For a bounded subset G ⊆ [a, b]× Rn, we will say that f : [a, b]×Rn ×
Rn → Rn satisfies a Nagumo’s condition with respect to G if

| fj(t, x, y) |≤ h(| yi |), j = 1, 2, · · · , n, (2.1)

for (t, x) ∈ G, y ∈ Rn, where h is a positive continuous function on [0,+∞) and∫ +∞

0

sds

h(s)
= +∞, (2.2)

or if

| f(t, x, y) |≤ ψ(| y |)

for (t, x) ∈ G, y ∈ Rn, where ψ is a positive continuous and nondecreasing function on

[0,+∞) such that

lim
s→+∞

s2

ψ(s)
= +∞.

Lemma 2.2.[7, Lemma 4] Suppose that G ⊂ [a, b]×Rn is bounded and f(t, x, y) = fi(t, x, y)

for t ∈ (ti−1, ti), x, y ∈ Rn, fi : [ti−1, ti]×Rn×Rn → Rn are continuous, i = 1, 2, · · · , k+1, f

satisfies a Nagumo’s condition with respect to G. Then there exists a positive number M

dependent only on G and h or ψ such that | x′(t) |≤ M for t ∈ [a, b] if x(t) is a solution of

(1.1)–(1.3) with (t, x(t)) ∈ G for t ∈ [a, b].

We now can state our main result.

Theorem 2.1. Suppose

(a) G is a curvature bound set relative to (2.5)λ–(2.7)λ for λ ∈ (0, 1) with (t, 0) ∈ G for

t ∈ [a, b] and c ≥ 0 is fixed, where

x′′ = λf(t, x, x′) + (1− λ)cx, t ̸= ti, t ∈ (a, b), (2.5)λ

∆x(ti) = λIi(x(ti − 0)), i = 1, 2, · · · , k, (2.6)λ

∆x′(ti) = λJi(x
′(ti − 0)), i = 1, 2, · · · , k. (2.7)λ

(b) f satisfies a Nagumo’s condition with respect to G.

Then the problem (1.1)–(1.4) has at least one solution such that (t, x(t)) ∈ G for t ∈ [a, b].

Proof. Denote

X = C1[a, b; t1, t2, · · · , tk] = {x : [a, b] → Rn | x′(t) exists for t ̸= t1, t2, · · · , tk,
x′(ti + 0), x′(ti − 0) exist for i = 1, 2, · · · , k}
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with the norm

∥ x ∥= max
{

sup
t∈[a,b]

| x′(t) |, sup
t∈[a,b]

| x(t) |
}
.

Then X is a Banach space. Let H : X → X be defined by

Hx =

∫ b

a

G(s, t)cx(s)ds for x ∈ X,

and T : X → X by (1.6), where G(s, t) is as (1.7). Then it is easily seen that both H and

T are compact, I −H is one to one because the unique solution of

x′′ = cx, t ̸= ti, i = 1, 2, · · · , k,
∆x(ti) = ∆x′(ti) = 0, i = 1, 2, · · · , k,
x(a) = x(b) = 0

is x(t) ≡ 0.

Since G is bounded, there exists M1 > 0 such that if (t, x) ∈ G, then | x |≤ M1 and

| xi |≤ M1 for i = 1, 2, · · · , n. Let h(s) = h(s) + cM1, and ψ(s) = ψ(t) + cM1. Then for

every λ ∈ (0, 1), λf(t, x, y)+(1−λ)cx satisfies a Nagumo’s condition with respect to G with

h and ψ instead of h and ψ in (2.1)–(2.4). By Lemma 2.2, there exists M > 0 dependent

only on G and h or ψ such that | x′(t) |≤M for t ∈ [a, b] if x(t) is a solution of (2.5)λ–(2.7)λ
with (t, x(t)) ∈ Gfor t ∈ [a, b].

Let

Ω = {x ∈ X | (t, x(t)) ∈ G, | x′(t) |< M + 1 for t ∈ [a, b] and

(ti, x(ti + 0)) ∈ G for i = 1, 2, · · · , k}.

From condition (a) and (2.8) we have 0 ∈ (I − H)(Ω). Suppose that x(t) is a solution of

(2.5)λ–(2.7)λ and (1.4) with x ∈ Ω. Then (t, x(t)) ∈ G for t ∈ [a, b], and it follows that

| x′(t) |≤ M for t ∈ [a, b]. By Lemma 2.1, to finish the proof, it is enough to show that

(t, x(t)) ∈ G, (ti, x(ti + 0)) ∈ G for t ∈ [a, b], i = 1, 2, · · · , k. This follows from Lemma 2.2

because G is a curvature bound set relative to (2.5)λ–(2.7)λ. The proof is complete.

Remark. Condition (b) can be replaced by

(b)′ There exist numbers α ∈ [0, 1) and β ≥ 0 such that, for any (t, x, y) with (t, x) ∈
G, y ∈ Rn, one has

−x · f(t, x, y) ≤ α | y|2 + β, (2.9)

| y · f(t, x, y) |≤ h(| y |) | y |, (2.10)

where h : [0,+∞) → (0,∞) is increasing, continuous and satisfies∫ +∞

0

s2ds

h(s)
= +∞

just as (3.5) and (3.6) in [1] if we assume that for any solution x(t) of (2.5)λ–(2.7)λ and

(1.4) with (t, x(t)) ∈ G for t ∈ [a, b], one has∣∣∣ k∑
i=1

[x(ti + 0) · x′(ti + 0)− x(ti) · x′(ti)]
∣∣∣ ≤M,



202 CHIN. ANN. OF MATH. Vol.19 Ser.B

where M > 0 is a fixed number dependent only on α, β, h and G. In fact, as Lemma 2.2 we

can derive the a priori bound as follows : Let x(t) be a solution of (2.5)λ − (2.7)λ and (1.4)

with (t, x(t)) ∈ G for t ∈ [a, b]. Then

x(t) · x′′(t) = λx(t) · f(t, x(t), x′(t)) + (1− λ)c|x(t)|2.

Integrating by parts with (1.4) and (2.9) we have

−
k∑

i=1

[x(ti + 0) · x′(ti + 0)− x(ti) · x′(ti)]−
∫ b

a

| x′(t)|2dt

≤ −λβ(b− a) + αλ

∫ b

a

| x′(t)|2dt+ (1− λ)

∫ b

a

c | x(t)|2dt.

It follows that∫ ti+1

ti

| x′(t)|2dt ≤
∫ b

a

| x′(t)|2dt ≤ [β(b− a) +M ]/(1− α)
△
=M1 for i = 1, 2, · · · , k,

Using [1, Lemma 1] we get

| x′(t) |≤M for t ∈ [a, b],

where M > 0 depends only on a, b, h and M1.

§3 Extensions of A Theorem of Fabry-Habets
and A Theorem of Gaines-Mawhin

In this section as applications of Theorem 2.1 we will enlarge [1, Theorem 1] and [2,

Theorem V.25] to the impulsive case.

Theorem 3.1. Assume that there exists a continuous function ϕ : [a, b] → (0,+∞)

verifying

(i) ϕ(t) is twice differentiable for t ̸= ti and ϕ
′′(ti+0), ϕ′′(ti− 0) exist for i = 1, 2, · · · , k.

(ii) For any (t, x, y) such that t ∈ [a, b]∪ {ti +0}ki=1, | x |= ϕ(t), x · y =| x | ϕ′(t), one has

−x · f(t, x, y) ≤ −ϕ(t)ϕ′′(t)+ | y|2 − ϕ′(t)2.

(iii) | x+ λIi(x) | −ϕ(ti) ≥ 0,

(x+ λIi(x)) · (y + λJi(y))− ϕ′(ti + 0)ϕ(ti) > 0 for λ ∈ (0, 1),

if | x | −ϕ(ti) = 0, x · y − ϕ(ti)ϕ
′(ti) > 0;

| x | −ϕ(ti) ≥ 0, x · y − ϕ′(ti)ϕ(ti) < 0,

if | x | −ϕ(ti) = 0, x · y − ϕ(ti)ϕ
′(ti + 0) < 0

and x+ λIi(x) = x, y + λJi(y) = y for some λ ∈ (0, 1).

Assume moreover that

(iv) f satisfies a Nagumo’s condition with respect to {(t, x) : t ∈ [a, b], | x |< ϕ(t)}.
Then the problem (1.1)–(1.4) has at least one solution x(t) such that | x(t) |≤ ϕ(t) for

t ∈ [a, b].

Proof. Let G = {(t, x) : | x |< ϕ(t)}. From Theorem 2.1, it is enough to show that for

sufficiently large c > 0, G is a curvature bound set relative to (2.5)λ–(2.7)λ for λ ∈ (0, 1).

To this end, for any (t0, x0) ∈ ∂G with t0 ∈ (a, b), let V (t, x) = 1
2x · x − 1

2ϕ(t)
2; then
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conditions (i) and (ii) of Definition 2.1 are satisfied immediately. From assumption (iii) we

have V (ti, x0 + λIi(x0)) ≥ 0, and

gradV (ti, x0 + λIi(x0)) ·
(

1

y + Ji(y)λ

)
> 0 for λ ∈ (0, 1)

if V (ti, x0) = 0, gradV (ti, x0) ·
(
1

y

)
> 0;

V (ti, x0) ≥ 0, gradV (ti, x0)

(
1

ȳ

)
< 0 if x0 + λIi(x0) = x0, y + λIi(y) = y

for some λ ∈ (0, 1) and V (ti, x) = 0, gradV (ti, x0) ·
(
1
y

)
< 0.

Letting | x |= ϕ(t0), x0 · y =| x | ϕ′(t0) and taking into account assumption (ii) we have

H(t0, x0)

(
1

y

)
·
(
1

y

)
+ gradV (t0, x0) ·

(
0

λf(t0, x0, y) + (1− λ)cx0 · x0

)
=| y|2 − ϕ′(t0)

2 − ϕ(t0)ϕ
′′(t0) + λx0 · f(t0, x0, y) + (1− λ)cx0 · x0

≥ (1− λ)[cx0 · x0 − ϕ′(t0)
2 − ϕ(t0)ϕ

′′(t0)] > 0

if c > 0 is large enough. Thus conditions (iii) and (iv) are also valid. The proof is complete.

Corollary 3.1. Assume that comditions (i), (ii) and (iv) are satisfied, and

(iii)
′

Ii(x) = 0 if | x |= ϕ(ti);

| x+ Ii(x) |≤ ϕ(ti) if | x |< ϕ(ti);

x · (y + Ji(y)) > ϕ′(ti + 0) if x · y > ϕ′(ti)

with | x |= 1 and ϕ′(ti) ≥ ϕ′(ti + 0).

Then the problem (1.1)–(1.4) has at least one solution x(t) such that | x(t) |≤ ϕ(t) for

t ∈ [a, b].

Proof. It is easily seen that condition (iii) of Theorem 3.1 follows from assumption (iii)

of Corollary 3.1. Thus the proof is finished.

Corollary 3.2. Let n = 1. Assume that there exist functions α(t), β(t) verifying

(a) α, β : [a, b] → R are continuous and twice differentiable for t ̸= ti; α
′′(ti+0), α′′(ti−

0), β′′(ti + 0) andβ′′(ti − 0) exist for i = 1, 2, · · · , k.
(b) α(a) < 0 < β(a), α(b) < 0 < β(b), α(a) + β(a) = α(b) + β(b) = 0, andα(t) <

β(t) for t ∈ [a, b].

(c) β′′(t)− f(t, β, β′) ≤ 0 ≤ α′′(t)− f(t, α, α′) for t ̸= ti, i = 1, 2, · · · , k.
(d) For i = 1, 2, · · · , k, one has

Ii(β(ti)) = Ii(α(ti)) = 0, α(ti) ≤ x+ Ii(x) ≤ β(ti) if α(ti) < x < β(ti);

β′(ti + 0) ≤ β′(ti), α′(ti + 0) ≥ α′(ti), and y + Ji(y) > β′(ti + 0) if y > β′(ti);

Ji(y) + y < α′(ti + 0) if y < α′(ti).

(e) f satisfies a Nagumo’s condition with respect to G = {(t, x) : α(t) ≤ x ≤ β(t), t ∈
[a, b]}.

Then the problem (1.1)–(1.4) has at least one solution x(t) such that α(t) ≤ x(t) ≤
β(t) for t ∈ [a, b].
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Proof. Making the variable change x = u + β+α
2 we have that x(t) is a solution of

(1.1)–(1.4) if and only if u satisfies the following relations:

u′′ = f(t, u, u′)

△
= f

(
t, u+

β(t) + α(t)

2
, u′ +

β′(t) + α′(t)

2

)
− β′′(t) + α′′(t)

2
, (3.1)

∆u(ti) = Ii(u(ti − 0))

△
= Ii

(
u(ti − 0) +

β(ti) + α(ti)

2

)
− ∆β(ti) + ∆α(ti)

2
, (3.2)

∆u′(ti) = J i(u
′(ti − 0))

△
= Ji

(
u′(ti − 0) +

β′(ti) + α′(ti)

2

)
− ∆β′(ti) + ∆α′(ti)

2
, (3.3)

u(a) = u(b) = 0. (3.4)

Let ϕ(t) = β(t)−α(t)
2 . Then all the conditions of Corollary 3.1 can be verified one by one for

the problem (3.1)–(3.4). Hence, the proof is complete.

Remark 3.1. Conditions (i)–(iii) of Theorem 3.1 are generalized versions of conditions

(i)–(ii) of [1, Theorem 2] in the impulsive case.

Remark 3.2. Corollaries 3.1 and 3.2 are similar to the main results in [3,4] obtained by

Hu and Lakshmikantham, Erbe and Liu with the upper and lower solution method. But

f, Ii, Ji do not display the special structure necessary in the latter. For example, in [3]

f(t, x, y) is quasinondecreasing,

Ii(x) = (Ii1(x1), · · · , Iin(xn)), Ji(y) = (Ji1(y1), · · · , Jin(yn))

and Iij , Jij are nondecreasing, whereas in Corollaries 3.1 and 3.2 those assumptions do not

appear. Hence, our results can be applied to some new problems.

Remark 3.3. Condition α(a)+ β(a) = α(b)+ β(b) = 0 of Corollary 3.2 can be removed.

In fact, if we consider x(a) = ξ, x(b) = η with ξ, η ∈ Rn fixed instead of the ones in (1.1) and

assume moreover that the unique solution x(t) of x′′ = cx for t ∈ (a, b), x(a) = ξ, x(b) = η

satisfies (t, x(t)) ∈ G for t ∈ [a, b], then Theorem 2.1 is also valid. And hence, Theorem

3.1 holds under the more assumption | ξ |< ϕ(a), | η |< ϕ(b) because for t ∈ (a, b) we have

x(t) → 0 as c→ +∞.

Example 3.1. Assume that there exist M, M ∈ R with M < 0 < M such that

(1) f : [0, 1]×R×R→ R is continuous and satisfies

f(t,M, 0) ≥ 0 ≥ f(t,M, 0) for t ∈ [0, 1],

(2) For every i = 1, 2, · · · , k,

Ii(M) = Ii(M) = 0 and M ≤ x+ Ii(M) ≤M

for M < x < M and y(Ji(y) + y) ≥ 0 for y ∈ R.

(3) f satisfies a Nagumo’s condition with respect to

G = {x : M ≤ x ≤M, t ∈ [0, 1]}.

Then problem (1.1)–(1.4) (n = 1, a = 0, b = 1) has at least one solution by Corollary 3.2

and Remark 3.3.
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Theorem 3.2. Suppose that there exists a positive continuous function β(t) satisfying

condition (a) of Corollary 3.2 and a real valued function W (x) ∈ C2(Rn) such that

(a) β′′(t) < 0 for t ∈ [a, b] ∪ {ti + 0}ki=1; and

Wxx(x)y · y +Wx(x) · f(t, x, y) > β′′(t)

for (t, x, y) such that t ∈ [a, b] ∪ {ti}ki=1, Wx(x) · y = β′(t).

(b) W (x+ λIi(x))− β(ti) ≥ 0,

Wx(x+ Ii(x)) · (y + λJi(y))− β′(ti + 0) > 0 for λ ∈ (0, 1)

if W (x)− β(ti) = 0, Wx(x) · y − β′(ti) > 0;

W (x)− β(ti) ≥ 0, x · y − β′(ti) < 0

if W (x)− β(ti) = 0, Wx(x) · y − β′(ti + 0) < 0

and x+ λIi(x) = x, y + λJi(y) = y for some λ ∈ (0, 1).

(c) G = {(t, x) : W (x) − β(t) < 0} is bounded and (t, 0) ∈ G for t ∈ [a, b], Wxx(x) is

positive semidefinite for x ∈ Rn.

(d) f satisfies a Nagumo’s condition with respect to G.

Then the problem (1.1)–(1.4) has at least one solution x(t) such that (t, x(t)) ∈ G for

t ∈ [a, b].

Proof. It is enough to show that G is a curvature bound set relative to (2.5)λ–(2.7)λ
with c = 0 for λ ∈ (0, 1) from Theorem 2.1. To this end, let V (t, x) =W (x)−β(t). Noticing

that

gradV (t, x) =

(
−β′(t)

Wx(x)

)
,

H(t, x)

(
1

y

)
·
(
1

y

)
+ gradV (t, x) ·

(
0

λf(t, x, y)

)
=Wxxy · y − β′′ + λWx(x) · f(t, x, y),

we see that the curvature bound set of G follows from conditions (a)–(c), which ends the

proof.

Remark 3.4. When Ii(x) ≡ Ji(x) ≡ 0, i = 1, 2, · · · , k, this theorem reduces to [2,

Theorem V.25].

§4. Construction of the Bound Function ϕ

In this section we will discuss the existence of solutions of (1.1)–(1.4) by constructing the

bound function ϕ(t) of Corollary 3.1.

Theorem 4.1. Assume that

(i) There exist positive numbers Ai,Bi and Ci, i = 0, 1 such that

−x · f(t, x, y) ≤ Ai | x | 2 +Bi | x · y | +Ci | x | for t ∈ (ti−1, ti), | x |≥M1 > 0

and Γ(Ai, Bi) > ti − ti−1, i = 1, 2, where

Γ(A,B) = 2σ−1/2tanh−1(
√
σ/B) for σ = B2 − 4A > 0

= 2(−σ)−1/2
tan(

√
−σ/B) for σ < 0

= 2/B for σ = 0.
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(ii) I1(x) = 0 for | x |= R∗ ; | I1(x) |≤ R∗− | x | for | x |< R∗, whereR∗ is sufficiently

large.

(iii) There exist two positive numbers k1, k2 such that for every x with | x |= 1 if x · y ≥
k1 then x · (y + J1(y)) ≥ −k2.

(iv) For every R > 0, f satisfies a Nagumo’s condition with respect to {(t, x) : t ∈ [a, b], |
x |< R}.

Then the problem (1.1)–(1.4) has at least one solution.

Proof. Let ϕ1(t) and ϕ2(t) be the unique solutions of the following problems:

x′′ = −(A1 | x | +B1 | x′ | +C1), t ∈ [a, t1], x(t1) =M, x′(t1) = k1

and

x′′ = −(A2 | x | +B2 | x′ | +C2), t ∈ [t1, b],

x(t1) =M, x′(t1) = −k2

respectively, where M > 0. Let ϕ(t) = ϕ1(t) for t ∈ [a, t1], ϕ(t) = ϕ2(t) for t ∈ (t1, b]. From

the proof of [8, Theorem 2] it follows that there exists a sufficiently large M∗ > 0 such that

ϕ(t) > M1 for t ∈ [a, b]. We claim that ϕ(t) satisfies all the conditions of Corollary 3.1.

In fact, at first conditions (i),(iii)
′
and (iv) of Corollary 3.1 are valid obviously. Secondly,

from assumption (i) we have

−x · f(t, x, y) ≤ Ai | x|2 +Bi | x · y | +Ci | x |
= ϕ(t)(Aiϕ(t) +Bi | ϕ′(t) | +Ci)

= −ϕ(t)ϕ′′(t)

≤ −ϕ(t)ϕ′′+ | y|2 − ϕ′(t)2

when t ̸= ti, | x |= ϕ(t), x · y =| x | ϕ′(t). Hence, condition (ii) of Corollary 3.1 is also valid.

The proof is finished.

Remark 4.1. Conditions (i)–(iii) of Theorem 4.1 can be viewed as the generalized forms

in the impulsive vector case of the one given in [2, Theorem V.15], which is associated with

the solvability of the scalar case of (1.1) and (1.4) with f continuous.

Remark 4.2. When the impulsive effects are absent, i.e., I1(x) ≡ J1(x) ≡ 0, condition

(i) of Theorem 4.1 is similar to the ones (4.1)–(4.2) and (4.6) in [1], but the latter cannot

contain [2, Theorem V.15] as a special case with n = 1.

Remark 4.3. Even when I1(x) ≡ J1(x) ≡ 0 and n = 1, condition (i) of Theorem 4.1

is also an enlarged form of the one in [2, Theorem V.15], and reduces to the latter when

t1 = a+b
2 .

Remark 4.4. Condition (ii) can be replaced by the condition that there exists a positive

number R∗ such that I1(x) = 0 when | x |≥ R∗.

Example 4.1. Assume that

(1) f(t, x, y) = p(t, x, y)x+ q(t, x, y)y+f(t, x, y), p, q : [0, 1]×R×R→ R are continuous

and

p(t, x, y) ≤ Ai, | q(t, x, y) |≤ Bi for i = 1, 2, t ∈ (ti−1, ti), x, y ∈ R,

Γ(Ai, Bi) > ti − ti−1, i = 1, 2, t0 = 0, t2 = 1,



No.2 Dong, Y. J. SOLVABILITY TO THE PICARD BOUNDARY VALUE PROBLEM 207

where Γ(A,B) is defined as in Theorem 4.1, f : [0, 1] × Rn × Rn → Rn is continuous and

bounded.

(2) I1(x) = 0 for | x |≥ R > 0 and J1(·) is bounded.
Then problem

x′′ = f(t, x, x′), t ∈ (0, 1), t ̸= t1 ∈ (0, 1),

∆x(t1) = I1(x(t1 − 0)), ∆x′(t1) = J1(x
′(t1 − 0)),

x(0) = 0 = x(1)

has at least one solution from Theorem 4.1.

Theorem 4.2. Assume that

(a) −x · f(t, x, y) ≤ ϕ2(t) | x|2 + l | x | where l > 0, ϕ : [a, b] → (0,+∞) is nondecreasing

on (tk, b) and nonincreasing on (a, tk) such that∫ tk

a

ϕ(t)dt <
π

2
,

∫ b

tk

ϕ(t)dt <
π

2
.

(b) There exists R > 0 such that Ii(x) = 0 for | x |≥ R, i = 1, 2, · · · , k, and for every

e ∈ Rn with | e |= 1, we have e · Ji(x) ≥ 0 for e · x > R.

(c) f satisfies a Nagumo’s condition with respect to G = {(t, x) : t ∈ [a, b], | x |≤ R} for

every R > 0.

Then problem (1.1)–(1.4) has at least one solution.

The proof will be given in another paper for shortening the length of this paper.

Remark 4.5. This theorem can be regarded as a generalized version in the impulsive

vector case of the optimal result given by Mawhin in [5].

Example 4.2. Let Ji(x) = ψi(x)x, where ψi : Rn → R is continuous and satisfies

ψi(x) ≥ 0 for x ∈ Rn. Then condition (b) of Theorem 4.2 is valid.

When Ii(·) = Ji(·) = 0, i = 1, 2, · · · , k, as a special case of Theorem 4.2, we have

Corollary 4.1. If f : [a, b]×Rn ×Rn → Rn is continuous and conditions (a) and (c) of

Theorem 4.2 are satisfied, then problem

x′′ = f(t, x, x′), t ∈ (a, b), x(a) = x(b) = 0 (4.1)

has at least one solution.

Corollary 4.2. Assume that

(a) f : [a, b] × Rn × Rn → Rn is continuous and there exist t1 ∈ (a, b), A1 > 0, A2 > 0

such that

−x · f(t, x, y) ≤ Ai
2 | x|2 + l | x | for t ∈ (ti, ti+1), | x |≥M1 > 0, y ∈ Rn,

where t0 = a, t2 = b and

Ai(ti+1 − ti) <
π

2
for i = 1, 2.

(b) f satisfies a Nagumo’s condition with respect to G = {(t, x) : t ∈ [a, b], | x |≤ R} for

every R > 0.

Then the problem (4.1) has at least one solution.

Proof. This is a special case of Corollary 4.1 with t = t1 and ϕ(t) = Ai for t ∈
(ti, ti+1), i = 0, 1.
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Remark 4.6. Corollaries 4.1 and 4.2 when n=1, and Theorem 4.2 when Ii = Ji = 0, are

results on the existence of solutions of (4.1), which is similar to the recent work [6] obtained

by H. Wang and Y. Li with the optimal control theory method. They have proved that for

every A,B with (k − 1)2 < A < k2π2 < B, where k is a positive number, there exists a

number M ≤ k2π2, which depends only on A and B, such that if f, fx : [0, 1]×R → R are

continuous and

A ≤ fx(t, x) ≤ β(t) ≤ B,

∫ 1

0

β(x)dx < M,

then the problem

x′′ + f(t, x) = 0, x(0) = x(1) = 0 (4.2)

has a unique solution. If we apply Corollary 4.2 to the problem (4.1), we will derive the

following result: If f, fx : [0, 1]×R→ R are continuous and

fx(t, x) ≤ A2
1 for t ∈ (0, t1),

fx(t, x) ≤ A2
2 for t ∈ (t1, 1),

where t1 ∈ (0, 1) is fixed and t1A1 <
π
2 , (1 − t1)A2 <

π
2 , then (4.2) has at least a solution.

But let β(t) = A2
i for t ∈ (ti−1, ti), i = 1, 2 with t0 = 0, t2 = 1, and A1t1 = π

4 ; then∫ 1

0

β(t)dt = A2
1t1 +A2

2(1− t1) ≥
π

4
A1 =

π2

16t1
→ +∞ as t1 → 0+.

Hence, even for the scalar case n = 1, Theorem 4.2 and Corollaries 4.1 and 4.2 also break

some restrictions of [6].
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