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Abstract

The equilibrium problem for the infinite elastic plane consisting of two different media is
considered, in which the interface is a broken line, there is a straight crack touching the vertex
of the broken line with some symmetry and the same uniform pressures are applied to both

of its sides. The problem is reduced to a uniquely solvable singular integral equation on the
interface and the crack. The order of singularity at the vertex is considered, which may be
determined by a transcendental equation.
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§0. Introduction

Considerable plane crack problems of composite media for the case in which the interface

is an infinite straight line were studied by various authors, for instance, [1,2]. The methods

of solution are often by using integral transforms so as to reduce the problems to singular

integral equations. In this paper we shall consider the problem for the case where the

interface is a broken line consisting of two half-rays and there is a crack touching the interface

at its vertex with some symmetry both in the elastic region and the boundary condition. We

shall also reduce the problem to a singular integral equation along the crack and the interface

directly by a method inspired by but different from the one originated by Sherman[3] for

solving elasto-static problems without cracks. The method similar to our method used here

was first developed in [4, 5] for solving problems of two bonded half-planes with cracks

arbitrarily both in shape and number. The proposed method seems universally effective for

general plane crack problems.

§1. Formulation of the Problem

Consider an elastic infinite plane consisting of two isotropic media S1 and S2 with elastic

constants κ1, µ1 and κ2, µ2 respectively. The interface in the plane is a broken straight

line consisting of two half-rays L, L′ issued from the origin O and extending to infinity
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respectively with angles of inclination ±θ (0 < θ < π) with respect to the x-axis. There

exists a crack γ in S1 on the positive x-axis: 0 ≤ x ≤ a (a > 0). Assume that a uniform

tension p is applied to both sides of γ and that there is no stress and rotation at infinity. It

is required to find the elastic equilibrium.

When θ = π
2 , the problem was solved in [7].

The stress σx(z), σy(z), τxy(z) and the displacement u(z) + iv(z) (z = x + iy) may be

expressed in terms of Kolosov functions ϕ(z), ψ(z) (or Φ(z) = ϕ′(z), Ψ(z) = ψ′(z)) as ( see

[6])

σy + σx = 4Re{ϕ′(z)} = 4Re{Φ(z)},
σy − σx + 2iτxy = 2[z̄ϕ′′(z) + ψ′(z)] = 2[z̄Φ′(z) + Ψ(z)],

2µ(u+ iv) = κϕ(z)− zϕ′(z)− ψ(z), (1.1)

where ϕ(z) and ψ(z) are analytic functions in the elastic region. In our case, they are

sectionally holomorphic in S1 and S2, and ϕ(∞) = ψ(∞) = 0 may be assumed.

By the boundary condition on γ, we have

ϕ±(x) + xϕ′±(x) + ψ±(x) = −px+ c, x ∈ γ (0 ≤ x ≤ a), (1.2)

where ϕ±(x) and ψ±(x) are the boundary values of ϕ(z) and ψ(z) when z → x ∈ γ from its

upper (positive) and lower (negative) sides respectively.

By the condition of equivalence for the normal and the shearing stresses along the inter-

face, we have

ϕ+(t) + tϕ′+(t) + ψ+(t) = ϕ−(t) + tϕ′−(t) + ψ−(t), t ∈ L+ L′, (1.3)

where ϕ±(t) and ψ±(t) are the boundary values of ϕ(z) and ψ(z) when z → t ∈ L+L′ from

the left and the right sides of L, L′ respectively.

Moreover, the continuity of the displacements along the interface gives

α2ϕ
+(t)− β2[tϕ′

+(t) + ψ+(t)] = α1ϕ
−(t)− β1[tϕ′

−(t) + ψ−(t)], t ∈ L, (1.4)

α1ϕ
+(t)− β1[tϕ′

+(t) + ψ+(t)] = α2ϕ
−(t)− β2[tϕ′

−(t) + ψ−(t)], t ∈ L′, (1.5)

where we have put

αj = κj/µj , βj = 1/µj , j = 1, 2. (1.6)

Thus, our problem has been transferred to the boundary value problem (1.2)–(1.5) for

sectionally holomorphic functions ϕ(z), ψ(z) with Γ = L + L′ + γ as the jump curve and

ϕ(∞) = ψ(∞) = 0.

By the symmetry of the stresses and displacements, it is readily seen that

ϕ(z̄) = ϕ(z), ψ(z̄) = ψ(z). (1.7)

§2. Reduction to Singular Integral Equations

For solving our boundary value problem we introduce a new unknown function ω(ζ),

ζ ∈ Γ, such that

ϕ(z) =
1

2πi

∫
Γ

ω(ζ)

ζ − z
dζ, ψ(z) = − 1

2πi

∫
Γ

ω(ζ) + ζω′(ζ)

ζ − z
dζ, z ̸∈ Γ, (2.1)



No.2 Lu, J. K. & Erdogan, F. A CRACK PROBLEM WITH A BROKEN LINE INTERFACE 231

where we have assumed ω(ζ) ∈ H0, ω
′(ζ) ∈ H∗ (for notations, see [6]). Let ω(ζ) = ω(x)

when ζ = x ∈ γ, ω(ζ) = ωL(t) and ω(ζ) = ωL′(t) when ζ = t ∈ L and L′ respectively. We

assume

ω(0) + ωL(0) + ωL′(0) = 0, ω(a) = 0, ωL(∞) = ωL′(∞) = 0. (2.2)

Of course, the existence of the function ω(z) satisfying (2.1) as well as (2.2) should be proved,

but it is assumed for the time being.

By (1.7) and (2.1), it is easy to see that

ω(ζ) = −ω(ζ̄), (2.3)

by which it follows that ω(x) is pure imaginary on γ.

Substituting (2.1) in (1.2), and by using the Plemelj formula for the boundary values of

both sides on γ and integration by parts and noting that the terms not involving integrals

cancel each other by (2.2), we get the same singular integral equation on γ:

Kγω ≡ 1

πi

∫
Γ

ω(ζ)

ζ − x
dξ − 1

2πi

∫
L+L′

ω(ζ)d log
ζ − x

ζ̄ − x
− 1

2πi

∫
L+L′

ω(ζ)d
ζ − x

ζ̄ − x

= −px+ c, 0 ≤ x ≤ a, (2.4)

which together with (2.3) gives

Kγω ≡ 1

πi

∫ a

0

ω(ξ)

ξ − x
dζ +Re

{ 1

πi

∫
L

ω(τ)

τ − x
dτ +

1

πi

∫
L

ω(τ)

τ̄ − x
dτ̄ − 1

πi

∫
L

ω(τ)d
τ − x

τ̄ − x

}
= −px+ c, 0 ≤ x ≤ a. (2.4)′

Condition (1.3) is found to be automatically satisfied by using (2.1). Similarly, condition

(1.4) becomes a singular integral equation on L:

KLω ≡ Aω(t)+
B

πi

∫
Γ

ω(ζ)

ζ − t
dζ+

D

πi

{∫
L′+γ

ω(ζ)d log
ζ − t

ζ̄ − t̄
+

∫
L′+γ

ω(ζ)d
ζ − t

ζ̄ − t̄

}
= 0, t ∈ L,

(2.5)

or,

KLω ≡ Aω(t) +
B

πi

{∫
L

ω(τ)

τ − t
dτ −

∫
L

ω(τ)

τ̄ − t
dτ̄ +

∫ a

0

ω(ξ)

ξ − t
dξ

}
+
D

πi

{∫ a

0

ω(ξ)d log
ξ − t

ξ − t̄
+

∫ a

0

ω(ξ)d
ξ − t

ξ − t̄
−

∫
L

ω(τ)d log
τ̄ − t

τ − t̄
−
∫
L

ω(τ)d
τ̄ − t

τ − t̄

}
= 0, t ∈ L, (2.5)′

where we have set

A = α2 + α1 + β2 + β1, B = α2 − α1 − β2 + β1, D = β2 − β1, (2.6)

and we shall denote C = B +D = α2 − α1 in the sequel.

(2.4) and (2.5) constitute a singular integral equation in ω(ζ) on L+γ, which is of normal

type since A+B = 2(α2 + β1) and A−B = 2(α1 + β2) are positive constants. Its solution

to be found should belong to the most narrow class h, that is, it must be bounded at 0 and

a as well as at ∞, and hence its index corresponding to this class is −1.

We prove that, if (2.4)–(2.5) has a solution ω(ζ) ∈ h (for certain constant c), then (2.2)

is fulfilled. In fact, if the first equation in (2.2) is not fulfilled, then the left side of (2.5)

would have a logarithmic singularity at t = 0 while each integral in the braces of (2.5) tends
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to zero evidently; this is impossible since the right-hand side of (2.5) is zero. ω(a) = 0 is

evident as readily seen by (2.4). Let ω(t) → ω(∞) as t → ∞ on L. It is easy to prove that

the third term on the left-hand side of (2.5) tends to zero, and also
∫
L′+γ

ω(ζ)
ζ−t dζ → 0, while

1

πi

∫
L

ω(τ)

τ − t
dτ =

1

πi

∫
L

ω(τ)− ω(∞)

τ − t
dτ +

ω(∞)

πi

∫
L

dτ

τ − t
,

where the first term of the right-hand member is convergent when t → ∞ since ω(τ) ∈ H

on L, and the second term is divergent if ω(∞) ̸= 0. Therefore ω(t) → 0 as t→ ∞ along L.

By (2.3), we see that ωL(0) = −ωL′(0) so that

ω(0) + 2iImωL(0) = 0. (2.7)

§3. Unique Solvability for the Integral Equation

We shall prove that (2.4)–(2.5) has a unique solution in class h for certain (uniquely)

suitably chosen constant c.

First, we show that the corresponding homogeneous equation Kγω = 0, KLω = 0 has

only the trivial solution in h, and more generally, Kγω = c, KLω = 0 is solvable only

when c = 0 and the solution is zero. Assume ω0(ζ) is a solution of them for certain c. When

substituting it back into (2.1), we get two sectionally holomorphic functions ϕ0(z) and ψ0(z)

which satisfy (1.2)–(1.5) with p = 0. This is the natural equilibrium state for the elastic body

without any external loads on the crack and stress or rotation at infinity. By the uniqueness

theorem in elasticity, we must have ϕ0(z) ≡ 0, ψ(z) ≡ 0 since ϕ0(∞) = ψ0(∞) = 0. Then,

by (1.2), we know that c = 0 and

1

2πi

∫
Γ

ω0(ζ)

ζ − z
dζ = 0,

1

2πi

∫
Γ

ω0(ζ) + ζω′
0(ζ)

ζ − z
dζ = 0, z ̸∈ Γ.

Applying the Plemelj formula to the first equation of above, we obtain

0 = ±1

2
ω0(ζ0) +

1

2πi

∫
Γ

ω0(ζ)

ζ − ζ0
dζ, ζ0 ∈ Γ,

from which it follows that ω0(ζ0) = 0, ζ0 ∈ Γ, what is to be proved. Thus, the number of

linearly independent solutions for Kγω = 0, KLω = 0 in class h is l = 0.

By the Noether theorem, the number of linearly independent solutions for the adjoint

equation K′
γω = 0, K′

Lω = 0 in the adjoint class h0 is l′ = 1 since κ = −1. Here class h0
(the widest class) means that the solutions of the equation may have integrable singularities

at ζ = 0, a and ∞. Assume χ0(ζ) ( ̸= 0) is the unique solution (up to a nonzero constant

coefficient factor). Then (2.4)–(2.5) is (uniquely) solvable if and only if

c

∫ a

0

χ0(x)dx = p

∫ a

0

χ0(x)dx−
∫
L

χ0(τ)dτ (3.1)

is fulfilled. We show that
∫ a

0
χ0(x)dx ̸= 0. In fact, we consider again the case p = 0. We

have proved that (2.4)–(2.5) is solvable only when c = 0. It means that the equation

c

∫ a

0

χ0(x)dx = −
∫
L

χ0(τ)dτ

holds only when c = 0, so that
∫ a

0
χ0(x)dx ̸= 0 (and

∫
L
χ0(τ)dτ = 0). Thus, (3.1) is

uniquely solvable for c.
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Note that ω(x) is pure imaginary on γ. Hence, if we denote

ω(x) = ω0(x)i, 0 ≤ x ≤ a, (3.2)

then ω0(x) ∈ H is real with ω0(a) = 0 and satisfies (by denoting ωL(t) = ω(t) on L)

ω0(0) + 2Imω(0) = 0; (2.7)′

(2.4)′ and (2.5)′ become respectively

Kγω ≡ 1

πi

∫ a

0

ω(ξ)

ξ − x
dξ +Re

{ 1

πi

∫
L

ω(τ)

τ − x
dτ +

1

πi

∫
L

ω(τ)

τ̄ − x
dτ̄ +

1

πi

∫
L

ω(τ)d
τ̄ − x

τ − x

}
= −px+ c, 0 ≤ x ≤ a, (3.3)

KLω ≡ Aω(t) +B
{ 1

πi

∫
L

ω(τ)

τ − t
dτ − 1

πi

∫
L

ω(τ)

τ̄ − t
dτ̄ +

1

π

∫ a

0

ω0(ξ)

ξ − t
dξ

}
+
D

π

{∫ a

0

ω0(ξ)d log
ξ − t

ξ − t̄
+

∫ a

0

ω0(ξ)d
ξ − t

ξ − t̄

}
− D

πi

{∫
L

ω(τ)d log
τ̄ − t

τ − t̄
+

∫
L

ω(τ)d
τ̄ − t

τ − t̄

}
= 0, t ∈ L. (3.4)

Thus our problem is reduced to solving (3.3)–(3.4) in class h, where c is an undetermined

constant; it is hence uniquely solvable when c is chosen to fulfil (3.1), where χ0 is the unique

solution of the adjoint equation K′
γω = 0, K′

Lω = 0 in class h0.

§4. Simplification of the Equations

It is rather complicated to solve (3.3)–(3.4) since the determination of c involves to solve

the adjoint equation on L + γ. But in practice it is often sufficient to determine the stress

distribution which depends on Φ(z) and Ψ(z) and so indirectly on Ω(ζ) = ω′(ζ). Hence it

is sufficient for us to get Ω(ζ) instead of ω(ζ) itself. The equation satisfied by Ω(ζ) may be

obtained by differentiating (3.3)–(3.4), where the undetermined constant c disappears. Let

Ω0(x) = ω′
0(x), x ∈ γ; Ω(τ) = ω′(τ), τ ∈ L.

By (2.3) we have

Ω(ζ) = −Ω(ζ̄). (4.1)

By diffrentiation and integration by parts in (3.3)–(3.4), we obtain respectively

K′
γΩ ≡ 1

π

∫ a

0

Ω0(ξ)

ξ − x
dξ +Re

{ 1

πi

∫
L

Ω(τ)

τ − x
dτ +

1

πi

∫
L

Ω(τ)

τ̄ − x
dτ +

1

πi

∫
L

τ − τ̄

(τ − x)2
Ω(τ)dτ

}
= −p, 0 < x < a, (4.2)

K′
LΩ ≡ AΩ(t) +B

{ 1

πi

∫
L

Ω(τ)

τ − t
dτ − 1

πi

∫
L

Ω(τ)

τ̄ − t
dτ̄ +

1

π

∫ a

0

Ω0(ξ)

ξ − t
dξ

}
+D

{ 1

π

∫ a

0

Ω0(ξ)

ξ − t
dξ − e−2iθ

π

∫ a

0

Ω0(ξ)

ξ − t̄
dξ +

(1− e−2iθ)

π

∫ a

0

ξΩ0(ξ)

(ξ − t̄)2
dξ

− 1

πi

∫
L

Ω(τ)

τ̄ − t
dτ̄ +

e−2iθ

πi

∫
L

Ω(τ)

τ − t̄
dτ̄ +

1

πi

∫
L

−τ + τ̄ e−2iθ

(τ − t̄)2
Ω(τ)dτ

}
= 0, t ∈ L,
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or

K′
LΩ ≡ AΩ(t) +

B

πi

∫
L

Ω(τ)

τ − t
dτ − C

πi

∫
L

Ω(τ)

τ̄ − t
dτ̄ +

C

π

∫ a

0

Ω0(ξ)

ξ − t
dξ

− De−2iθ

π

∫ a

0

Ω0(ξ)

ξ − t̄
dξ +

D(1− e−2iθ)

π

∫ a

0

ξΩ0(ξ)

(ξ − t̄)2
dξ

+
De−2iθ

πi

∫
L

Ω(τ)

τ − t̄
dτ̄ +

D

πi

∫
L

−τ + τ̄ e−2iθ

(τ − t̄)2
Ω(τ)dτ = 0, t ∈ L. (4.3)

Now, Ω(ζ) ∈ H must satisfy, by (2.7),∫ a

0

Ω0(x)dx+ 2Im

∫
L

Ω(t)dt = 0. (4.4)

We may change complex variables to real ones by letting τ = ρeiθ, t = reiθ(0 ≤ ρ, r <

+∞), and denote Ω(τ) = Ω(ρ) on γ. Then (4.2)–(4.3) becomes

K′
γΩ ≡ Re

{ 1

πi

∫ ∞

0

Ω(ρ)dρ

ρ− xe−iθ
+
e2iθ

πi

∫ ∞

0

Ω(ρ)dρ

ρ− xeiθ
+

1− e−2iθ

πi

∫ ∞

0

ρΩ(ρ)dρ

(ρ− xe−iθ)2

}
+

1

π

∫ a

0

Ω0(ξ)

ξ − x
dξ = −p, 0 < x < a, (4.5)

K′
LΩ ≡ AΩ(t) +

B

πi

∫ ∞

0

Ω(ρ)

ρ− r
dρ− C

πi

∫ ∞

0

Ω(ρ)dρ

ρ− re2iθ
+
C

π

∫ a

0

Ω0(ξ)

ξ − reiθ
dξ

− De−2iθ

π

∫ a

0

Ω0(ξ)dξ

ξ − re−iθ
dξ +

D(1− e−2iθ)

π

∫ a

0

ξΩ0(ξ)dξ

(ξ − re−iθ)2

+
De−4iθ

πi

∫ ∞

0

Ω(ρ)dρ

ρ− re−2iθ
+
D(e−4iθ − 1)

πi

∫ ∞

0

ρΩ(ρ)dρ

(ρ− re−2iθ)2

= 0, t = reiθ ∈ L, (4.6)

while (4.4) becomes ∫ a

0

Ω0(x)dx+ 2Im
{
eiθ

∫ ∞

0

Ω(r)dr
}
= 0,

or, if we denote Ω(r) = Ω1(r) + iΩ2(r),∫ a

0

Ω0(x)dx+ 2
{
sin θ

∫ ∞

0

Ω1(r)dr + cos θ

∫ ∞

0

Ω2(r)dr
}
= 0. (4.7)

Thus our problem is reduced to solving (4.5)–(4.6) for the real Ω0(x) (0 < x < a) and the

complex Ω(r) = Ω1(r) + iΩ2(r) (0 < r < ∞) in class h0 with the additional requirement

(4.7), of which the solution is unique as proved.

§5. Determination of the Order of Singularity for the Solution

From the practical point of view it is very important to determine the orders of the

singularities for the solution of the problem at the tips of the crack so as to know the

behavior of the stresses near them. It is well-known that at the tip a the singularity is of

order 1
2 . For determining the order of singularity at the tip O, we assume

Ω0(x) =
Ω0

xα
+ o(x−α) (x→ +0), Ω(r) =

Ω

rα
+ o(r−α) (r → +0), (5.1)

where α is the undetermined order which must be real in our problem and 0 < α < 1, while

Ω0 (real) and Ω = Ω1 +Ω2i are undermined constants.
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In the sequel, the function zα is chosen as that continuous branch in the plane cut along

the positive real axis which takes positive real values on its upper side. Then zα = xαeαiθ

when z = xeiθ and zα = xαeαi(2π−θ) when z = xe−iθ (x > 0). Similar equalities are valid

for r (> 0) in place of x as well as 2θ in place of θ (0 < θ < π).

By the properties of Cauchy-type integrals and Cauchy principal value integrals near the

end of the path of integration (see [6]), we have the following equalities:

1

π

∫ a

0

Ω0(ξ)

ξ − x
dξ =

cosαπ

xα sinαπ
Ω0 + · · · ,

Re
{ 1

πi

∫ ∞

0

Ω(ρ)dρ

ρ− xe−iθ

}
=

1

xα sinαπ
{cosα(π − θ)Ω2 − sinα(π − θ)Ω1}+ · · · ,

Re
{e2iθ
πi

∫ ∞

0

Ω(ρ)dρ

ρ− xe−iθ

}
=

1

xα sinαπ
{cos[α(π − θ) + 2θ]Ω2 + sin[α(π − θ) + 2θ]Ω1}+ · · · ,

Re
{1− e−2iθ

πi

∫ ∞

0

ρΩ(ρ)dρ

(ρ− xe−iθ)2

}
= Re

1− e−2iθ

πi

{∫ ∞

0

Ω(ρ)dρ

ρ− xe−iθ
+ x

d

dx

∫ ∞

0

Ω(ρ)dρ

ρ− xe−iθ

}
=

2(1− α) sin θ

sinαπxα
{cos[α(π − θ)− θ]Ω1 + sin[α(π − θ)− θ]Ω2}+ · · · ,

where the omitted terms are of orders less than α.

Substituting these equalities in (4.5) which is bounded on its right-side and multiplying

the resulting equation by sinαπxα, we obtain

a00(α)Ω0 + a01(α)Ω1 + a02(α)Ω2 = 0, (5.2)

where

a00(α) = cosαπ,

a01(α) = − sinα(π − θ) + sin[α(π − θ) + 2θ] + 2(1− α) sin θ cos[α(π − θ) + θ],

a02(α) = cosα(π − θ) + cos[α(π − θ) + 2θ] + 2(1− α) sin θ cos[α(π − θ) + θ].

We also have

1

πi

∫ ∞

0

Ω(ρ)

ρ− r
dρ =

cosαπ

rα sinαπ
(Ω2 − iΩ1) + · · · ,

− 1

πi

∫ ∞

0

Ω(ρ)dρ

ρ− re2iθ
=
eiα(π−2θ)(Ω2 + iΩ1)

irα sinαπ
+ · · · ,

1

π

∫ a

0

Ω0(ξ)

ξ − reiθ
dξ =

eiα(π−θ)Ω0

rα sinαπ
+ · · · ,

−e
−2iθ

π

∫ a

0

Ω0(ξ)dξ

ξ − re−iθ
=
e−i[α(π−θ)+2θ]Ω0

rα sinαπ
+ · · · ,

1− e−2iθ

π

∫ a

0

ξΩ0(ξ)dξ

(ξ − re−iθ)2
= (1− e−2iθ)(1− α)

1

π

∫ a

0

Ω0(ξ)

ξ − re−iθ
dξ

= (1− α)
2i sin θe−i[α(π−θ)+θ]Ω0

rα sinαπ
+ · · · ,

e−4iθ

πi

∫ ∞

0

Ω(ρ)dρ

ρ− re−2iθ
=
e−i[α(π−2θ)+4θ](−iΩ1 − Ω2)

rα sinαπ
+ · · · ,



236 CHIN. ANN. OF MATH. Vol.19 Ser.B

e−4iθ − 1

πi

∫ ∞

0

ρΩ(ρ)dρ

(ρ− re−2iθ)2

= (e−4iθ − 1)
{ 1

πi

∫ ∞

0

Ω(ρ)dρ

ρ− re−2iθ
+ r

d

dr

1

πi

∫ ∞

0

Ω(ρ)dρ

ρ− re−2iθ

}
+ · · · ,

= −2(1− α) sin 2θ
e−i[α(π−2θ)+2θ](Ω1 + iΩ2)

rα sinαπ
+ · · · .

Substituting these equalities in (4.6), multiplying the resulting equation by rα sinαπ and

separating the real and imaginary parts, we get

a10(α)Ω0 + a11(α)Ω1 + a12(α)Ω2 = 0, (5.3)

a20(α)Ω0 + a21(α)Ω1 + a22(α)Ω2 = 0, (5.4)

where

a10 = C cosα(π − θ)−D cos[α(π − θ) + 2θ] + 2D(1− α) sin θ sin[α(π − θ) + θ],

a11 = A sinαπ − C sinα(π − 2θ)−D sin[α(π − 2θ) + 4θ]

− 2D(1− α) sin 2θ cos[α(π − 2θ) + 2θ],

a12 = B cosαπ + C cosα(π − 2θ)−D cos[α(π − 2θ) + 4θ]

− 2D(1− α) sin 2θ sin[α(π − 2θ) + 2θ],

a20 = C sinα(π − θ) +D sin[α(π − θ) + 2θ] + 2D(1− α) sin θ cos[α(π − θ) + θ],

a21 = −B cosαπ + C cosα(π − 2θ)−D cos[α(π − 2θ) + 4θ]

+ 2D(1− α) sin 2θ sin[α(π − 2θ) + 2θ],

a22 = A sinαπ + C sinα(π − 2θ) +D sin[α(π − 2θ) + 4θ]

− 2D(1− α) sin 2θ cos[α(π − 2θ) + 2θ].

Thus α is the root of the determinant equation

∆(α) = |ajk(α)| = 0, j, k = 0, 1, 2; (5.5)

α exists in the interval (0,1) by the general theory.

Remark 5.1. It is worthy to note that Ω0, Ω1 and Ω2 must be proportional to the

values ∆0, ∆1 and ∆2 of the algebraic complements of the elements in the first row of the

determinant ∆(α) for the root α obtained above.

§6. The Kolosov Functions

After the solution of (5.5) in 0 < α < 1 is obtained, equations (4.5)–(4.7) in class h0 may

be solved numerically by various methods. When Ω0(x) and Ω(ζ) are obtained, the Kolosov

functions Φ(z) and Ψ(z) are easily calculated. In fact, by (2.1) and (4.1), we obtain

Φ(z) =
1

2πi

∫
Γ

Ω(ζ)

ζ − z
dζ =

1

2πi

∫ ∞

0

Ω(ρ)dρ

ρ− ze−iθ
− 1

2πi

∫ ∞

0

Ω(ρ)dρ

ρ− ze−iθ
+

1

2π

∫ a

0

Ω0(ξ)

ξ − z
dξ,
(6.1)

Ψ(z) = − 1

2πi

∫
L

Ω(ζ)

ζ − z
dζ̄ − 1

2πi

∫
Γ

ζΩ(ζ)

(ζ − z)2
dζ. (6.2)
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For the stress distribution, by (1.1), it is more important for us to have

z̄Φ′(z) + Ψ(z)

= − 1

2πi

∫
L

Ω(ζ)

ζ − z
dζ̄ − 1

2πi

∫
Γ

(ζ − z̄)Ω(ζ)

(ζ − z)2
dζ

= −e
−2iθ

2πi

∫ ∞

0

Ω(ρ)dρ

ρ− ze−iθ
+
e2iθ

2πi

∫ ∞

0

Ω(ρ)dρ

ρ− zeiθ
− 1

2πi

∫ ∞

0

ρ− z̄e−iθ

(ρ− zeiθ)2
Ω(ρ)dρ

+
1

2π

∫ a

0

Ω0(ζ)

ζ − z
dζ +

1

2πi

∫ ∞

0

ρ− z̄eiθ

(ρ− zeiθ)2
Ω(ρ)dρ− 1

2π

∫ a

0

ξ − z̄

(ξ − z)2
Ω0(ξ)dξ

=
e2iθ

2πi

∫ ∞

0

Ω(ρ)dρ

ρ− zeiθ
− 1

2πi

∫ ∞

0

Ω(ρ)dρ

ρ− ze−iθ
− (z − z̄)e−iθ

2πi

∫ ∞

0

Ω(ρ)dρ

(ρ− ze−iθ)2

− e−2iθ

2πi

∫ ∞

0

Ω(ρ)dρ

ρ− ze−iθ
+

1

2πi

∫ ∞

0

Ω(ρ)dρ

ρ− zeiθ

+
(z − z̄)eiθ

2πi

∫ ∞

0

Ω(ρ)dρ

(ρ− zeiθ)2
− z − z̄

2π

∫ a

0

Ω0(ξ)

(ξ − z)2
dξ.

Remark 6.1. For z = x (−∞ < x < 0 or a < x < +∞), by (6.1) and (6.3), both Φ(z)

and z̄Φ′(z) + Ψ(z) are real so that τxy = 0, as expected.

§7. Suggestions for Numerical Method of Solution for the Problem

For numerical methods of solution for the proposed problem, or equivalently, for the

integral equation (4.5)–(4.6) together with (4.7), we suggest two different methods.

As the first one, we may solve (4.5) for Ω0(x) (0 < x < a) in class h0 by regarding Ω(r)

as known for the time being, the solution of which may be obtained in explicit form by the

inversion formula for Cauchy principal value integrals. There is one arbitrary real constant

in its general solution, which may be determined by the additional condition (4.7). Then, by

substituting it in (4.6), a singular integral equation for Ω(r) (0 < r <∞) is obtained. By a

suitable change of variable, it is then transformed to an equation on a finite interval, which

may be solved numerically by usual methods with application of hypergeometric functions.

The equation obtained as above is rather complicated. We suggest another method of

solution by using “quasi-linear splines”.

After the order of singularity α at the origin O is determined, taking a division of the

interval [0, a] : x0 = 0, x1 = δ, . . . , xn = nδ = a, where δ = a
n , we interpolate Ω0(x) linearly

in each subinterval [xj−1, xj ] (j = 2, · · · , n − 1), of the form c0∆0/x
α + B0

1 in (0, x1] and

of the form cn/x
1/2 +B0

n in [xn−1, a) since it is well-known that Ω0(x) has a singularity of

order 1/2 at x = a, where c0, cn, B
0
1 , B

0
n are undetermined real constants. At the same

time, taking a division of [0,∞) : r0 = 0, r1 = δ, r2 = 2δ, · · · , we interpolate Ω(r) linearly

on [rk−1, rk] (k = 2, 3, · · · ) and of the form c0(∆1 + i∆2)/r
α +B1 on (0, r1], where B1 is an

undetermined complex constant. It must be noted that the form of the interpolatory function

on (0, x1] and that on (0, r1] mentioned above are due to the remark at the end of §5. Then,
if we replace Ω0(x) and Ω(r) in (4.5) and (4.6) as well as in (4.7) by these interpolatory

functions and let x = x∗j = 2j−1
2n δ (j = 1, · · · , n), r = r∗k = 2k−1

2n δ (k = 1, 2, . . . ) in turn, then

we obtain an infinite system of real linear equations in infinite number of unknowns after the

real and imaginary parts in (4.6) are separated. The coefficients of this system of equations
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involve convergent improper intergrals or Cauchy principal value integrals with kernel density

x−α, (a− x)−1/2 or r−α, which may be easily evaluated approximately. Because Ω(r) has a

zero of order greater than 1 at infinity in general, we may round off this system to a finite

system of real linear equations in finite (sufficiently large) number of unknowns, which may

be solved at once. If δ > 0 is small enough, then its solution will be very close to the required

one.

The idea for evaluating singular integrals approximately by linear splines was due to K.

Atkinson[8] in case the path of integration L is a closed contour and was extended in [9] to

the case where L may be open, though only when the weight function identical to one was

assumed.
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