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Abstract

The authors characterize the (U + K)-orbits of a class essentially normal operators and prove
that some essentially normal operators with connected spectrum are strongly irreducible after
a small compact perturbation. This partially answers a question of Domigo A. Herrero.
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§1. Introduction

Let T be a linear, bounded operator acting on a complex, separable, infinite dimensional
Hibert space H. We call

U+ K)T)={RTR™, Rc U+K)(H)}
the (U +KC)-oribit of T, where (U +K)(H) = {R : R is an invertible operator of the form uni-

~ ~

tary plus compact}. T = A denotes A € (U +K)(T). = is an equivalence relation!!].
(U+K) U+K)

Al-Marcoux described the (U 4+ K)-orbits of normal operators and essentially normal oper-
ators with unit disk spectrum®2l. Ji, Y. Q.; Jiang, C. L.and Wang, Z. Y. studied the
(U + K)-orbits of essentially normal operators whose spectra are closures of analytic Jordan
domains. Using those results, we can prove that some essentially normal operators with
connected spectrum are strongly irreducible after a small compact perturbation. An oper-
ator T is strongly irreducible, i.e., T € (SI), if it does not commute with any nontrivail
idempotent. An operator is essentially normal if the self-commutator [T, T*] = T*T — TT*
is compact.

In this article, we study a class of essentially normal operators whose spectrum pictures are
more complicated, and prove that the essentially normal operator with connected spectrum
in some bigger classes is strongly irreducible after a small compact perturbation. This
partially answers a question of Domingo A. Herrero.

Question H (Herrero). Given an essentially normal operator T with connected spec-
trum o(7T) and given € > 0, can we find a compact operator K with ||K|| < & such that
T+ K e (SI)?
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The following theorems are our main results.

Theorem 1.1. Let 2 be a bounded, simple connected open subset of C, and let o be a
compact subset of Q0. Then for each natural number m, there exists an essentially normal
operator A satisfying the following conditions:

(i) 0(A) =Q, 0.(A)=0UdQ;

(i) dimker(A — \) = ind(A — X) = m(\ € Q\o);

(iii) Furthermore, for each € > 0 and T essentially normal, if A(T) = A(A), then there
exists a K compact with | K| < € such that (U 4+ K) L{%}C A, where A(T) and A(A) denote
the spectral pictures of T and A respectively. o.(A) = {A € C; A\ — A is not Fredholm}.

Theorem 1.2. Given T € L(H) essentially normal satisfying the following condtions:

(i) o(T) = Q and intQ is a bounded, simply connected open set;

(i) 0.(T) = 2\2;

(iii) ind(T — \) = n(A € Q).

Then for each & > 0, there exists a K compact with || K| < € such that T + K € (SI),
where € is a bounded connected open subset of C.

Theroem 1.3. Let Qg be a bounded, simply connected open subset of C and let {Q;}_,
(1 <1 < 400) be a sequence of disjoint simply connected open subsets of Qy. Given a
sequence {n;}._, of integers such that ny, > ng, k =1,2,--- , then there exists an essentially
normal operator A satisfying

(i) o(4) =Q, oe(4) = o3
0<i<l
L
(ii) ind(A — ) = dimker(A — X) = ng(Mo € Qo\ U Qu);
k=1
(iii) ind(A — A) = dimker(A — X) = nip(A € Qi, k> 1);
(iv) For each € > 0 and each T essentially normal, if A(T) = A(A), then there exists a
K compact with | K|| < & such that T + K uglc A.
+

Theorem 1.4. Given an essentially normal operator T € L(H) such that o(T) = Qo,
where Qg is an analytic, simply connected, closed region, and let {Qx}L_, be the set of
connected components of pp(T) No(T) satisfying the following conditions:

r_ —
(1) Q\ U QU # 0 and {3, ({Qk}i_,) is a sequence of disjoint, simply connected,
k=1
open (closed) regions;
L
(11) 1< ind(>\0 — T) < ind()\k — T) ()\ € Qk, k = 1727-“),()\0 S Qo\ U Qk), then
k=1

for each € > 0, there exists a K compact with ||K| < & such that T + K € (SI), where
pr(T) = C\oe(T).

§2. Proof of Theorem 1.3 and Theorm 1.4

Let ¢ be a conformal one-to-one mapping of D (unit disc) onto 2, a bounded simply
connected open subset of C. Then we say that T}, is a Toeplitz operator whose symbol is ¢.
First, we need following lemmas.

Lemma 2.1. Given a sequence {Q}L_, (1 <1< o00) of bounded simply connected open
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subsets of C; for each k, let ¢r, be a conformal one-to-one mapping of D onto Qy,
1 l
T=0T eﬁ( H28D>,
kejl Pk k-6=91 (9D)

577l N
M= k@ ker(T;,. — ¢x(0))™ (6m = min{m,}).
=1
Then
(I —P)T|pqe = T,

unitary equivalence

1
where P is the orthogonal projection from @& H?(0D) onto M.
k=1

€ Om 2 * ()™ ! 2
Proof. Note that M- = (kejl H*(0D) — ker(T;, — ¢1(0)) ) ® (kﬂs@H H (8D))

Om i
and (I — P)T|pe = (ke_el T.) @ (H@ B T, ), where Ty = (I = P)lwunr—p,) and Py

is the orthogonal projection from H?(9D) onto ker(T%, — ¢x(0))™, 1 < k < d,,. So, it is
sufficient to prove that T = Tk, 1 < k < d,,,. Since ¢y, is a conformal one-to-one mapping,
(pr(2) — ¢r(0))™ = 2™h(z), where h is invertible in H>°(9D). Hence, ker(T};, — 0p(0))" =
kerT7n and (ker(T;, — ¢x(0))™)" = RanT}w. Let Uy, be the mapping T.m from H?(8D) to
RanT,m. Then Uy, is unitary, and T, = U;T,U, ie., Ty, = T..

Lemma 2.2. Let ¢ be a conformal one-to-one mapping of D onto simply connected

region Q* and let o G Q with intg = 0. Assume that {\}32, is a dense subset of o such
that card{k : A, = Ay} = 00 (n = 1,2,--+), and let Ee, = Ae, (n = 1,2,---), where
{enyoo, = {18 (n = 1,2,---)} is an ONB of H?(dD). Then for each ¢ > 0, there
evists a K compcact with || K| < e such that T; & E + K(SI). Furthermore, if there are no
isolated points in o, K can be a rank 1 operator r ® e;.

Proof. Suppose that {u,}"_, are the isolated points of o and {N,}22, = {A\}32,\

_ 1
{p¥_,. Set E = Ey, ® E,, where By = diag{\,,\;,---,\,,---}, and Ey = @élﬂnf,

dimker (p,, — F5) = oo. By Voiculesu’s Theorem!®! | there exists a K1 compact with ||K1|| < ¢
such that E + K = E. Thus it is sufficient to prove that for each £ > 0 there exists a K
compact with ||K|| < e such that T3 ® E + K € (SI). Set

0 0
of 0 0
B, = Olg 0 3

0

ay = e 0= 1,2,--- 1. Then B, € (SI) and V,, = p,, + B,, € (SI). Note that
T5(SI) and T € B1(f2) (see [6,7]), where B(Q2) is the set of Cowen-Douglas operators of
index 1in Q and Q@ = {A € C; A € Q*}. From [6], there exists an analytic function f(\) :
Q — H?(OD) such that (T* — A\)f(A\) =0, and f(\) #0 (A € Q). Let H, (n=1,--- ,1y)
denote the acting spaces of V,, and {e?}?°, an ONB of H,. Let H = H?*(dD) and H,
denotes the acting sapce of Ey. {ex = e!* 1. k=12 ...} and {2}, are ONB of H;
and H respectively.

Set a(u) = (f(u),er). Then a(p) is analytic on Q. Without loss of generality we can
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assume that a(A},) #0 (k=1,2,---).

Define
T -
Cy E4
CH 0 1%

where Cy, (n =0,1,---) is defined as follows:

Coey = i% Coer, =0 (k=2,3,---),
<||f7 ) =exrel. C"([va(&;))r):@ n=12:

= e Lo =(f(w), f(un))
x(w) = f () ( ;k : )n:lg 27| f ()

> ( 1)k+1 n,

,; (b = u)’“

Then computation shows that 0 # x(u) € ker(A—p). It is easy to see that dimker(A—p) = 1.

From the construction we can see that there exists a K compact with ||K| < e such that
T;®E+K = A

In order to prove A € (SI), it is sufficient to prove that A € By (Q\J) (because B (®) C

Set

oy

e (ne o).

(SI), where @ is a connected open subset of C (see [10]). If g ® EB k LV x(p),i
pEQ\ o

l
(x(u)»g ® kgéoyk) =0, then

> eb) a e(f(p Dftlay--cap )
U090 =9 3 s + 3 S Z S

n=1 k= Fn

where y, = Z be (n=0,1,2,--). Since u, is an isolated point of o and since (f(u), g)
k=1
is analytic in Q, 08 =0 (k=1,2,---, n=1,2,---), we have

o awhy
KR S

In order to prove b =0 (k =1,2,---), it is sufficient to prove the following fact: assume
that ® is a connected open subset of C; {)\ }n 1 is a sequence of distinct complex numbers in

® with {\} containing no interior; if Z ew—n oy 1s anaytic in ®, then a, =0 n=1,2,--),

o0
where {a,}2° is a sequence of complex numbers in C such that > |a,| < +oo.
k=1

If ar # 0, then there exists an N such that > |a,| < @ Since {A\p: k=1,2,---}
n=N+1
contains no interior points, there is {l,,} C ® and {l,,,} N{ n} = 0 such that lim I, = A\

m— o0
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and [, — M| < [l — Aj|, m # .

Therefore
- |a| |an| - ||
’Z |>\k7 Z |)‘n*)\m| Z |)\n*)\m|
k:l k n=N-+1

|an|

— o0 (m — 00).
- 2|)\k— Am| Z [P ( )
n<N

The contradiction implies that a, =0, n=1,2,--- and \é x(u) = H?(0D) kéjao Hp.

Recall that for natural number n, B, (), the set of ngffn—\Douglas operators of index n,
is the set of all operators B on H satisfying

(i) o(B) D

(i) dimker(A — B) =ind(A — B) =n (A € Q);

(iii) V(ker(A = B): A € Q) = H.

By Theorem 1.2 of [8], B1(2) C (ST).

The remainder of the proof of A € B1(Q\0) is a routine work.

Just like the proof of Lemma 2.2, we have

Lemma 2.2.° Let o be a compact subset of simply connected region Q with into = () and
let {A\;}$2, be a dense sequence of 0. If A € B1(2) and D = diag(A1, Ag, - - ), then for each
€ > 0 there exists a K compact with ||K|| < € such that A@® D + K € (SI).

Given a conformal one-to-one mapping ¢ from D — Q* = {X: X € Q}, then T} € B,()
and o(T}) = Q.

Lemma 2.3. Let T} be as above. Then for each A € §Q there exists an f\ € H?(dD)
satisfying the following conditions:

(i) (T2) 5 =0,

(ii) A = f is analytic on Q.

(i) For cach g € H*(OD), (fr,9) = 9(p~1 (V).

Proof. Since H?(9D) has the Szegd kernel k, (z € D) such that g(z) = (g, k.) for each
g € H*(OD), let f\ = k,-1(n)- Then, for each g € H2(OD), (fr,9) = (g, fr) = g(p=1(N)).
Thus (iii) is satisfied. Futhermore, (fy,g) is analytic on Q. So A — fy is analytic on , i.e.,
(i) holds. Moreover, (g, (T3 — N fa) = (¢ = Mg, fr) = (el (V) = Ng(p™" (V) = 0 for
each g € H?(OD). Thus (T} — ) fx = 0.

Let T be defined as above and let {D,}! _, be a sequence of bounded operators satisfying

the following'
(i) {o(Dy, , is pairwise disjoint and for each A\ ¢ (Jo(D,,), |[(A—D,)~ Y| is uniformly
bounded; !
(ii) D, (n > 2) is rationally cyclic, x,, is its rationally cyclic vector, > |z, ||* < +o00 and

l
n=2
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(iii) D; is the operator E given in the proof of Lemma 2.2, i.e.,

Dlzdiag(A/lv)‘/Qf" Ay ) D pnl

s \py *

and into(D1) = (), there are no isolated points in o(D1) and o(D1) G Q\ U (D).

n=2
Assume that

! l
and o = |J (D,), where Cy = fi1®e; is Cp given in Lemma 2.2 and Cy = fa®eq; fo = @ zp,
n=1 n=1
 is a conformal one-to-one mapping of D onto Q*, o g ). Then we have

Lemma 2.4. (i) T € (SI), and T € B1(Q\0),
(ii) o(T) = Q and 0.(T) = o U ON.

Proof. We only need to prove T' € B1(2\o). Denote H; = \/  ker(T — A). If f €
AE(Q\o)

ker(T; — A) is given in Lemma 2.3, and xy = fi @ Z (A — D) 'z, then (zx,e1) = 1,

where e; = ¢ = 1; and (T — N)xy =0. If y € H and y L. Hy, then y = g @ o Yn, Where
n=1
g € H*(0D) and y, € H, (n=1,2,---). From Lemma 2.3

0:(1'>\7g)—g +Z A= D xnayn)

((/\ -D - n)_lxna yn)

118

ie., g(e=1(N) = —

n=1

1
The right side of the equality is analytic in (C\( U an) and the left side is analytic in 2.
1

n=

Thus both sides of equality can be extended to a function analytic in C, sincec = |J oy, ; Q.
n=1

Besides, (A= Dp) "2, yn) — 0 (A = o0), thus g(p=1(\)) =0 (A € Q\o), i.e., g = 0. When
|A| is big enough, we have

=1
(A= Dn)™ 0, yn) ZAHl(Dfmeyn)—W-

n=1
Thus (D*z,,y) = 0, k > 0, ie, if X ¢ o)D), (A — Dy) '@,,y,) = 0. Since w, is a
rationally cyclic vector of Dy, y, =0 (n =2,3,---). By the arguments used in the proof of
Lemma 2.2, y; = 0. Thus y =0 and H; = H.

Lemma 2.5. Suppose that operator By, € B1(Q) (k=1,2,---) satisfies

(i) If Qp = Qu, then By = By; (i) If Qi # Q, then Q S Q1;  (iil) 0(Bi) = Q.

Then for each K comapct and each € > 0, there exists G1 compact such that ||B1G1 —
G1A - K| < e, where A = % Bk.

Proof. Write B = EB Bl Let 7 = 7p, ajkc (). From Lemma 3.5 of [3], 7" = —74 B|C1(H),

where C;(H) denote the trace class operators. Thus we need only to prove that kerr* = {0}.
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If there is an X in the trace class satisfying that
AX = XB,

and suppose X = [z;;]ij, then By Xy ; = Xy ;B1 (k =1,2,---). If By, = By (U = 1),

by Proposition 1.21 of [6] and X in £1(H), Xp; = 0. If By # B1 (% G Q1), there is a

neibourghhord O, of y € €\, such that O, C Q;\Q. Since By € B € (1), V ker(B;—
A€O,

A) = H?(094). From Lemma 2 of [9], Xx; = 0. Therefore X = 0.

Proof of Theorem 1.3. Let {n;};2, be a sequence of natural numbers. Assume that
there is a subsequence {np, }32, of {n;}32, such that n, = ny (k = 1,2,---). Suppose
that {ne}32, \{np. 1721 = {n, }72,. Denote d, = ny, —ng (k = 1,2,---), do = ng and
o = Udy, . Let ¢ (k=0,1,2,---) be a conformal one-to-one mapping of D onto € =
xeq,} (o =0).

dy
Denote T) = & @& T3, - Given a dense subset {\,};2 of o such that
k=0 1

Card{k : )\n :)\k:} = 00 (n: 1727)
Set D = diag(A1, A2, - ), L.e., De, = Apey, (n=1,2,--+), where {e,}22, is an ONB of
oo d
‘Hi. Note that the acting sapce of T7 is & E§1 HE, where HE = H?(0D). Set

k=0 n=
oo dg ’Hk
A o |:T1 0 :|ke—90n®1 "
0 D Hi

Then A satisfies (i), (ii), (iii) of Theorem 1.3. Since A(T) = A(A), there exist Ky compact
and U unitary such that U*TU = A + K, by BDF Theorem!'?). Assume that {e’* =
elm=101%¢_ jsthe ONB of HE. Let Pr,, and Py, be the orthogonal projection onto \/{e™* :

0<m<L; np <L} and \/{en, : 0 < m < L} respectively, where L is a natural number.
Then P, = Py, + Py, Or 1 (L — o0). Therefore there exists Lo such that || Pr,KoPr, —

Kyl < §. Denote Ky = Pr,KoPr, — Ko. Then
A+ Ko+ Ky = A+ P KoPy,

_PL1T1PL1 + P, KoPr, PLlTllel Pr,KoPr, 0
_ 0 PETPLE 0 0
PLQKOPLl 0 PL2K0PL2 + PLQDPL2 0
L 0 0 0 Pi;DPE‘Z
[ K11 Ko K3 0
~ | K21 Koo 0 0
“lo o ptmps 0 |
0 0 0 PLDPL

where Ky1 = Pr,ToPr, + Pp,KoPr,, Kon = Pr,KoPr,, K, = Pr,KoPr,, K13 =
PLlTIP[i7 K22 == PLzKOPLg + PLQDPL2' From Lemma 21, PLLlTIP[i = Tl- Since D =
diag{A1, Az, - } and Card{n, A, = \¢} = 0o, PE,DP{ = D. Thus

Ly Liz O
A+ Ko+ K = 0 n 0],
0 0 D

K1 Ko

where L1 = [Km Koy

} and Lis = [Kolg] are finite rank operators.
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Thus there exists a U; unitary such that

Ly Lz O
U(A+ Ko+ K)Ui=| 0 T 0=
0 0 D

From the upper semi-continuity of spectrum o(L11) C (Q0),/8 = {2 : disc(z,Q0) < £/8}.
Therefore there exists L with ||L|| < /4 such that o(L1; + L) C Qp and the eigenvalues of
E = (Ly; — L) are pairwise distinct, i.e., there exists Ky compact with | K3|| < /4 such
that

E L O
Th+Ko=1|0 T3 O
0 0 D

do—1 oo dy
Denote 4y = (" 7z, )( & ). Then
1 k=11 7

B Ly 1y 0
0O T 0 0
— @
Litke=14 " 4 ol
O 0 0 D

where L12 = (L/127L/12)
From Lemma 3.4 of [3], there exist K, compact with ||Ka|| < /8 and X1 € (U +

K)(H?(0D) such that

— ||E L, — | =-1 .

[ ]

0

Therefore we can find K3 compact with ||K3| < /8 and X; € (M + K)((©H?(0D)) ® H1)
such that

T; Ci2 0
X (Th+Ks+EKo)X;' =10 A 0],
0O 0 D

where C1o is still a finite rank operator. From Lemma 2.5, we can find GGy, G2 compact
with ||G1] < W such that 77 G2 — G2 A1 = G1 + Cia. Thus there are Ky compact
1 1

with ||K4| < e/8)| X1 [| X1 || and X5 € (U + K)(H?(9D)) & H; such that

T 0 0
1 -1 ~0 7y 0
XoX((T+ Ks+ Ko+ X{'KG X)X X =1 00 A 0 = = A
0 D
0 0 D
The proof of Theorem 1.3 is now complete.

In order to prove Theorem 1.4, we need the following Lemmas. Let A; = L(H*(9D)) (j =

1,2,---) be defined as Ajent1 = (%ﬁ)l/]en (n =1,2,---), where {e, — ei(nfl)e}%ozl is
the ONB of H?(0D). Then C; = A; — T} is compact and for each € > 0 we can find j € N
such that ||A; —T7|| = ||C}|| < e, where T,e,+1 = e,. Then, for each ¢ > 0, there exists
Dy compact with ||Dygl|| < e such that for each f € H?(0D) we have

Lemma 2.6. (i) Do + f ® e1 ¢ rant(ps4.o,)yrs = 1anta, s

(ii) kerr = {0} and kerr = {0} (j1 > j2).

TrA; AjrAjs

(iii) There is a Dj(k > 1) compact with ||D;|| < e/2 and D; ¢ ranta; a,,,-
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Proof. If j; > js, we have
0 (4/3)1/jk

0 0 (5/4)1/x
Aj, = 0 0 0 (k=1,2,---).
11 T12
It X = | 291 Top -+ | € kerTA§1»A.fz’ , A;; X = XAj,, compuations show that
, o\ Vi -
(4/3)1/41291 = 0, or @97 = 0,--- ,(Z—H) Tp1 = 0 or zp1 = 0,--- . Similarly, z,, =

0 (n > k), i.e., X has an upper triangular representation with respect to the ONB (e, )%,
of the sapce. Also, computations indicate that
+ 2\ /0 n 4+ 2\ 1/52
4/3)4/5n 4/3)Y/% (” ) ,m:( ) 1
(4/3) way = (4/3) Pan, (=) @ ni1)  Fneined
Thus Zn, = (n + 2/3)Y2"Vig — oo (n — o0), if 11 # 0. Therefore z1; = 0 and
=0 (n=2,3,---). The same arguments indicate that z;; = 0 (j > 7), i.e., X =0 and

kerTAmA = {0}. Similarly, we can show that kerr i {0} G=1,2,---).
z 044
Let Dg be given by Dpepy1 = men (n=1,2,---). Suppose X € L(H?*(OD)) satisfies
AJX—XTZ* :f®€+D0
Note
ap E/\/i 0
ai 0 5/\/3
f®er+Dy=|--- ,

ag 0 e/Vk+1

where f = 3 ap_ie/F=19,
k=1
T11  T12
Set X = | xo1 x22 -+ | . Then comparing the (k,k 4 1) entries of both sides of the

equality, we have

(4/3)1/jx22—x11 :6/\/5, (5/4)1/j1‘22—3322:€/\/§,

n 4+ 2\1/J
<7’L+1> xn+1,n+1_xnn:5/\/ﬁ'“ .
Since
2\ 1/3 1/3
() ”=(1+ )
n+1 n—+ 1
w2 (37) +0o((57) ) e () M)
j n—l—l ntl Tn+1,n+1 ntl Tn+1,n+1
1 2
(e 0[5 e
and

1/5 ) 2
. anrl n+1 (n::—-l) xn+1,n+1’ . ]-/J (%4_1)
lim = lim

e E/\/ﬁ T i E/\/’E |xn+1,n+1| = 07
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we see that

2
(Zil)xn+l,n+1 — Tnn
lim =1
T—00 6/\/%
implies lim Zrtlomtl—Tnn _ 1 Therefore, when n is big enough,
r—00 e/vn

Re(Tni1nt1 — Tnn) > €/2v/n, and || X|| > lim Rez,, = oo.
xTr—r0o0

This contradiction implies that f @ e; + Dy ¢ rant4; . Set
0 4;/v2
0 0 §/V3

Dj: (j:1727...)

with respect to the ONB {e,, }°° ,, where §; = £/27. Then by the similar argument we can
prove that D; ¢ ranta; a,,, (j=2,3,---).

Lemma 2.7. If Qq given in Theorem 1.4 is the unit disc, then for the operator A =
é %él T7, ® D defined in the proof of Theorem 1.3 and for each € > 0 there exists K
]Z:;)nplact with ||K|| < € such that A+ K € (SI).

Proof. Note that 73, = T7. Set By = %?T;fk. From the condition (i) of Theorem 1.4 and

from the choice of (D) in the proof of Theorem 1.3,

o(D) (o (B (or(Br) = 0 (k = 1,2, )int(D) = b,
and o(D) contains no isolated points. From Theorem 1 of [10] and By, € By, (), Bj has
cyclic vector zj (k =1,2,---). Without loss of generality, we can assume that zl: llzel? <

+00. Thus by Lemma 2.4, there is a K; compact with ||K;|| < /4 such that

T: 0 0 T 0 0
Ag= |0 @B 0|4k =L @B 0] e\ ((JoBrUXo(D)),
0 0 D L, 0 D

where L1 = f1 ® e1, Ly = fo ® e1. Thus Ay € (ST). Use Lemma 2.6 to construct compact
operators Do, Di,---Dg,—a, C1,C2,C4y—1, and Ay =17 +Cy,--- ,Age—1 = T7 + Cyy—1
such that

(i) kerta, a4, = {0} Jj1 < j2 and kerrrx 4, = {0};

(ii) For each x € H*(0D), Dy + 2 @ e1 ¢ ranta, rs;

(iii) Dj ¢ ranta, 4,_,, and || D;|| < £/100dy, ||C}]| < &/100do (j =0,1,2,---).

Define Dy = (Dy,0,0) and

- Ag 0 1
Doy Ay
Dy Ay

D,

L Dgy—2 Agy—1
and K = G — A. Then K> is compact with ||K3|| < e. It is sufficent to prove G € (ST).
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Suppose that P € A(G) is idempotent and

Poo Py e Pog,—1
P =
Piy—10 Pay—11 - Pag—1,d0—1
M,
Then calculation indicates that Pogy—1A44,—1 = AoFPod,—1. Assume that Pog,—1 | M2 | . Then
M;3

MiAgy 1 =T, My, MyAgy—1 = L1 M + (% Bk)Mz, M3Ag,—1 = LM, + DMs;.

Since kerrrs 4, = {0} (j > 1), My = 0. Since o(By) & D,= Agq,—1B1(D), o(D) & D
and from Lemma 4 of [9], My = M3 = 0, i.e., Pygy—1
Pygy—2A4,—2, we can prove that Pyg,—2 = 0. Inductively, Po, =0, k =1,2,--- ,dy — L.

I

0. Similarly, from AyPyg,—2 =

Similarly, P;; = 0 (i < j). Thus P admits a lower matrix form. Since P;A; = A;P; and since
A; € (SI), P, =61, 6;,=0o0r1 (i=0,1,~- ,do—l).
Suppose that o = 0 (if 69 = 1, consider &I — P). Since PG = G P, calculation indicates
that
PigAg + 61D = Ay Pyo.
If P10 = (Ml, MQ,MS), then
(MyT? + MaLy + MsLy, Mo % By, M3D) + (01 D0, 0,0) = (A1 My, Ay M, Ay M3),
A1 My — MAT} = 61D+ MaLy + M3Lo = 61Dg + ((Maf1 + M3 f2) @ eq).
Thus §; = 0 (Lemma 2.6).
Also, since Py Ay + 62D1 = AxPs; and since Dy ¢ rantg, 4,, 62 = 0. Inductively,
0, =0(1,2,---,dg— 1), and P =0, i.e., G € (SI).
Now we are in a position to prove Theorem 1.4.

Since )y is an analytic, simply connected region, there exists a conformal one-to-one
mapplng 1/10(90)51 - (D)527 where (90)51 = {Z7diSt(Z7QO) < 51}7 51 > 0, (D)52 =
{z,dist(z,d) < 62}, d2 > 0. Suppose that ¢q is the conformal one-to-one mapping of (D)s,,

ie., w9 = wal.
Set
do
iﬂle@ . 0 0
A = dp * )
0 Dr 16:91 ka 0
0 0 D
where A is given in the proof of Theorem 1.3. Then
d
& T 0 0
i=1
¢0(A) = dp *
0 % iE:BI Lioten) 0

0 0 Yo(D)
From Theorem 1.3, for each € > 0, there exists a K compact with || Ko|| < £/4 such that
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Yo(T) + Ky ugic 1o(A), where T is given by Theorem 1.4, i.e., there is an invertible operator
+

X of the form unitary plus compact such that X (1o(T) + Ko)X ! = ¢o(A).
By Lemma 2.3, we can find a K; compact with || K| < &/|| X || X ~!|| such that

X(@o(T) + Ko + X 'K X)X ! =o(A) + K; € (SI).

This means that there exists a K compact with || K| < €/2 such that ¢ (T) + K € (SI).
Note that o (¢o(T) + K) C D. Thus we can deduce that oo (1o(T) + K) =T + K € (SI) by
using the following Theorem.

Theorem J.[!1, Theorem 2.8] Jrp (SI) and ¢ is a conformal one-to-one mapping in a
neighbourhood of o(T), then o(T) € (SI).

It is easy to see that K = g (1o(T) + K) — T is compact and || K|| — 0.

§3. Proof of Theorem 1.1 and Theorem 1.2

Proof of Thoerem 1.1 Let operator T, open set {2 and compact set o be given
in Theorem 1.1. And let ¢ be a conformal one-to-one mapping of D onto Q*. D =
diag{A1, A2, -+, A\n), where {\,,}22 is dense in o.

Set

0 D
Directly using the proof of Thorem 1.3, we conclude that if A(T)) = A(A), then for each
€ > 0, there exists a K compact with ||K|| < e such that T+ K = A.

U+K
Simlarly, we can prove Theorem 1.2 by using the arguments in Theorem 1.4.
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