ERGODIC THEOREMS FOR NON-LIPSCHITZIAN SEMIGROUPS WITHOUT CONVEXITY***

LI GANG* MA JIPU**

Abstract

Let G be a semitopological semigroup. Let C be a nonempty subset of a Hilbert space and $\Im = \{T_t : t \in G\}$ be a representation of G as asymptotically nonexpansive type mappings of C into itself such that the common fixed point set $F(\Im)$ of \Im in C is nonempty. It is proved that $\bigcap_{s \in G} \overline{co}\{T_{ts}x : t \in G\} \bigcap F(\Im)$ is nonempty for each $x \in C$ if and only if there exists a

nonexpansive retraction P of C onto $F(\mathfrak{F})$ such that $PT_s = T_s P = P$ for all $s \in G$ and P(x) is in the closed convex hull of $\{T_s x : s \in G\}, x \in C$. This result shows that many key conditions in [1-4, 9, 12-15] are not necessary.

Keywords Nonlinear ergodic theorem, Non-lipschitzian mappings, Semigroup1991 MR Subject Classification 47H09, 47H10Chinese Library Classification 0177.91

§1. Introduction

Let H be a Hilbert space with norm $\|\cdot\|$ and inner product (\cdot, \cdot) and let C be a nonempty subset of H. A mapping $T : C \mapsto C$ is said to be Lipschitzian if there exists a nonnegative number k such that

$$||Tx - Ty|| \le k ||x - y||$$
 for every $x, y \in C$,

and nonexpansive in the case k = 1. Provided that C is closed and convex, Baillon^[1] proved the first mean ergodic theorem for nonexpansive mappings in a Hilbere space : Let C be a nonempty convex closed subset of H, and let T be a nonexpansive mapping of C into itself and suppose that the set F(T) of fixed points of T is nonempty, then the Cesaro means

$$s_n(x) = \frac{1}{n} \sum_{k=0}^{n-1} T^k x$$

converges weakly as $n \to \infty$ to a fixed point y of T for each $x \in C$. In this case, by putting y = Px for each $x \in C$, P is a nonexpansive retraction of C onto F(T). The analogous results are given for nonexpansive semigroups on C by Baillon^[2] and Hirano and Takahashi^[4]. Recently, in [9], Mizoguchi and Takahashi proved a nonlinear ergodic retraction theorem for Lipschitzian semigroups by using the notion of submean. However, it still remains open

Manuscript received May 20, 1995. Revised May 22, 1997.

^{*}Department of Mathematics, Teachers' College, Yangzhou University, Yangzhou 225002, China.

^{**}Department of Mathematics, Nanjing University, Nanjing 210093, China.

^{* * *}Project supported by the National Natural Science Foundation of China and the Science Foundation of Jiansu Province.

whether Baillon's theorem is valid without convexity. In 1992, Takahashi^[15] proved the ergodic theorem for nonexpansive semigroups on condition that $\bigcap_{s\in G} \overline{\operatorname{co}}\{T_{st}x : t \in G\} \subset C$ for some $x \in C$. This provided a partly affirmative answer to this question.

Without using the concept of submean, this paper attempts to prove the nonlinear ergodic theorem for semitopological semigroup of non-lipschitzian mappings without convexity in a Hilbert space. We prove that if C is a nonempty subset of H, G is a semitopological semigroup and $\mathfrak{T} = \{T_t : t \in G\}$ is a representation of G as asymptotically nonexpansive type mappings of C into itself such that the common fixed point set $F(\mathfrak{T})$ of \mathfrak{T} in C is nonempty, then $\bigcap_{s \in G} \overline{co}\{T_{ts}x : t \in G\} \bigcap F(\mathfrak{T})$ is nonempty for each $x \in C$ if and only if there exists a nonexpansive retraction P of C onto $F(\mathfrak{T})$ such that $PT_s = T_s P = P$ for all $s \in G$ and P(x) is in the closed convex hull of $\{T_sx : s \in G\}$. This result seems to be new even if C is a convex closed subset. Our results generalize the previously known results of Brezis^[1-2], Hirano and Takahashi^[4], Mizoguchi and Takahashi^[9], Takahashi and Zhang^[12] and Takahashi^[13-15]. Further, it would be safe to say that in their results^[1-4,9,12-15] many key conditions are not necessary.

§2. Preliminaries

Throughout this paper, we assume that H is a real Hilbert space and G is a semitopological semigroup, i.e., a semigroup with a Hausdorff topology such that for each $s \in G$ the mappings $s \mapsto s \cdot t$ and $s \mapsto t \cdot s$ of G into itself are continuous. Let C be a nonempty subset of H, and let $\Im = \{T_t : t \in G\}$ be a semigroup on C, i.e., $T_{ab}(x) = T_a T_b(x)$ for all $a, b \in G$ and $x \in C$.

Recall that \Im is said to be

(a) nonexpansive if $||T_t x - T_t y|| \le ||x - y||$ for x, y in C and $t \in G$;

(b) asymptotically nonexpansive^[6] if there exists a function $K : G \mapsto [0, \infty)$ with $\inf_{s \in G} \sup_{t \in G} K_{ts} \leq 1$ such that $||T_t x - T_t y|| \leq K_t ||x - y||$ for x, y in C and t in G;

(c) asymptotically nonexpansive type^[6] if for each x in C, there is a function $r(\cdot, x) : G \mapsto [0, \infty)$ with $\inf_{s \in G} \sup_{t \in G} r(ts, x) = 0$ such that $||T_t x - T_t y|| \le ||x - y|| + r(t, x)$ for all y in C and t in G.

It is easily seen that $(a) \Rightarrow (b) \Rightarrow (c)$ and that both the inclusions are proper (cf. [6, p. 112]).

We denote by $F(\mathfrak{F})$ the set $\{x \in C : T_s(x) = x \text{ for all } s \in G\}$ of common fixed points of \mathfrak{F} .

\S **3.** Nonexpansive Retraction

In this section we shall prove erogodic retraction theorem for semitopoligical semigroup of asymptotically nonexpansive type mappings without convexity. We begin with the following theorem.

Theorem 3.1. Let G be a semitopological semigroup, and let C be a nonempty subset of a Hilbert space H, and let $\Im = \{T_t : t \in G\}$ be a semitopological semigroup of asymptotically

nonexpansive type mappings on C. Then for every $x \in C$ the set

$$\bigcap_{s \in G} \overline{\operatorname{co}} \{ T_{ts} x : t \in G \} \bigcap F(\mathfrak{F})$$

consists of at most one point.

Proof. Suppose $f \in F(\mathfrak{F})$. For an arbitrary $\epsilon > 0$, since \mathfrak{F} is asymptotically nonexpansive type, there exists $s_0 \in G$ such that for all $t \in G$, $r(ts_0, f) < \epsilon$, and hence for $a \in G$, $\inf_{s \in G} \sup_{t \in G} \|T_{ts}x - f\|^2 \le \sup_{t \in G} \|T_{ts_0a}x - f\|^2 \le \sup_{t \in G} (\|T_ax - f\| + r(ts_0, f))^2 \le (\|T_ax - f\| + \epsilon)^2.$

Since $\epsilon > 0$ is arbitrary, we have

$$\inf_{e \in G} \sup_{t \in G} \|T_{ts}x - f\|^2 \le \inf_{a \in G} \|T_a - f\|^2.$$
(3.1)

Let $u, v \in \bigcap_{t \in G} \overline{co} \{T_{ts}x : t \in G\} \cap F(\mathfrak{F})$. Without loss of generality, we assume that

$$\inf_{t \in G} \|T_t x - u\|^2 \le \inf_{t \in G} \|T_t x - v\|^2.$$

Now, for each $t, s \in G$, since

$$||u - v||^2 + 2(T_{ts}x - u, u - v) = ||T_{ts}x - v||^2 - ||T_{ts}x - u||^2,$$

we have

$$\|u - v\|^{2} + 2\inf_{t \in G}(T_{ts}x - u, u - v) \ge \inf_{t \in G}\|T_{ts}x - v\|^{2} - \sup_{t \in G}\|T_{ts}x - u\|^{2}$$
$$\ge \inf_{t \in G}\|T_{t}x - v\|^{2} - \sup_{t \in G}\|T_{ts}x - u\|^{2}.$$

By (3.1), we have

$$|u - v||^{2} + 2 \sup_{s \in G} \inf_{t \in G} (T_{ts}x - u, u - v) \ge \inf_{t \in G} ||T_{t}x - v||^{2} - \inf_{s \in G} \sup_{t \in G} ||T_{ts}x - u||^{2}$$
$$\ge \inf_{t \in G} ||T_{ts}x - v||^{2} - \inf_{t \in G} ||T_{ts}x - u||^{2} \ge 0$$

Let $\epsilon > 0$. Then there is $s_1 \in G$ such that $||u - v||^2 + 2(T_{ts_1}x - u, u - v) > -\epsilon$ for all $t \in G$. From $v \in \overline{\mathrm{co}}\{T_{ts_1}x : t \in G\}$, we have

$$||u - v||^2 + 2(v - u, u - v) \ge -\epsilon.$$

This inequality implies $||u - v||^2 \leq \epsilon$. Since $\epsilon > 0$ is arbitrary, we have u = v. This completes the proof.

Remark 3.1. In the result of Takahashi and $\text{Zhang}^{[12]}$, it is assumed that C is a convex closed subset, G is a reversible semigroup and \Im is asymptotically nonexpansive. The above theorem shows that those key conditions are not necessary.

By using Theorem 3.1, we now prove the ergodic retraction theorem.

Theorem 3.2. Let C be a nonempty subset of a Hilbert space H, and let $\mathfrak{F} = \{T_t : T_t : T_t \}$ $t \in G$ be a semitopological semigroup of asymptotically nonexpansive type mappings on C, $F(\mathfrak{F}) \neq \emptyset$. Then the following are equivalent.

(a) $\bigcap_{s \in G} \overline{\operatorname{co}} \{T_{ts}x : t \in G\} \cap F(\mathfrak{F}) \neq \emptyset$ for each $x \in C$. (b) There is a nonexpansive retraction P of C onto $F(\mathfrak{F})$ such that $PT_t = T_t P = P$ for every $t \in G$ and $Px \in \overline{co} \{T_t x : t \in G\}$ for every $x \in C$.

Proof. (b) \Rightarrow (a): Let $x \in C$. Then $Px \in F(\mathfrak{F})$. Also $Px \in \bigcap_{s \in G} \overline{\operatorname{co}}\{T_tx : t \in G\}$. In fact, for each $s \in G$, $Px = PT_sx \in \overline{\operatorname{co}}\{T_tT_sx : t \in G\} = \overline{\operatorname{co}}\{T_{ts}x : t \in G\}$.

(a) \Rightarrow (b). Let $x \in C$. Then by Theorem 3.1 and (a), $\bigcap_{s \in G} \overline{\operatorname{co}}\{T_{ts}x : t \in G\} \cap F(\mathfrak{F})$ contains exactly one point Px. For each $a \in G$, we have

$$\{PT_ax\} = \bigcap_{s \in G} \overline{\operatorname{co}}\{T_{tsa}x : t \in G\} \bigcap F(\mathfrak{F}) \sqsupseteq \bigcap_{s \in G} \overline{\operatorname{co}}\{T_{ts}x : t \in G\} \bigcap F(\mathfrak{F}) = \{Px\},$$

and hence we have $PT_a = P$ for every $a \in G$. It is clear that $T_s P = P$ for every $s \in G$.

Finally, we show that P is nonexpansive. Let $x \in C, v \in F(\mathfrak{F})$ and $0 < \lambda < 1$. Then we have, for each $t, s, a, b \in G$,

$$\begin{aligned} \|\lambda T_{tsab}x + (1-\lambda)Px - v\|^2 \\ &= \|\lambda (T_{tsab}x - v) + (1-\lambda)(Px - v)\|^2 \\ &= \lambda \|T_{tsab}x - v\|^2 + (1-\lambda)\|Px - v\|^2 - \lambda(1-\lambda)\|T_{tsab}x - Px\|^2 \\ &\leq \lambda (\|T_{ab}x - v\| + r(ts, x))^2 + (1-\lambda)\|Px - v\|^2 - \lambda(1-\lambda)\|T_{tsab}x - Px\|^2 \\ &\leq \lambda (\|T_{ab}x - v\| + r(ts, x))^2 + (1-\lambda)\|Px - v\|^2 - \lambda(1-\lambda)\inf_{t\in G} \|T_tx - Px\|^2. \end{aligned}$$

Since \Im is an asymptotically nonexpansive type, it follows that

$$\begin{split} &\inf_{s \in G} \sup_{t \in G} \|\lambda T_{ts} x + (1 - \lambda) P x - v\|^2 \\ &\leq \inf_{s \in G} \sup_{t \in G} \|\lambda T_{tsab} x + (1 - \lambda) P x - v\|^2 \\ &\leq \lambda \|T_{ab} x - v\|^2 + (1 - \lambda) \|P x - v\|^2 - \lambda (1 - \lambda) \inf_{t \in G} \|T_t x - P x\|^2 \\ &= \|\lambda T_{ab} x + (1 - \lambda) P x - v\|^2 + \lambda (1 - \lambda) \|T_{ab} x - P x\|^2 - \lambda (1 - \lambda) \inf_{t \in G} \|T_t x - P x\|^2. \end{split}$$

It is then easily seen that

$$\inf_{s \in G} \sup_{t \in G} \|\lambda T_{ts}x + (1-\lambda)Px - v\|^2 - \lambda(1-\lambda) \inf_{b \in G} \sup_{a \in G} \|T_{ab}x - Px\|^2$$

$$\leq \sup_{b \in G} \inf_{a \in G} \|\lambda T_{ab}x + (1-\lambda)Px - v\|^2 - \lambda(1-\lambda) \inf_{t \in G} \|T_tx - Px\|^2.$$

From (3.1), we have

$$\inf_{s \in G} \sup_{t \in G} \|\lambda T_{ts} x + (1 - \lambda) P x - v\|^2 \le \sup_{s \in G} \inf_{t \in G} \|\lambda T_{ts} x + (1 - \lambda) P x - v\|^2.$$
(3.2)

Let

$$h(\lambda) = \inf_{s \in G} \sup_{t \in G} \|\lambda T_{ts} x + (1 - \lambda) P x - v\|^2$$

Then for any $\epsilon > 0$, there exists $s_0 \in G$ such that for all $t \in G$,

$$\|\lambda T_{ts_0}x + (1-\lambda)Px - v\|^2 \le h(\lambda) + \epsilon,$$

and hence

$$(\lambda T_{ts_0}x + (1-\lambda)Px - v, Px - v) \le (h(\lambda) + \epsilon)^{\frac{1}{2}} \|Px - v\| \text{ for all } t \in G.$$

From $Px \in \overline{co}\{T_{ts_0}x : t \in G\}$, we have

$$(\lambda Px + (1-\lambda)Px - v, Px - v) \le (h(\lambda) + \epsilon)^{\frac{1}{2}} \|Px - v\|.$$

Since $\epsilon > 0$ is arbitrary, this yields $||Px - v||^2 \le h(\lambda)$, that is,

$$\|Px - v\|^{2} \leq \inf_{s \in G} \sup_{t \in G} \|\lambda T_{ts} x + (1 - \lambda) Px - v\|^{2}.$$
(3.3)

Now one can choose an $s_1 \in G$ such that $r(ts_1, x) < 1$ for all $t \in G$. Put M = 1 + ||x - Px||. Then $||T_{ts_1}x - Px|| \leq M$ for all $t \in G$. It thus follows that

$$\begin{aligned} &\|\lambda T_{tss_1}x + (1-\lambda)Px - v\|^2 = \|\lambda (T_{tss_1}x - Px) + (Px - v)\|^2 \\ &= \lambda^2 \|T_{tss_1}x - Px\|^2 + \|Px - v\|^2 + 2\lambda (T_{tss_1}x - Px, Px - v) \\ &\leq M^2 \lambda^2 + \|Px - v\|^2 + 2\lambda (T_{tss_1}x - Px, Px - v). \end{aligned}$$

From (3.2) and (3.3),

$$\begin{aligned} & 2\lambda \sup_{s \in G} \inf_{t \in G} (T_{ts}x - Px, Px - v) \\ & \geq 2\lambda \sup_{s \in G} \inf_{t \in G} (T_{tss_1}x - Px, Px - v) \\ & \geq \sup_{s \in G} \inf_{t \in G} \|\lambda T_{tss_1}x + (1 - \lambda)Px - v\|^2 - \|Px - v\|^2 - M^2\lambda^2 \\ & = \sup_{s \in G} \inf_{t \in G} \|\lambda T_{ts}T_{s_1}x + (1 - \lambda)PT_{s_1}x - v\|^2 - \|Px - v\|^2 - M^2\lambda^2 \\ & \geq \|PT_{s_1}x - v\|^2 - \|Px - v\|^2 - M^2\lambda^2 = -M^2\lambda^2, \end{aligned}$$

and hence

$$\sup_{s\in G} \inf_{t\in G} (T_{ts}x - Px, Px - v) \ge -\frac{1}{2}M^2\lambda.$$

Letting $\lambda \to 0$, we have

$$\sup_{s \in G} \inf_{t \in G} (T_{ts}x - Px, Px - v) \ge 0.$$

Therefore, for $y \in C$, we have

$$\sup_{s\in G} \inf_{t\in G} (T_{ts}x - Px, Px - Py) \ge 0.$$
(3.4)

Let $\epsilon > 0$. Then there is $s_2 \in G$ such that $r(ts_2, x) < \epsilon$ for all $t \in G$. For such an $s_2 \in G$, from (3.4), we have

$$\sup_{s \in G} \inf_{t \in G} (T_{ts}T_{s_2}x - PT_{s_2}x, PT_{s_2}x - Py) \ge 0,$$

and hence there is $s_3 \in G$ such that

$$\inf_{t \in G} (T_{ts_3} T_{s_2} x - P T_{s_2} x, P T_{s_2} x - P y) > -\epsilon$$

Then, from $PT_{s_2}x = Px$, we have

$$\inf_{t\in G} (T_{ts_3s_2}x - Px, Px - Py) > -\epsilon.$$

$$(3.5)$$

Similarly, from (3.4), we also have

$$\sup_{s \in G} \inf_{t \in G} (T_{ts} T_{s_3 s_2} y - P T_{s_3 s_2} y, P T_{s_3 s_2} y - P x) \ge 0,$$

and there exists $s_4 \in G$ such that

$$\inf_{t \in G} (T_{ts_4s_3s_2}y - PT_{s_4s_3s_2}y, PT_{s_4s_3s_2}y - Px) \ge -\epsilon,$$

that is,

$$\inf_{t \in G} (Py - T_{ts_4s_3s_2}y, Px - Py) \ge -\epsilon.$$

$$(3.6)$$

On the other hand, from (3.5)

$$\inf_{t \in G} (T_{ts_4 s_3 s_2} x - Px, Px - Py) > -\epsilon.$$
(3.7)

Combining (3.6) and (3.7), we have

$$\begin{aligned} -2\epsilon &< (T_{ts_4s_3s_2}x - T_{ts_4s_3s_2}y, Px - Py) - \|Px - Py\|^2 \\ &\leq \|T_{ts_4s_3s_2}x - T_{ts_4s_3s_2}y\| \cdot \|Px - Py\| - \|Px - Py\|^2 \\ &\leq (r(ts_4s_3s_2, x) + \|x - y\|) \cdot \|Px - Py\| - \|Px - Py\|^2 \\ &\leq (\epsilon + \|x - y\|) \cdot \|Px - Py\| - \|Px - Py\|^2. \end{aligned}$$

Since $\epsilon > 0$ is arbitrary, this implies $||Px - Py|| \le ||x - y||$.

The following corollaries are immediately deduced from this theorem.

Corollary 3.1.^[9] Let C be a closed convex subset of H and X be an r_s -invariant subspace of B(G) containing constants which has a right invariant submean. Let $\mathfrak{F} = \{T_t : t \in G\}$ be a Lipschitzian semigroup on C with $\inf_s \sup_t k_{ts}^2 \leq 1$ and $F(\mathfrak{F}) \neq \emptyset$. If for each $x, y \in C$, the function f on G defided by

$$f(t) = ||T_t x - y||^2 \text{ for all } t \in G ,$$

and the function g on G defined by $g(t) = k_t^2$ for all $t \in G$ belong to X, then the following are equivalent:

(a) $\bigcap_{s \in G} \overline{\operatorname{co}} \{ T_{ts} x : t \in G \} \bigcap F(\mathfrak{F}) \neq \emptyset \text{ for each } x \in C.$

(b) There is a nonexpansive retraction P of C onto $F(\mathfrak{F})$ such that $PT_t = T_t P = P$ for every $t \in G$ and $Px \in \overline{\operatorname{co}}\{T_t x : t \in G\}$ for every $x \in C$.

Remark 3.2. By Theorem 1.2, in the result of Mizoguchi and Takahashi, many key conditions are not necessary.

§4. Fixed Point Theorem

In this section, we prove a fixed point theorem for asymptotically nonexpansive type semigroups without convexity. Let m(G) be the Banach space of all bounded real valued function on G with supremum norm and let X be a subspace of m(G) containing constants. Then, according to Mizoguchi and Takahashi^[9], a real valued function μ on X is called a submean on X if the following conditions are satisfied:

- (1) $\mu(f+g) \le \mu(f) + \mu(g)$ for every $f, g \in X$;
- (2) $\mu(\alpha f) = \alpha \mu(f)$ for every $f \in G$ and $\alpha \ge 0$;
- (3) $\mu(c) = c$ for every constant c.

For a submean μ on X and $f \in X$, according to time and circumstances, we also use $\mu_t(f(t))$ instead of $\mu(f)$.

Lemma 4.1.^[9] Let G be a semitopological semigroup, let X be a subspace of m(G) containing constants and let μ be a submean on X. Let $\{x_t : t \in G\}$ be a bounded subset of a Hilbert space H and let D be a closed convex subset of H. Suppose that for each $x \in D$, the real-valued function f on G defined by

$$f(t) = ||x_t - x||^2 \quad for \ all \ t \in G$$

belongs to X. If $g(x) = \mu_t ||x_t - x||^2$ for all $x \in D$ and $r = \inf\{g(x) : x \in D\}$, then there exists a unique element $z \in D$ such that g(z) = r. Further the following inequality holds:

$$|x + || |z - x||^2 \le g(x)$$
 for every $x \in D$.

Let X be a subspace of m(G) containing constants which is l_s -invariant, i.e., $l_s(X) \subset X$ for each $s \in G$. Then a submean μ on X is said to be left invariant if $\mu(f) = \mu(l_s f)$ for all $s \in G$ and $F \in X$. Now, we can prove a fixed point theorem for asymptotically nonexpansive type semigroups with convexity in a Hilbert space.

Theorem 4.1. Let C be a nonempty subset of a Hilbert space H and let X be an l_s invariant subspace of m(G) containing constants which has a left invariant submean μ on X. Let $\Im = \{T_t : t \in G\}$ be an asymptotically nonexpansive semigroup on C such that each T_t is continuous. Suppose that $\{T_tx : t \in G\}$ is bounded and $\bigcap_{s \in G} \overline{\operatorname{co}}\{T_{st}x : t \in G\} \subset C$ for some $x \in C$. If for each $u \in C$ and $v \in H$, the real valued function f on G defined by

$$f(t) = ||T_t u - v||^2$$
 for all $t \in G$

belongs to X, then there exists an element $z \in C$ such that $T_t z = z$ for all $t \in G$.

Proof. Define a real valued function g on H by

$$g(y) = \mu_t ||T_t x - y||^2$$
 for each $y \in H$.

If $r = \inf\{g(y) : y \in H\}$, then by Lemma 4.1 there exists a unique element $z \in H$ such that g(z) = r. Further, we know that

$$r + ||z - y||^2 \le g(y)$$
 for every $y \in H$

For each $s \in G$, let Q_s be the metric projection of H onto $\overline{co}\{T_{st}x : t \in G\}$. Then by [10], Q_s is nonexpansive and for each $t \in G$,

$$||T_{st}x - Q_sz||^2 = ||Q_sT_{st}x - Q_sz||^2 \le ||T_{st}x - z||^2.$$

So, we have

$${}_{t}||T_{t}x - Q_{s}z||^{2} = \mu_{t}||T_{st}x - Q_{s}z||^{2} \le \mu_{t}||T_{st}x - z||^{2} = \mu_{t}||T_{t}x - z||^{2},$$

and thus $Q_s z = z$. This implies

 μ

$$z \in \overline{\mathrm{co}}\{T_{st}x : t \in G\}$$
 for all $s \in G$,

and hence

$$z \in \bigcap_{s \in G} \overline{\operatorname{co}} \{ T_{st} x : t \in G \} \subset C.$$

Now, for each $h \in G$, since T_h is continuous at $z \in C$, for any $\epsilon \in (0, 1)$, there exists $0 < \delta < \epsilon$ such that $||T_h y - T_h z|| < \epsilon$ whenever $y \in C$ and $||y - z|| < \delta$. Since \Im is an asymptotically nonexpansive type semigroup, there is an $s_0 \in G$ such that $r(ts_0, z) < \frac{1}{2(M+1)}\delta^2$ for all $t \in G$, where $M = \sup_{\alpha} ||T_t x - z||$. On the other hand, from Lemma 4.1

$$||z - y||^2 \le \mu_t ||T_t x - y||^2 - \mu_t ||T_t x - z||^2$$
 for all $y \in H$.

Putting $y = T_{ss_0}z$ for each $s \in G$, we have

$$\begin{aligned} \|T_{ss_0}z - z\|^2 &\leq \mu_t \|T_t x - T_{ss_0}z\|^2 - \mu_t \|T_t x - z\|^2 \\ &= \mu_t \|T_{ss_0t} x - T_{ss_0}z\|^2 - \mu_t \|T_t x - z\|^2 \\ &\leq \mu_t (\frac{1}{2}\delta^2 + \|T_t x - z\|)^2 - \mu_t \|T_t x - z\|^2 < \delta^2, \end{aligned}$$

and hence $||T_{ss_0}z - z|| < \delta$ for all $s \in G$. This implies

$$||T_h z - z|| \le ||T_h z - T_h T_{ss_0} z|| + ||T_{hss_0} z - z|| < 2\epsilon.$$

Since $\epsilon > 0$ is arbitrary, we have $T_h z = z$ for every $h \in G$.

As a direct consequence of Theorem 4.1, we can prove the following fixed point theorem which extends Ishihara's result^[5] to non-Lipschitzian semigroups setting. A semitopological semigroup G is left reversible if and only if any two closed right ideals of G have nonvoid intersection. In this case, (G, \leq) is a directed system when the binary relation \leq on G is defined by $a \leq b$ if and only if $\{a\} \bigcup \overline{aG} \supset \{b\} \bigcup \overline{bG}$.

Theorem 4.2. Let C be a nonempty subset of a Hilbert space H and let G be a left reversible semigroup. Let $\Im = \{T_t : t \in G\}$ be an asymptotically nonexpansive type semigroup on C such that each T_t is continuous. If $\{T_tx : t \in G\}$ is bounded and $\bigcap_{t \in G} \overline{\operatorname{co}}\{T_{st}x : t \in G\}$

 $G \} \subset C$ for some $x \in C$, then there exists an element $z \in C$ such that $T_t z = z$ for all $t \in G$. **Proof.** Define a real valued function μ on m(G) by

$$\mu(f) = \limsup_{t \in G} f(t) \text{ for every } f \in m(G),$$

 μ is a left invariant submean on m(G). By using Theorem 4.1, the proof is completed.

References

- Baillon, J. B., Un théoreme de type ergodique les contraction non linéaires dans un espace de Hilbert, C. R. Acad. Sci. Paris Sér, A-B, 280(1975), 1511–1514.
- [2] Baillon, J. B., Quelques propriètes de convergence asymptotique pour de contractions impaires, C. R. Acad. Sci. Paris Sér, A-B, 283(1976), 75–78.
- [3] Brezis, H. & Browder, F. E., Remark on nonlinear ergodic theorey, Adv. Math., 25(1977), 165–177.
- [4] Hirano, N. & Takahashi, W., Nonlinear ergodic theorems for uniformly Lipschitzian semigroups in Hilbert, J. Math. Anal. Appl., 127(1987), 206–210.
- [5] Ishikara, H., Fixed point theorem for Lipschitzian semigroups, Can. Math. Bull., 32(1989), 90–97.
- [6] Kirk, W. A. & Torrejon, R., Asymptotically nonexpansive semigroup in Banach space, Nonlinear Analy., 1(1979), 111–121.
- [7] Li, G., Weak convergence and non-linear ergodic theorems for reversible semigroups of non-Lipschitzian mappings, J. Math. Anal. Appl., 206(1997), 451–464.
- [8] Li, G. & Ma, J. P., Nonlinear ergodic theorems for semitopological semigroups of non-Lipschitzian mappings in Banach space, *Chinese Sci. Bull.*, 42(1997), 8–11.
- [9] Mizoguchi N. & Takahaski, W., On the existence of fixed points and nonlinear ergodic retractions for Lipschitzian semigroups in Hilbert space, Nonlinear Analy., 1(1990), 69–97.
- [10] Phels, R. P., Convex sets and nearest point, Proc. Amer. Math. Soc., 8(1975), 790-797.
- [11] Reich, S., A note on the mean ergodic theorem for nonlinear semigroups, J. Math. Analy. Appl., 91(1983), 547–551.
- [12] Takahashi W. & Zhang, P. J., Asymptotic behavior Lipschitzian mappings, J. Math. Analy. Appl., 142(1989), 242–249.
- [13] Takahashi, W., A nonlinear ergodic theorem for an amenable semigroup of nonexpansive mapping in a Hilbert space, Proc. Amer. Math. Soc., 81(1981), 253–256.
- [14] Takahashi, W., A nonlinear ergodic theorem for a reversible semigroup of nonexpansive mapping in a Hilbert space, Proc. Amer. Math. Soc., 97(1986), 55–58.
- [15] Takahashi, W., Fixed points theorem and nonlinear ergodic theorem for nonexpansive semigroups without convexity, Can. J. Math., 4(1992), 880–887.