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Abstract

The author gives a new proof of Attouch-Brezis′ theorem concerned with the duality for the
sum of convex functions in general Banach spaces, and gives also some sufficient conditions for
the difference of two closed convex sets to be closed in reflexive Banach spaces.
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§1. Introduction

Let E be a real Banach space, not necessarily reflexive. Let Φ, Ψ : E →] − ∞,∞] be

two lower semi-continuous convex functions. We denote by D(Φ) (resp. D(Ψ)) the effective

domain of Φ (resp. Ψ) and Φ∗ (resp. Ψ∗) its conjugate convex function. The problem of

computing the Fenchel conjugate of the sum Φ +Ψ, namely

(Φ + Ψ)∗(φ) = sup
x∈E

{⟨φ, x⟩ − Φ(x)−Ψ(x)}

for φ ∈ E∗, is of great importance in this sense that many questions occuring in duality

theory may be reduced to such a consideration. In [2], H. Attouch and H. Brezis have proved

the following

Theorem 1.1.[2] Assume that the above two convex functions Φ and Ψ satisfy∪
λ>0

λ(D(Φ)−D(Ψ)) = H is a closed linear subspace of E. (1.1)

Then we have

(Φ + Ψ)∗ = Φ∗�Ψ∗ on E∗. (1.2)

Moreover, the infimal convolution in (1.2) is exact.

This result generalized a classical theorem of Fenchel (in the finite dimensional case) and

an extension of Rockafellar[10] (see e.g. [5]) in which the assumption (1.1) is replaced by

a much stronger and less geometrical qualification condition, more precisely, the following

assumption:

Φ (or Ψ) is continuous at some point x ∈ D(Φ) ∩D(Ψ). (1.3)
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Our purpose of this paper is to give a new proof of the above theorem without using

the famous Banach-Dieudonné-Krein-Smulian Theorem (See [6, Theorem V.5.7]) which was

the key point of Attouch-Brezis′ proof. As an application of the theorem, we give also

a closedness criterion for the difference of two closed convex sets to be closed in reflexive

Banach spaces. More precisely, we obtain the following

Theorem 1.2. Let E be a reflexive Banach space. Assume that the two closed convex

sets A and B of E satisfy one of the following assumption:

(1) A (or B) is bounded,

(2) A (or B) is included in a finite dimensional linear subspace of E and caA∩caB is a

linear subspace of E.

Then A−B is closed.

Here caA =
∩
λ>0

λ(A − a) denotes the asymptotic cone of A. It is a closed convex cone,

and independent of the choice of a ∈ A. We note that this criterion is still valid for general

Banach spaces, but the proof is quite different (see [4]).

The paper is organized as follows. In §2 we give some basic definitions and notations for

the proof of theorems. In §3 and §4 we prove Theorem 1.1 and Theorem 1.2 respectively.

§2. Preliminaries

Before the proof of Theorems, we review some basic definitions and notations in convex

analysis theory. Let Φ be a convex function defined on E. The effective domain of Φ is

defined by D(Φ) = {x ∈ E; Φ(x) < +∞}. We denote by Φ∗ its conjugate convex function

which is defined by Φ∗(φ) = sup
x∈E

{⟨φ, x⟩E′,E−Φ(x)} for all φ ∈ E′. If A is a convex subset

of E, ΦA is the indicator function, i.e.

ΦA(x) =

{
0, if x ∈ A,
+∞, otherwise.

We know that ΦA is lower semi-continuous if and only if A is closed. Now let Φ and Ψ be

two convex functions defined on E. We define the inf-convolution of Φ and Ψ by

Φ�Ψ(x) = inf
y∈E

{Φ(x− y) + Ψ(y)} for all x ∈ E.

We say that the inf-convolution is exact if for any x ∈ E there exists a y such that Φ�Ψ(x) =

Φ(x − y) + Ψ(y). Remark that we have ΦA�Φ−B = ΦA−B . One deduces that A − B is

closed in E if and only if the function ΦA�Φ−B is lower semi-continuous.

§3. Proof of Theorem 1.1

We start with the following lemma due to B. Rodrigues and S. Simons[11], where the

proof is given in Appendix.

Lemma 3.1. Let X and Y be two metrisable topological vector spaces. Let f : X → Y

be a linear application such that its graph, denoted by G(f), is a complete linear subspace of

X×Y . Assume that g : X →]−∞,+∞] is a proper, lower semi-continuous convex function

such that ∪
λ>0

λf(D(g)) = Z is a complete linear subspace of Y. (3.1)
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Let σ(α) = {x ∈ X; g(x) ≤ α}. Then there exists θ > 1 such that o ∈ intZf(σ(θ)).

Proof of Theorem 1.1. The proof of Theorem 1.1 is divided into two steps.

Step 1. We claim that assumption (1.1) is equivalent to

o ∈ intH(D(Φ)−D(Ψ)). (3.2)

Set X = E×E and Y = E. We define f , the continuous linear application from X to Y ,

by f(x, y) = x−y for (x, y) ∈ X. By the continuity of f , its graph G(f) is closed. We define

also g(x, y) = Φ(x) +Ψ(y), where (x, y) ∈ X, the proper convex function defined from X to

] −∞,+∞]. It is also lower semi-continuous and ̸≡ +∞ such that D(g) = D(Φ) × D(Ψ).

Thus we have

Z =
∪
λ>0

λf(D(g)) =
∪
λ>0

λ(D(Φ)−D(Ψ)) = H,

which is a closed linear subspace of Y . In view of Lemma 3.1, there exists θ ≥ 1 such that

o ∈ intHf(σ(θ)) which is included in intHf(D(g)). Hence the conclusion (3.2) follows.

Step 2. Note that we have always (Φ�Ψ)∗ = Φ∗ + Ψ∗ on E∗. Moreover, in order to

prove (1.2), it suffices to show that it is true at the origin, i.e.,

(Φ + Ψ)∗(o) = Φ∗�Ψ∗(o). (3.3)

Indeed, suppose that we have proved (3.3). For any φ ∈ E∗, we set Φφ(x) = Φ(x)+ ⟨−φ, x⟩.
Then Φφ is also a lower semi-continuous convex and ̸≡ +∞ such that D(Φφ) = D(Φ). So

we obtain (Φφ +Ψ)∗(o) = Φ∗
φ�Ψ∗(o). On the other hand, for any ψ ∈ E∗, we see that

Φ∗
φ(−ψ) = sup

x∈E
{⟨−ψ, x⟩+ ⟨φ, x⟩ − Φ(x)} = Φ∗(φ− ψ).

Therefore we have
(Φ + Ψ)∗(φ) = sup

x∈X
{−Φφ(x)−Ψ(x)} = (Φφ +Ψ)∗(o)

= Φ∗
φ�Ψ∗(o) = inf

ψ∈E∗
{Φ∗

φ(−ψ) + Ψ∗(ψ)}.

Thus we prove that (Φ + Ψ)∗(φ) = Φ∗�Ψ∗(φ) for all φ ∈ E∗.

In order to prove (3.3), we remark at first that

(Φ + Ψ)∗(o) ≤ Φ∗�Ψ∗(o). (3.4)

Without loss of generality, we can assume that D(Φ) and D(Ψ) are included in H.

Let Φ0 : H →]−∞,+∞] be the convex function defined by

Φ0(x) = inf
z∈H

{Φ(x+ z) + Ψ(z)}.

Clearly D(Φ0) = D(Φ) −D(Ψ). By (3.2), we get o ∈ intHD(Φ0). We conclude that Φ0 is

continuous at o and ∂Φ0(o) ̸= ∅. Let φ0 ∈ ∂Φ0(o) and φ0 ∈ H∗, i.e., Φ0(x) ≥ Φ0(o)+⟨φ0, x⟩
for all x ∈ H. Hence we define Φ1(x) = inf

z∈E
{Φ(x + z) + Ψ(z)} for x ∈ E. We see that

Φ1(x) = Φ0(x) if x ∈ H and Φ1(x) = +∞ otherwise. That means Φ1 is an extension of Φ0

on E, and in particular, we have

Φ1(o) = inf
z∈E

{Φ(z) + Ψ(z)} = −(Φ + Ψ)∗(o). (3.5)

According to Hahn-Banach Theorem, there exists φ1 ∈ E∗, the extension of φ0, such that

φ1|H = φ0. Then we obtain Φ1(x) ≥ Φ1(o) + ⟨φ1, x⟩ for all x ∈ E which is equivalent to

φ1 ∈ ∂Φ1(o) and Φ1(o) + Φ∗
1(φ1) = 0. We have also Φ1(x) = (Φ�Ψ′)(x), where Ψ′(x) =
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Ψ(−x). This yields Φ∗
1 = (Φ�Ψ′)∗ = Φ∗ + Ψ

′∗. But we have also Ψ
′∗(φ1) = Ψ∗(−φ1).

Therefore one deduces that

Φ1(o) + Φ∗(φ1) + Ψ∗(−φ1) = 0. (3.6)

On the other hand, we have

Φ∗�Ψ∗(o) ≤ Φ∗(φ1) + Ψ∗(−φ1). (3.7)

Together with (3.4), (3.5), and (3.6), we see that (3.3) holds and the infimal convolution is

exact, which completes the proof of Theorem 1.1.

Remark 3.1. We can also give an alternative proof of Theorem 1.1 by applying a theorem

of Rockafellar[9] with Lagrangian functions and duality spaces. But it seems that we should

first prove Lemma 3.1. So we have the same kind of difficulty to overcome.

Remark 3.2. We have a simpler proof without using Lemma 3.1 if E is a reflexive

Banach space. In fact, in the case where H = E, we set for R > 0

DR = {x ∈ X; Φ(x) ≤ R and ∥x∥ ≤ R} − {x ∈ X; Ψ(x) ≤ R and ∥x∥ ≤ R}.

The reflexivity of E shows that DR is then closed. On the other hand E =
∪
n≥1

nDn. By

Baire′ theorem, there is k ∈ N such that intDk ̸= ∅. We can therefore prove that o ∈
int(D(Φ)−D(Ψ)) and the conclusion will be derived.

§4. An Application

Notice that we have also proved the following

Theorem 1.1′. Let E be a reflexive Banach space. Assume Φ and Ψ to be two convex,

lower semi-continuous functions, ̸≡ +∞ and satisfying∪
λ>0

λ(D(Φ∗)−D(Ψ∗)) = H is a closed linear subspace of E∗. (4.1)

Then we have

(Φ∗ +Ψ∗)∗ = Φ�Ψ on E. (4.2)

Moreover, the infimal convolution is exact.

However, it was shown in [2] that the conclusion falses in the case of a non reflexive

Banach space. In this section, we will use the above theorem to prove Theorem 1.2.

Proof of Theorem 1.2. We claim that under the conditions (1) or (2), we have

D1 +D2 is a closed linear subspace of E∗, (4.3)

where D1 (resp. D2) is the effective domain of Φ∗
A (resp. Φ∗

B). We postpone the proof of

the claim and present the proof of the theorem. By the definition, we have D(ϕ∗−B) = {φ ∈
E∗; sup

x∈−B
⟨φ, x⟩ < +∞} = −D2. Since Di, i = 1, 2, are convex cones, we obtain∪

λ>0

λ(D(ϕ∗A)−D(ϕ∗−B)) = D1 +D2.

By claim (4.3) and Theorem 1.1′, we deduce that

ϕA−B(x) = ϕA�ϕ−B(x) = (ϕ∗A + ϕ∗−B)(x).
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In particular, it is a lower semi-continuous function on E and this implies that A − B is

closed.

We now turn to the proof of claim (4.3). Clearly in the case of (1), i.e. if A (or B) is

bounded, then D1 (or D2) is E
∗, (4.3) is obvious.

In the case of (2), we assume that A is included in a finite dimensional linear subspace

G of E and set G1 = caA ∩ caB which is a linear subspace. Without loss of generality, we

suppose that o ∈ A ∩B. We will prove D1 +D2 = G⊥
1 .

First, for any di ∈ Di (i = 1, 2) and any x ∈ G1, we observe that

sup
λ>0

{⟨d1 + d2, λx⟩} 6 sup
λ>0

{⟨d1, λx⟩}+ sup
λ>0

{⟨d2, λx⟩}

6 sup
y∈A

{⟨d1, y⟩}+ sup
y∈B

{⟨d2, y⟩} = ϕ∗A(d1) + ϕ∗B(d2) < +∞.

This yields ⟨d1 + d2, x⟩ = 0 for all x ∈ G1, which proves D1 +D2 ⊂ G⊥
1 .

On the other hand, let L be the topological complement of G. Then we have E∗ =

L⊥ +G⊥ and dimL⊥ = dimG. Moreover, if G decomposes into G = G1 +G2, where G2 is

also a linear subspace, we get also E = G + L = G1 + G2 + L and G1 + L (resp. G2 + L)

can be considered as a topological complement of G2 (resp. G1) (see e.g. [5]).

We should prove G⊥
1 ⊂ D1 + D2. It is true if G2 = {o}, since we have G = G1 and

A is included in caB. Assume that (G1 + L)⊥ ̸= {o}. We see that G⊥ = (G1 + G2)
⊥ is

included in D1. We claim that P(G1+L)⊥(D1+D2) = (G1+L)
⊥, which is a finite dimensional

subspace, where PF denotes the canonical projection on F . Otherwise, since it is a convex

cone, Hahn-Banach theorem implies that there is some u ̸= o, u ∈ E such that

P(G1+L)⊥(D1 +D2) ⊂ {φ ∈ (G1 + L)⊥; ⟨φ, u⟩ 6 0}, (4.4)

i.e., there is v = PG2(u) ∈ G2, v ̸= o and ⟨φ, u⟩ = ⟨φ, v⟩. Indeed, v belongs to G1. If it

is not true, there exists some λ > 0 such that λv does not belong to one of A or B. For

example, suppose that λv ̸∈ A. Again by Hahn-Banach theorem, there exists φ ∈ E∗ such

that sup
y∈A

⟨φ, y⟩ < α < ⟨φ, λv⟩. Consequently, if we set ξ = P(G1+L)⊥(φ), this yields φ ∈ D1

and ⟨ξ, v⟩ > 0. We deduce that ξ ∈ P(G1+L)⊥(D1 +D2), which gives a contradiction with

(4.4). Therefore for any φ ∈ (G1 + L)⊥, there are di ∈ Di (i = 1, 2) such that

φ = P(G1+L)⊥(d1 + d2) = P(G1+L)⊥(φ1 + φ2) = φ1

with φ1 ∈ (G1 + L)⊥ and φ2 ∈ G⊥. This implies that φ = d1 + d2 − φ2 ∈ D1 +D2, which

proves claim (4.3) and completes the proof of Theorem 1.2.

Appendix

Proof of Lemma 3.1. Let U be a neighborhood of o in X and T a ball centered at o in

X such that T+T ⊂ U . For anym > 1, we set Dm = f(mT∩σ(m)). Since T is an absorbing

set, we get Z =
∪

i,m>1

iDm. According to Baire’s theorem, there exist i,m ≥ 1 such that

intZ iDm is not empty. Let y0 ∈ intZ iDm. There are j, n ≥ 1 such that −y0 ∈ jDn. Set

k = max(m,n). By the convexivity of g, we obtain

iDm − y0 ⊂ iDm + jDn ⊂ iDk + jDk ⊂ (i+ j)f(kU ∩ σ(k)),
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which implies that

o = y0 − y0 ∈ intZiDm − y0 = intZiDm − y0 ⊂ (i+ j)intZf(kU ∩ σ(k)).

Thus we have proved that for any neighborhood U of o ∈ X, there exists k ≥ 1 such that

o ∈ intZf(kU ∩ σ(k)). Let {Un}n≥1 be a sequence of balls centered at o which is a basis of

neighborhood of o in X and satisfies Un+1 +Un+1 ⊂ Un. Let {Vn}n≥1 be an arbitrary basis

of neighborhood of o in Y .

Set U = 2nUn, n ≥ 1. Then ∃kn ≥ 1 such that o ∈ intZf(Un ∩ rnσ(kn)), where rn =

(2nkn)
−1. We set θ =

( ∑
n≥1

rn
)−1 ≥ 1. Then we have

θ f(U1 ∩ r1σ(k1)) ⊂ f(σ(θ)). (∗)

In fact, letting y ∈ f(U1 ∩ r1σ(k1)), we can find a sequence {xn}n≥1 such that ∀n ≥ 1,

xn ∈ Un ∩ rnσ(kn) and

y −
n∑

m=1

f(xm) ∈ f(Un+1 ∩ rn+1σ(kn+1)) ∩ Vn.

The sequence

{( n∑
m=1

xm,
n∑

m=1
f(xm)

)}
n≥1

is a Cauchy sequence in G(f) which is complete.

Then there exists x ∈ X such such that (x, f(x)) is the limit as n → +∞ and we have

y = f(x).

On the other hand, if we set vn =
( n∑
m=1

xm
)( n∑

m=1
rm

)−1
, since g is convex, we get,

∀m ≥ 1,

g(2mkmxm) ≤ km and ∀n ≥ 1, g(vn) ≤
( n∑
m=1

2−m
)/( n∑

m=1

rm

)
.

The lower semicontinuity of g implies that g(θx) ≤ θ and θy = θ(f(x)) = f(θx) with

θx ∈ σ(θ). We have proved (∗), which achieves the proof of Lemma 3.1.
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