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Abstract

The authors characterize the (U+K)-orbits of a class essentially normal operators and prove

that some essentially normal operators with connected spectrum are strongly irreducible after
a small compact perturbation. This partially answers a question of Domigo A. Herrero.
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§1. Introduction

Let T be a linear, bounded operator acting on a complex, separable, infinite dimensional

Hibert space H. We call

(U +K)(T ) = {RTR−1, R ∈ (U +K)(H)}

the (U+K)-oribit of T , where (U+K)(H) = {R : R is an invertible operator of the form uni-

tary plus compact}. T ∼=
(U+K)

A denotes A ∈ (U +K)(T ). ∼=
(U+K)

is an equivalence relation[1].

Al-Marcoux described the (U + K)-orbits of normal operators and essentially normal oper-

ators with unit disk spectrum[1,2]. Ji, Y. Q.; Jiang, C. L.and Wang, Z. Y.[3] studied the

(U +K)-orbits of essentially normal operators whose spectra are closures of analytic Jordan

domains. Using those results, we can prove that some essentially normal operators with

connected spectrum are strongly irreducible after a small compact perturbation. An oper-

ator T is strongly irreducible, i.e., T ∈ (SI), if it does not commute with any nontrivail

idempotent. An operator is essentially normal if the self-commutator [T, T ∗] = T ∗T − TT ∗

is compact.

In this article, we study a class of essentially normal operators whose spectrum pictures are

more complicated, and prove that the essentially normal operator with connected spectrum

in some bigger classes is strongly irreducible after a small compact perturbation. This

partially answers a question of Domingo A. Herrero.

Question H (Herrero). Given an essentially normal operator T with connected spec-

trum σ(T ) and given ε > 0, can we find a compact operator K with ∥K∥ < ε such that

T +K ∈ (SI)?
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The following theorems are our main results.

Theorem 1.1. Let Ω be a bounded, simple connected open subset of C, and let σ be a

compact subset of Ω. Then for each natural number m, there exists an essentially normal

operator A satisfying the following conditions:

(i) σ(A) = Ω, σe(A) = σ ∪ ∂Ω;
(ii) dimker(A− λ) = ind(A− λ) = m(λ ∈ Ω\σ);
(iii) Furthermore, for each ε > 0 and T essentially normal, if Λ(T ) = Λ(A), then there

exists a K compact with ∥K∥ < ε such that (U + K) ∼=
U+K

A, where Λ(T ) and Λ(A) denote

the spectral pictures of T and A respectively. σe(A) = {λ ∈ C;λ−A is not Fredholm}.
Theorem 1.2. Given T ∈ L(H) essentially normal satisfying the following condtions:

(i) σ(T ) = Ω and intΩ is a bounded, simply connected open set;

(ii) σe(T ) = Ω\Ω;
(iii) ind(T − λ) = n(λ ∈ Ω).

Then for each ε > 0, there exists a K compact with ∥K∥ < ε such that T +K ∈ (SI),

where Ω is a bounded connected open subset of C.
Theroem 1.3. Let Ω0 be a bounded, simply connected open subset of C and let {Ωi}li=1

(1 ≤ l ≤ +∞) be a sequence of disjoint simply connected open subsets of Ω0. Given a

sequence {ni}li=1 of integers such that nk ≥ n0, k = 1, 2, · · · , then there exists an essentially

normal operator A satisfying

(i) σ(A) = Ω, σe(A) =
∪

0≤i≤l
∂Ωi;

(ii) ind(A− λ) = dimker(A− λ) = n0(λ0 ∈ Ω0\
l∪

k=1

Ωk);

(iii) ind(A− λ) = dimker(A− λ) = nk(λ ∈ Ωk, k ≥ 1);

(iv) For each ε > 0 and each T essentially normal, if Λ(T ) = Λ(A), then there exists a

K compact with ∥K∥ < ε such that T +K ∼=
U+K

A.

Theorem 1.4. Given an essentially normal operator T ∈ L(H) such that σ(T ) = Ω0,

where Ω0 is an analytic, simply connected, closed region, and let {Ωk}lk=1 be the set of

connected components of ρF (T ) ∩ σ(T ) satisfying the following conditions:

(i) Ω0\
l∪

k=1

Ωk ̸= ∅ and {Ωk}lk=1({Ωk}lk=1) is a sequence of disjoint, simply connected,

open (closed) regions;

(ii) 1 ≤ ind(λ0 − T ) ≤ ind(λk − T ) (λ ∈ Ωk, k = 1, 2, · · · ), (λ0 ∈ Ω0\
l∪

k=1

Ωk), then

for each ε > 0, there exists a K compact with ∥K∥ < ε such that T + K ∈ (SI), where

ρF (T ) = C\σe(T ).

§2. Proof of Theorem 1.3 and Theorm 1.4

Let φ be a conformal one-to-one mapping of D (unit disc) onto Ω, a bounded simply

connected open subset of C. Then we say that Tφ is a Toeplitz operator whose symbol is φ.

First, we need following lemmas.

Lemma 2.1. Given a sequence {Ωk}lk=1 (1 ≤ l ≤ ∞) of bounded simply connected open
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subsets of C; for each k, let φk be a conformal one-to-one mapping of D onto Ωk,

T =
l
⊕
k=1

T ∗
φk

∈ L
( l

⊕
k=1

H2(∂D)
)
,

M =
δm
⊕
k=1

ker(T ∗
φK

− φk(0))
m (δm = min{m, l}).

Then

(I − P )T |M⊥ ∼=
unitary equivalence

T,

where P is the orthogonal projection from
l
⊕
k=1

H2(∂D) onto M.

Proof. Note that M⊥ =
( δm

⊕
k=1

H2(∂D) − ker(T ∗
φk

− φk(0))
m
)
⊕

( l
⊕

k=δm+1
H2(∂D)

)
and (I − P )T |M⊥ =

( δm
⊕
k=1

Tk

)
⊕

( i
⊕

k=δm+1
Tφk

)
, where Tk = (I − Pk)|run(I−Pk) and Pk

is the orthogonal projection from H2(∂D) onto ker(T ∗
φk

− φk(0))
m, 1 ≤ k ≤ δm. So, it is

sufficient to prove that Tk ∼= Tk, 1 ≤ k ≤ δm. Since φk is a conformal one-to-one mapping,

(φk(z)−φk(0))
m = zmh(z), where h is invertible in H∞(∂D). Hence, ker(T ∗

φk
−φk(0))

m =

kerT ∗
zm and (ker(T ∗

φk
−φk(0))

m)⊥ = RanT ∗
zm . Let Uk be the mapping Tzm from H2(∂D) to

RanTzm . Then Uk is unitary, and Tφk
= U∗

kTkU, i.e., Tφk
∼= T∗.

Lemma 2.2. Let φ be a conformal one-to-one mapping of D onto simply connected

region Ω∗ and let σ $ Ω with intσ̄ = ∅. Assume that {λ}∞k=0 is a dense subset of σ such

that card{k : λn = λk} = ∞ (n = 1, 2, · · · ), and let Een = λnen (n = 1, 2, · · · ), where
{en}∞n=1 = {ei(n−1)θ (n = 1, 2, · · · )} is an ONB of H2(∂D). Then for each ε > 0, there

exists a K compcact with ∥K∥ < ε such that T ∗
φ ⊕E +K(SI). Furthermore, if there are no

isolated points in σ,K can be a rank 1 operator x⊗ e1.

Proof. Suppose that {µn}l1n=1 are the isolated points of σ and {λ′n}∞n=1 = {λk}∞k=0\

{µn}l1n=1. Set E = E1 ⊕ E2, where E1 = diag{λ′1, λ′2, · · · , λ′n, · · · }, and E2 =
l1
⊕
n=1

µnI,

dimker(µn−E2) = ∞. By Voiculesu’s Theorem[5], there exists a K1 compact with ∥K1∥ < ε

such that E + K ∼= E. Thus it is sufficient to prove that for each ε > 0 there exists a K

compact with ∥K∥ < ε such that T ∗
φ ⊕ E +K ∈ (SI). Set

Bn =


0 0
αn1 0 0

αn2 0
. . .

. . .

0
. . .

. . .

 ,
αnk = ε

(n+k)n+k , n = 1, 2, · · · , l1. Then Bn ∈ (SI) and Vn = µn + Bn ∈ (SI). Note that

T ∗
φ(SI) and T ∗

φ ∈ B1(Ω) (see [6,7]), where B(Ω) is the set of Cowen-Douglas operators of

index 1 in Ω and Ω = {λ ∈ C; λ ∈ Ω∗}. From [6], there exists an analytic function f(λ) :

Ω → H2(∂D) such that (T ∗ − λ)f(λ) ≡ 0, and f(λ) ̸= 0 (λ ∈ Ω). Let Hn (n = 1, · · · , l1)
denote the acting spaces of Vn and {enk}∞k=1 an ONB of Hn. Let H = H2(∂D) and H0

denotes the acting sapce of E1. {ek = ei(k−1)θ : k = 1, 2, · · · } and {e0k}∞k=1 are ONB of H1

and H0 respectively.

Set a(µ) = (f(µ), e1). Then a(µ) is analytic on Ω. Without loss of generality we can
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assume that a(λ′k) ̸= 0 (k = 1, 2, · · · ).
Define

A =



T ∗
φ

C0 E1

C1 0 V1
C2 0 0 V2
...

...
. . .

...
...

. . .


,

where Cn (n = 0, 1, · · · ) is defined as follows:

C0e1 =

∞∑
k=1

ε

k
e0k, C0ek = 0 (k = 2, 3, · · · ),

Cn

( f(λ′n)

∥f(λ′n)

)
= ε2−nen1 , Cn

([ f(λ′n)
∥f(λ′n)

]⊥)
= 0, n = 1, 2, · · · .

Set

χ(µ) = f(µ)⊕
(
− a(µ)

∞∑
k=1

εe0k
k(λ′k − µ)

) l
⊕
n=1

ε
−(f(µ), f(µn))

2n∥f(µn)∥

·
∞∑
k=1

(−1)k+1αn1 · · ·αnk
(µn − µ)k

enk (µ ∈ Ω\σ).

Then computation shows that 0 ̸= χ(µ) ∈ ker(A−µ). It is easy to see that dimker(A−µ) = 1.

From the construction we can see that there exists a K compact with ∥K∥ < ε such that

T ∗
φ ⊕ E +K = A.

In order to prove A ∈ (SI), it is sufficient to prove that A ∈ B1(Ω\σ) (because B1(Φ) ⊂

(SI), where Φ is a connected open subset of C (see [10]). If g ⊕
l1
⊕
k=0

yk ⊥
∨

µ∈Ω\σ
χ(µ), i.e.,(

χ(µ), g ⊕
l1
⊕
k=0

yk

)
= 0, then

(f(µ), g) = a(µ)
∞∑
k=1

εb0k
k(λ′k − µ)

+

l1∑
n=1

ε(f(µ), f(µn))

2n∥f(µn)∥
·

∞∑
k=1

(−1)k+1αn1 · · ·αnk−1

(µn − µ)k
bnk ,

where yn =
∞∑
k=1

b̄nke
n
k (n = 0, 1, 2, · · · ). Since µn is an isolated point of σ and since (f(µ), g)

is analytic in Ω, bnk = 0 (k = 1, 2, · · · , n = 1, 2, · · · ), we have

(f(µ), g) = ε

∞∑
k=1

a(µ)b0k
k(λ′k − µ)

.

In order to prove b0k = 0 (k = 1, 2, · · · ), it is sufficient to prove the following fact: assume

that Φ is a connected open subset of C; {λn}∞n=1 is a sequence of distinct complex numbers in

Φ with {λk} containing no interior; if
∞∑
k=1

an
(λn−µ) is anaytic in Φ, then an = 0 (n = 1, 2, · · · ),

where {an}∞n=1 is a sequence of complex numbers in C such that
∞∑
k=1

|an| < +∞.

If ak ̸= 0, then there exists an N such that
∞∑

n=N+1

|an| < |ak|
2 . Since {λk : k = 1, 2, · · · }

contains no interior points, there is {lm} ⊂ Φ and {lm}
∩
{λn} = ∅ such that lim

m→∞
lm = λk
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and |lm − λk| ≤ |lm − λj |, m ̸= j.

Therefore∣∣∣ ∞∑
k=1

an
(λn − λm)

∣∣∣ ≥ |ak|
|λk − λm|

−
∑
n̸=k
n≤N

|an|
|λn − λm|

−
∞∑

n=N+1

|an|
|λn − λm|

≥ ak
2|λk − λm|

−
∑
n̸=k
n≤N

|an|
|λn − lm|

→ ∞ (m→ ∞).

The contradiction implies that an = 0, n = 1, 2, · · · and
∨

µ⊂Ω\σ
χ(µ) = H2(∂D)

l1
⊕
k=0

Hk.

Recall that for natural number n,Bn(Ω), the set of Cown-Douglas operators of index n,

is the set of all operators B on H satisfying

(i) σ(B) ⊃ Ω;

(ii) dimker(λ−B) = ind(λ−B) = n (λ ∈ Ω);

(iii) ∨(ker(λ−B) : λ ∈ Ω) = H.
By Theorem 1.2 of [8], B1(Ω) ⊂ (SI).

The remainder of the proof of A ∈ B1(Ω\σ) is a routine work.

Just like the proof of Lemma 2.2, we have

Lemma 2.2.’ Let σ be a compact subset of simply connected region Ω with intσ = ∅ and

let {λi}∞i=1 be a dense sequence of σ. If A ∈ B1(Ω) and D = diag(λ1, λ2, · · · ), then for each

ε > 0 there exists a K compact with ∥K∥ < ε such that A⊕D +K ∈ (SI).

Given a conformal one-to-one mapping φ from D → Ω∗ = {λ : λ ∈ Ω}, then T ∗
φ ∈ B1(Ω)

and σ(T ∗
φ) = Ω.

Lemma 2.3. Let T ∗
φ be as above. Then for each λ ∈ Ω there exists an fλ ∈ H2(∂D)

satisfying the following conditions:

(i) (T ∗
φ)fλ = 0.

(ii) λ→ fλ is analytic on Ω.

(iii) For each g ∈ H2(∂D), (fλ, g) = g(φ−1(λ̄)).

Proof. Since H2(∂D) has the Szegö kernel kz (z ∈ D) such that g(z) = (g, kz) for each

g ∈ H2(∂D), let fλ = kφ−1(λ). Then, for each g ∈ H2(∂D), (fλ, g) = (g, fλ) = g(φ−1(λ̄)).

Thus (iii) is satisfied. Futhermore, (fλ, g) is analytic on Ω. So λ→ fλ is analytic on Ω, i.e.,

(ii) holds. Moreover, (g, (T ∗
φ − λ)fλ) = ((φ − λ̄)g, fλ) = (φ(φ−1(λ̄)) − λ̄)g(φ−1(λ̄)) = 0 for

each g ∈ H2(∂D). Thus (T ∗
φ − λ)fλ = 0.

Let T ∗
φ be defined as above and let {Dn}ln=1 be a sequence of bounded operators satisfying

the following:

(i) {σ(Dn)}ln=2 is pairwise disjoint and for each λ /∈
∪
n
σ(Dn), ∥(λ−Dn)

−1∥ is uniformly

bounded;

(ii) Dn(n ≥ 2) is rationally cyclic, xn is its rationally cyclic vector,
∑
l

n=2

∥xn∥2 < +∞ and

∪
n
σ(Dn) $ Ω;



222 CHIN. ANN. OF MATH. Vol.19 Ser.B

(iii) D1 is the operator E given in the proof of Lemma 2.2, i.e.,

D1 = diag(λ′1, λ
′
2, · · · , λ′n, · · · )

l1
⊕
n=1

µnI

and intσ(D1) = ∅, there are no isolated points in σ(D1) and σ(D1) $ Ω\
∞∪
n=2

σ(Dn).

Assume that

T =

T
∗
φ 0 0
C D1 0

C2 0
l
⊕
n=2

Dn

 ,
and σ =

l∪
n=1

(Dn), where C1 = f1⊕e1 is C0 given in Lemma 2.2 and C2 = f2⊗e1; f2 =
l
⊕
n=1

xn,

φ is a conformal one-to-one mapping of D onto Ω∗, σ $ Ω. Then we have

Lemma 2.4. (i) T ∈ (SI), and T ∈ B1(Ω\σ),
(ii) σ(T ) = Ω and σe(T ) = σ ∪ ∂Ω.
Proof. We only need to prove T ∈ B1(Ω\σ). Denote H1 =

∨
λ∈(Ω\σ)

ker(T − λ). If fλ ∈

ker(T ∗
φ − λ) is given in Lemma 2.3, and xλ = fλ ⊕

∞∑
n=1

(λ − Dn)
−1xn, then (xλ, e1) = 1,

where e1 = ei0 = 1; and (T − λ)xλ = 0. If y ∈ H and y ⊥ H1, then y = g ⊕
∞
⊕
n=1

yn, where

g ∈ H2(∂D) and yn ∈ Hn (n = 1, 2, · · · ). From Lemma 2.3

0 = (xλ, g) = g(φ−1(λ)) +
∞∑
n=1

((λ−Dn)
−1xn, yn),

i.e., g(φ−1(λ̄)) = −
∞∑
n=1

((λ−D − n)−1xn, yn).

The right side of the equality is analytic in C\
( l∪
n=1

σn

)
and the left side is analytic in Ω.

Thus both sides of equality can be extended to a function analytic in C, since σ =
l∪

n=1
σn $ Ω.

Besides, ((λ−Dn)
−1xn, yn) → 0 (λ→ ∞), thus g(φ−1(λ̄)) = 0 (λ ∈ Ω\σ), i.e., g ≡ 0. When

|λ| is big enough, we have

((λ−Dn)
−1xn, yn) =

∞∑
n=1

1

λk+1
(Dk

nxn, yn) → 0.

Thus (Dkxn, y) = 0, k ≥ 0, i.e., if λ /∈ σ)Dn), ((λ − Dn)
−1xn, yn) = 0. Since xn is a

rationally cyclic vector of Dn, yn = 0 (n = 2, 3, · · · ). By the arguments used in the proof of

Lemma 2.2, y1 = 0. Thus y ≡ 0 and H1 = H.
Lemma 2.5. Suppose that operator Bk ∈ B1(Ωk) (k = 1, 2, · · · ) satisfies
(i) If Ωk = Ω1, then Bk = B1; (ii) If Ωk ̸= Ω1, then Ωk $ Ω1; (iii) σ(Bk) = Ωk.

Then for each K comapct and each ε > 0, there exists G1 compact such that ∥B1G1 −
G1A−K∥ < ε, where A =

∞
⊕
k=1

Bk.

Proof. Write B =
+∞
⊕
k=1

B1. Let τ = τB,A|K(H). From Lemma 3.5 of [3], τ∗ = −τA,B |C1(H),

where C1(H) denote the trace class operators. Thus we need only to prove that kerτ∗ = {0}.
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If there is an X in the trace class satisfying that

AX = XB,

and suppose X = [xij ]ij , then BkXk,j = Xk,jB1 (k = 1, 2, · · · ). If Bk = B1 (Ωk = Ω1),

by Proposition 1.21 of [6] and X in L1(H), Xkj = 0. If Bk ̸= B1 (Ωk $ Ω1), there is a

neibourghhord Oy of y ∈ Ω1\Ωk such that Oy ⊂ Ω1\Ωk. Since B1 ∈ B ∈ (Ω1),
∨

λ∈Oy

ker(B1−

λ) = H2(∂Ω1). From Lemma 2 of [9], Xkj = 0. Therefore X = 0.

Proof of Theorem 1.3. Let {nk}∞k=0 be a sequence of natural numbers. Assume that

there is a subsequence {npk}∞k=1 of {nk}∞k=0 such that npk = n0 (k = 1, 2, · · · ). Suppose
that {nk}∞k=1\{npk}∞k=1 = {nlk}∞k=1. Denote dk = nlk − n0 (k = 1, 2, · · · ), d0 = n0 and

σ = ∪∂Ωpk . Let φk (k = 0, 1, 2, · · · ) be a conformal one-to-one mapping of D onto Ω∗
lk

=

{λ : λ̄ ∈ Ωlk} (l0 = 0).

Denote T1 =
∞
⊕
k=0

dk
⊕
1
T ∗
φk
. Given a dense subset {λn}∞n=1 of σ such that

Card{k : λn = λk} = ∞ (n = 1, 2, · · · ).

Set D = diag(λ1, λ2, · · · ), i.e., Den = λnen (n = 1, 2, · · · ), where {en}∞n=1 is an ONB of

H1. Note that the acting sapce of T1 is
∞
⊕
k=0

dk
⊕
n=1

Hk
n, where Hk

n = H2(∂D). Set

A =

[
T1 0
0 D

] ∞
⊕

k=0

dk
⊕

n=1
Hk

n

H1

.

Then A satisfies (i), (ii), (iii) of Theorem 1.3. Since Λ(T ) = Λ(A), there exist K0 compact

and U unitary such that U∗TU = A + K0 by BDF Theorem[10]. Assume that {enk
m =

ei(m−1)θ}∞m=1 is the ONB of Hk
n. Let PL1 and PL2 be the orthogonal projection onto

∨
{emk
m :

0 ≤ m ≤ L; nk ≤ L} and
∨
{em : 0 ≤ m ≤ L} respectively, where L is a natural number.

Then PL = PL1 + PL2

SOT→ I (L → ∞). Therefore there exists L0 such that ∥PL0K0PL0 −
K0∥ < ε

8 . Denote K1 = PL0K0PL0 −K0. Then

A+K0 +K1 = A+ PL0K0PL0

=


PL1T1PL1 + PL1K0PL1 PL1T1P

⊥
L1

PL1K0PL2 0

0 P⊥
L1
T1P

⊥
L1

0 0
PL2K0PL1 0 PL2K0PL2 + PL2DPL2 0

0 0 0 P⊥
L2
DP⊥

L2


∼=


K11 K12 K13 0
K21 K22 0 0
0 0 P⊥

L1
T1P

⊥
L1

0

0 0 0 P⊥
L2
DP⊥

L2

 ,
where K11 = PL1T0PL1 + PL1K0PL1 , K21 = PL2K0PL1 , KL2 = PL1K0PL2 , K13 =

PL1T1P
⊥
L1
, K22 = PL2K0PL2 + PL2DPL2 . From Lemma 2.1, P⊥

L1
T1P

⊥
L1

∼= T1. Since D =

diag{λ1, λ2, · · · } and Card{n, λn = λk} = ∞, P⊥
L2
DP⊥

L2

∼= D. Thus

A+K0 +K1
∼=

L11 L12 0
0 T1 0
0 0 D

 ,
where L11 =

[
K11 K12

K21 K22

]
and L12 =

[
K13

0

]
are finite rank operators.
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Thus there exists a U1 unitary such that

U1(A+K0 +K1)U
∗
1 =

L11 L12 0
0 T1 0
0 0 D

 = T2.

From the upper semi-continuity of spectrum σ(L11) ⊂ (Ω0)σ/8 = {z : disc(z,Ω0) < ε/8}.
Therefore there exists L with ∥L∥ < ε/4 such that σ(L11 + L) ⊂ Ω0 and the eigenvalues of

E = (L11 − L) are pairwise distinct, i.e., there exists K2 compact with ∥K2∥ < ε/4 such

that

T2 +K2 =

E L12 0
0 T1 0
0 0 D

 .
Denote A1 =

( d0−1
⊕
1

T ∗
φ0

)( ∞
⊕
k=1

dk
⊕
1
T ∗
φj

)
. Then

T2 +K2 =


E L′

12 L′′
12 0

0 T ∗
φ0

0 0
0 0 A1 0
0 0 0 D

 ,
where L12 = (L′

12, L
′
12).

From Lemma 3.4 of [3], there exist K2 compact with ∥K2∥ < ε/8 and X1 ∈ (U +

K)(H2(∂D) such that

X1

[[
E L′

12

0 T ∗
φ0

]
+K2

]
X

−1

1 = T ∗
φ0
.

Therefore we can find K3 compact with ∥K3∥ < ε/8 and X1 ∈ (M+K)((⊕H2(∂D))⊕H1)

such that

X1(T2 +K3 +K2)X
−1
1 =

T ∗
φ0

C12 0
0 A1 0
0 0 D

 ,
where C12 is still a finite rank operator. From Lemma 2.5, we can find G1, G2 compact

with ∥G1∥ < ε
8∥X1∥ ∥X−1

1 ∥ such that T ∗
φ0
G2 −G2A1 = G1 +C12. Thus there are K4 compact

with ∥K4∥ < ε/8∥X1∥ ∥X−1
1 ∥ and X2 ∈ (U +K)

(
H2(∂D)

)
⊕H1 such that

X2X1(T +K3 +K2 +X−1
1 K4X1)X

−1
1 X−1

2 =

T ∗
φ0

0 0
0 A1 0
0 0 D

 =

[
T1 0
0 D

]
= A.

The proof of Theorem 1.3 is now complete.

In order to prove Theorem 1.4, we need the following Lemmas. Let Aj = L(H2(∂D)) (j =

1, 2, · · · ) be defined as Ajen+1 =
(
n+2
n+1

)1/j

en (n = 1, 2, · · · ), where {en = ei(n−1)θ}∞n=1 is

the ONB of H2(∂D). Then Cj = Aj − T ∗
z is compact and for each ε > 0 we can find j ∈ N

such that ∥Aj − T ∗
z ∥ = ∥Cj∥ < ε, where Tzen+1 = en. Then, for each ε > 0, there exists

D0 compact with ∥D0∥ < ε such that for each f ∈ H2(∂D) we have

Lemma 2.6. (i) D0 + f ⊗ e1 /∈ ranτ(T∗
z +Cj)T∗

z
= ranτA1,T∗

z
.

(ii) kerτ =
T∗
z Aj

{0} and kerτ =
Aj1 ,Aj2

{0} (j1 > j2).

(iii) There is a Dj(k ≥ 1) compact with ∥Dj∥ < ε/2 and Dj /∈ ranτAj ,Aj+1 .
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Proof. If j1 > j2, we have

Ajk =


0 (4/3)1/jk

0 0 (5/4)1/jk

0 0 0
. . .

 (k = 1, 2, · · · ).

If X =

x11 x12 · · ·
x21 x22 · · ·
· · · · · · · · ·

 ∈ kerτA∗
j1
,Aj2

, i.e., Aj1X = XAj2 , compuations show that

(4/3)1/j1x21 = 0, or x21 = 0, · · · ,
(
n+2
n+1

)1/j

xn1 = 0 or xn1 = 0, · · · . Similarly, xn,k =

0 (n > k), i.e., X has an upper triangular representation with respect to the ONB (en)
∞
n=1

of the sapce. Also, computations indicate that

(4/3)1/j1x22 = (4/3)1/j2x11,
(n+ 2

n+ 1

)1/j1
xnn =

(n+ 2

n+ 1

)1/j2
xn−1,n−1.

Thus xnn = (n + 2/3)1/j2−1/j1x11 → ∞ (n → ∞), if x11 ̸= 0. Therefore x11 = 0 and

xnn = 0 (n = 2, 3, · · · ). The same arguments indicate that xij = 0 (j > i), i.e., X = 0 and

kerτAj1
,Aj2

= {0}. Similarly, we can show that kerτ =
T∗
z ,Aj

{0} (j = 1, 2, · · · ).

Let D0 be given by D0en+1 = ε√
n+1

en (n = 1, 2, · · · ). Suppose X ∈ L(H2(∂D)) satisfies

AjX −XT ∗
z = f ⊗ e+D0.

Note

f ⊕ e1 +D0 =


a0 ε/

√
2 0

a1 0 ε/
√
3

· · · · · · · · ·
. . .

ak 0 ε/
√
k + 1
. . .

 ,

where f =
∞∑
k=1

ak−1e
i(k−1)θ.

Set X =

x11 x12 · · ·
x21 x22 · · ·
· · · · · · · · ·

 . Then comparing the (k, k + 1) entries of both sides of the

equality, we have

(4/3)1/jx22 − x11 = ε/
√
2, (5/4)1/jx22 − x22 = ε/

√
3,(n+ 2

n+ 1

)1/j

xn+1,n+1 − xnn = ε/
√
n · · · .

Since (n+ 2

n+ 1

)1/j

=
(
1 +

1

n+ 1

)1/j

= 1 +
1

j

( 1

n+ 1

)
+O

(( 1

n+ 1

)2)(
xn+1,n+1

(n+ 2

n+ 1

)1/j

xn+1,n+1

)
= 1/j

( 1

n+ 1

)
xn+1,n+1 +O

(( 1

n+ 1

)2)
xn+1,n+1

and

lim
x→∞

∣∣∣xn+1,n+1

(
n+2
n+1

)1/j

xn+1,n+1

∣∣∣
ε/
√
n

= lim
x→∞

1/j
(

1
n+1

)2

ε/
√
n

|xn+1,n+1| = 0,
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we see that

lim
x→∞

(
n+2
n+1

)
xn+1,n+1 − xnn

ε/
√
n

= 1

implies lim
x→∞

xn+1,n+1−xnn

ε/
√
n

= 1. Therefore, when n is big enough,

Re(xn+1,n+1 − xnn) > ε/2
√
n, and ∥X∥ ≥ lim

x→∞
Rexnn = ∞.

This contradiction implies that f ⊕ e1 +D0 /∈ ranτAj ,T∗
z
. Set

Dj =


0 δj/

√
2

0 0 δj/
√
3

. . .
. . .
. . .

 (j = 1, 2, · · · )

with respect to the ONB {en}∞n=1, where δj = ε/2j . Then by the similar argument we can

prove that Dj /∈ ranτAj ,Aj+1
(j = 2, 3, · · · ).

Lemma 2.7. If Ω0 given in Theorem 1.4 is the unit disc, then for the operator A =
l
⊕
k=0

δm
⊕
1
T ∗
φk

⊕ D defined in the proof of Theorem 1.3 and for each ε > 0 there exists K

compact with ∥K∥ < ε such that A+K ∈ (SI).

Proof. Note that T ∗
φ0

= T ∗
z . Set Bk =

δm
⊕
1
T ∗
φk
. From the condition (i) of Theorem 1.4 and

from the choice of σ(D) in the proof of Theorem 1.3,

σ(D)
∩
σ(Bk)

∩
ρF (Bk) = ∅ (k = 1, 2, · · · )int(D) = ∅,

and σ(D) contains no isolated points. From Theorem 1 of [10] and Bk ∈ Bdk(Ωk), Bk has

cyclic vector xk (k = 1, 2, · · · ). Without loss of generality, we can assume that
l∑

k=1

∥xk∥2 <

+∞. Thus by Lemma 2.4, there is a K1 compact with ∥K1∥ < ε/4 such that

A0 =

T ∗
z 0 0
0 ⊕

k
Bk 0

0 0 D

+K1 =

T ∗
z 0 0
L1 ⊕

k
Bk 0

L2 0 D

 ∈ B1

(
Ω0\

(∪
σ(Bk)

∪
Xσ(D)

))
,

where L1 = f1 ⊗ e1, L2 = f2 ⊗ e1. Thus A0 ∈ (SI). Use Lemma 2.6 to construct compact

operators D0, D1, · · ·Dd0−2, C1, C2, Cd0−1, and A1 = T ∗
z + C1, · · · , Ad0−1 = T ∗

z + Cd0−1

such that

(i) kerτAj1 ,Aj2
= {0} j1 < j2 and kerτT∗

z ,Aj = {0};
(ii) For each x ∈ H2(∂D), D0 + x⊗ e1 /∈ ranτAj ,T∗

z
;

(iii) Dj /∈ ranτAj ,Aj−1 , and ∥Dj∥ < ε/100d0, ∥Cj∥ < ε/100d0 (j = 0, 1, 2, · · · ).
Define D0 = (D0, 0, 0) and

G =



A0 0
D0 A1

D1 A2

D2
. . .
. . .

Dd0−2 Ad0−1


,

and K2 = G−A. Then K2 is compact with ∥K2∥ < ε. It is sufficent to prove G ∈ (SI).
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Suppose that P ∈ A(G) is idempotent and

P =


P00 P01 · · · P0d0−1

...

...
Pd0−1,0 Pd0−1,1 · · · Pd0−1,d0−1

 .

Then calculation indicates that P0d0−1Ad0−1 = A0P0d0−1.Assume that P0d0−1

M1

M2

M3

 . Then
M1Ad0−1 = T ∗

zM1, M2Ad0−1 = L1M1 +
(
⊕
k
Bk

)
M2, M3Ad0−1 = L2M1 +DM3.

Since kerτT∗
z ,Aj

= {0} (j ≥ 1), M1 = 0. Since σ(Bk) $ D,= Ad0−1B1(D), σ(D) $ D

and from Lemma 4 of [9], M2 = M3 = 0, i.e., P0d0−1 = 0. Similarly, from A0P0d0−2 =

P0d0−2Ad0−2, we can prove that P0d0−2 = 0. Inductively, P0,k = 0, k = 1, 2, · · · , d0 − 1.

Similarly, Pij = 0 (i < j). Thus P admits a lower matrix form. Since PiAi = AiPi and since

Ai ∈ (SI), Pi = δiI, δi = 0 or 1 (i = 0, 1, · · · , d0 − 1).

Suppose that δ0 = 0 (if δ0 = 1, consider ⊕I − P ). Since PG = GP , calculation indicates

that

P10A0 + δ1D0 = A1P10.

If P10 = (M1,M2,M3), then

(M1T
∗
z +M2L1 +M3L2,M2 ⊕

k
Bk,M3D) + (δ1D0, 0, 0) = (A1M1, A1M2, A1M3),

A1M1 −M1T
∗
z = δ1D0 +M2L1 +M3L2 = δ1D0 + ((M2f1 +M3f2)⊗ e1).

Thus δ1 = 0 (Lemma 2.6).

Also, since P21A1 + δ2D1 = A2P21 and since D1 /∈ ranτA2,A1 , δ2 = 0. Inductively,

δk = 0 (1, 2, · · · , d0 − 1), and P = 0, i.e., G ∈ (SI).

Now we are in a position to prove Theorem 1.4.

Since Ω0 is an analytic, simply connected region, there exists a conformal one-to-one

mapping ψ0(Ω0)δ1 → (D)δ2 , where (Ω0)δ1 = {z, dist(z,Ω0) < δ1}, δ1 > 0, (D)δ2 =

{z, dist(z, d) < δ2}, δ2 > 0. Suppose that φ0 is the conformal one-to-one mapping of (D)δ2 ,

i.e., φ0 = ψ−1
0 .

Set

A =


d0
⊕
i=1
T ∗
φ0

0 0

0 ⊕k
dk
⊕
i=1

T ∗
φk

0

0 0 D

 ,
where A is given in the proof of Theorem 1.3. Then

ψ0(A) =


d0
⊕
i=1
T ∗
z 0 0

0 ⊕
k

dk
⊕
i=1

T ∗
ψ0(φk)

0

0 0 ψ0(D)

 .
From Theorem 1.3, for each ε > 0, there exists a K0 compact with ∥K0∥ < ε/4 such that
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ψ0(T )+K0
∼=

U+K
ψ0(A), where T is given by Theorem 1.4, i.e., there is an invertible operator

X of the form unitary plus compact such that X(ψ0(T ) +K0)X
−1 = ψ0(A).

By Lemma 2.3, we can find a K1 compact with ∥K1∥ < ε/∥X ∥X−1∥ such that

X(ψ0(T ) +K0 +X−1K1X)X−1 = ψ0(A) +K1 ∈ (SI).

This means that there exists a K compact with ∥K∥ < ε/2 such that ψ0(T ) +K ∈ (SI).

Note that σ(ψ0(T ) +K) ⊂ D. Thus we can deduce that φ0(ψ0(T ) +K) = T + K̃ ∈ (SI) by

using the following Theorem.

Theorem J.[11, Theorem 2.8] If T ∈ (SI) and φ is a conformal one-to-one mapping in a

neighbourhood of σ(T ), then φ(T ) ∈ (SI).

It is easy to see that K = φ0(ψ0(T ) +K)− T is compact and ∥K∥ → 0.

§3. Proof of Theorem 1.1 and Theorem 1.2

Proof of Thoerem 1.1 Let operator T, open set Ω and compact set σ be given

in Theorem 1.1. And let φ be a conformal one-to-one mapping of D onto Ω∗. D =

diag{λ1, λ2, · · · , λn), where {λn}∞n=1 is dense in σ.

Set

A =

[m
⊕
1
T ∗
φ 0

0 D

]
.

Directly using the proof of Thorem 1.3, we conclude that if Λ(T ) = Λ(A), then for each

ε > 0, there exists a K compact with ∥K∥ < ε such that T +K ∼=
U+K

A.

Simlarly, we can prove Theorem 1.2 by using the arguments in Theorem 1.4.
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