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Abstract

This paper shows that if a Gateaux differentiable functional f has a finite lower bound
(although it need not attain it), then, for every ε > 0, there exists some point zε such
that ∥f ′(zε)∥ ≤ ε

1+h(∥zε∥)
, where h : [0,∞) → [0,∞) is a continuous function such that∫∞

0
1

1+h(r)
dr = ∞. Applications are given to extremum problem and some surjective map-

pings.
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§1. Introduction

Let (M,d) be a complete metric space, let f : M → R
∪
{+∞} be a lower semicontin-

uous function, not identically +∞ and bounded from below. Then Ekeland’s variational

principle[4] states that, for every ε > 0, every y ∈ M such that f(y) < infM f + ε and every

λ > 0, there exists some point z ∈ M such that

f(z) ≤ f(y), d(z, y) ≤ λ,

f(x) ≥ f(z)− εd(x, z), ∀x ∈ M.

It is well known that Ekeland’s variational principle has many applications to optimiza-

tion, optimal control, differential equations, fixed points, critical point theory and variants

(see [4, 2, 5, 7]).

In Section 2 of this paper we prove the following general result:

Theorem 1.1. Let h : [0,∞) → [0,∞) be a continuous function such that
∫∞
0

1
1+h(r)dr =

∞. Let (M,d) be a complete metric space, x0 ∈ M fixed. Suppose f : M → R
∪
{+∞} is a

l.s.c. functional, ̸≡ +∞, bounded from below. Then, for every ε > 0, every y ∈ M such that

f(y) < inf
M

f + ε, (1.1)

and every λ > 0, there exist some point z ∈ M and a neighborhood B(z, γ) = {x ∈
M |d(x, z) ≤ γ} such that

f(z) ≤ f(y), (1.2)
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d(z, x0) ≤ r0 + r, (1.3)

and

f(x) ≥ f(z)− ε

λ(1 + h(d(x0, z)))
d(z, x), ∀x ∈ B(z, γ), (1.4)

where r0 = d(x0, y) and r is such that∫ r0+r

r0

1

1 + h(r)
dr ≥ 2λ. (1.5)

Theorem 1.1 is called locally Ekeland’s variational principle. The reason for it is that

(1.4) holds locally.

As applications of Theorem 1.1, in Section 3 of this paper we derive the existence of

minimal point for some functional with a weak “compactness” condition; in Section 4 we

obtain some surjective mapping theorems, which generalize the similar results proved by W.

O. Ray and A. M. Walker in [6] using an extension of Caristi’s fixed point theorem.

§2. Proof of Theorem 1.1

By the definition of Riemann integral, there is a partition

∆ : r0 < r1 < · · · < rN < rN+1 = r0 + r

such that
N∑
i=0

1

1 +Mi
(ri+1 − ri) ≤

∫ r0+r

r0

1

1 + h(r)
dr ≤

N∑
i=0

1

1 +Mi
(ri+1 − ri) +

λ

3
, (2.1)

where Mi = max
ri≤r≤ri+1

h(r), i = 0, 1, · · · , N . Set δ = min
0≤i≤N

(ri+1 − ri) and choose a natural

number k0 such that

3(N + 1)δ

λ
≤ k0. (2.2)

Now let us define inductively a sequence {xn} ⊂ M as follows:

Take x1 = y and suppose xn is known. Then xn is such that either

(1) f(x) ≥ f(xn)− ε
λ(1+h(d(x0,xn)))

d(x, xn)

whenever x ∈ B(xn,
δ

2k0
) = {x ∈ M |d(x, xn) ≤ δ

2k0
}, or

(2) En = {x ∈ B(xn,
δ

2k0
)|f(x) < f(xn)− ε

λ(1+h(d(x0,xn)))
d(x, xn)} ≠ ∅.

If case (1) holds, we take xn+1 = xn, and if case (2) holds, we choose xn+1 ∈ En such that

f(xn+1) < inf
En

f +
1

n+ 1
. (2.3)

Thus we obtain a sequence {xn} such that, for n = 1, 2, · · ·

d(xn+1, xn) ≤
δ

2k0
(2.4)

and

f(xn+1) ≤ f(xn)−
ε

λ(1 + h(d(x0, xn)))
d(xn, xn+1). (2.5)

In the following, we prove in two steps that {xn} converges to some point z satisfying

(1.2),(1.3) and (1.4).
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Step 1. we prove that

d(x0, xn) ≤ r0 + r, n = 1, 2, · · · (2.6)

First of all, d(x0, x1) = d(x0, y) = r0 < r0 + r. Now if we assume that there is some n0

such that d(x0, xn) ≤ r0 + r whenever 1 ≤ n < n0, but d(x0, xn0
) > r0 + r, we shall derive

a contradiction as follows:

Set, for each i, 1 ≤ i ≤ N ,

n−
i = max{n|1 ≤ n ≤ n0, xn ∈ B(x0, ri)},

n+
i = min{n|n−

i ≤ n ≤ n0, xn ̸∈ B(x0, ri+1)}.

Since xn−
i
∈ B(x0, ri) and xn ̸∈ B(x0, ri) as n > n−

i , it follows from (2.4) that

ri < d(x0, xn−
i +1) ≤ d(x0, xn−

i
) + d(xn−

i
, xn−

i +1) ≤ ri +
δ

2k0
≤ ri+1. (2.7)

Hence n+
i > n−

i (in fact, n+
i > n−

i + 1). By the definitions of n−
i and n+

i , we have

ri < d(x0, xn) ≤ ri+1 as n−
i < n < n+

i . (2.8)

Combining it with (2.4), we obtain

0 ≤ ri+1 − d(x0, xn+
i −1) ≤ d(x0, xn+

i
)− d(x0, xn+

i −1) ≤ d(xn+
i
, xn+

i −1) ≤
δ

2k0
. (2.9)

By (2.2),(2.7),(2.8) and (2.9), we get

N∑
i=0

1

1 +Mi
(ri+1 − ri) =

N∑
i=0

1

1 +Mi

[
(ri+1 − d(x0, xn+

i −1))

+ (d(x0, xn+
i −1)− d(x0, xn−

i +1)) + (d(x0, xn−
i +1)− ri)

]
≤

N∑
i=0

δ

k0(1 +Mi)
+

N∑
i=0

1

1 +Mi
(d(x0, xn+

i −1)− d(x0, xn−
i +1))

≤ (1 +N)δ

k0
+

N∑
i=0

1

1 +Mi
d(xn+

i −1, xn−
i +1)

≤ λ

3
+

N∑
i=0

n+
i −2∑

n=n−
i +1

1

1 +Mi
d(xn, xn+1)

≤ λ

3
+

N∑
i=0

n+
i −2∑

n=n−
i +1

1

1 + h(d(x0, xn))
d(xn, xn+1)

≤ λ

3
+

n0−1∑
n=1

1

1 + h(d(x0, xn))
d(xn, xn+1).

Using (1.1) and (2.5), we know that
n0−1∑
n=1

ε

λ(1 + h(d(x0, xn)))
d(xn, xn+1) ≤ f(x1)− f(xn0) ≤ f(x1)− inf

M
f < ε.

Therefore
N∑
i=0

1

1 +Mi
(ri+1 − ri) ≤

4

3
λ.
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Combining (1.5) and (2.1), we get

2λ ≤
∫ r0+r

r0

1

1 + h(r)
dr ≤

N∑
i=0

1

1 +Mi
(ri+1 − ri) +

λ

3
≤ 4

3
λ+

λ

3
=

5

3
λ.

It is impossible. Hence (2.6) holds.

Step 2. We prove that {xn} converges to some point z in M for which (1.2)-(1.4) hold.

Using (1.1) and (2.5), we know that, for n = 1, 2, · · · ,
n∑

k=1

ε

λ(1 + h(d(x0, xk)))
d(xk, xk+1) ≤ f(x1)− f(xn+1) ≤ f(x1)− inf

M
f < ε.

Letting n → ∞, we have
∞∑
k=1

1

1 + h(d(x0, xk))
d(xk, xk+1) ≤ λ. (2.10)

Set

c0 = max
0≤r≤r0+r

(1 + h(r)). (2.11)

It follows from step 1 that

1

c0
d(xn+p, xn) ≤

n+p−1∑
k=n

1

c0
d(xk, xk+1)

≤
n+p−1∑
k=n

1

1 + h(d(x0, xk))
d(xk, xk+1) ≤

∞∑
k=n

1

1 + h(d(x0, xk))
d(xk, xk+1).

Combined with (2.10), it implies that {xn} is a Cauchy sequence. Since M is complete,

there exists some point z in M such that

lim
n→∞

xn = z. (2.12)

Take γ = δ
4k0

. It remains to verify that (1.2),(1.3) and (1.4) hold.

Combining (2.5) and the lower semicontinuity of f , we have

f(z) ≤ lim
n→∞

f(xn) ≤ f(xn) ≤ f(x1) = f(y), (2.13)

which implies (1.2) holds. Clearly (1.3) holds since d(x0, xn) ≤ r0 + r and lim
n→∞

xn = z.

Finally we prove that z satisfies (1.4).

In fact, by the definition of {xn}, we know that if there is some m such that xm is defined

as case (1), then all of xn, n ≥ m, are defined as case (1), that is, xn = xm whenever n ≥ m.

Hence z = xm, and (1.4) holds. So, without loss of generality, we assume that, for every n,

xn is defined as case (2). Now if (1.4) does not hold, then there exists some z1 ∈ B(z, δ
4k0

)

such that

f(z1) < f(z)− ε

λ(1 + h(d(x0, z)))
d(z1, z). (2.14)

Using (2.13),(2.14) and the continuity of h, there exists some n1 such that, for n ≥ n1,

d(xn, z) <
δ

4k0
and

f(z1) < f(xn)−
ε

λ(1 + h(d(x0, xn)))
d(z1, xn). (2.15)n

This shows that z1 ∈ En whenever n ≥ n1.
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Combining (2.3) and (2.15)n+1, we obtain

f(z1) +
1

n+ 1
≥ inf

En

f +
1

n+ 1
≥ f(xn+1) > f(z1) +

ε

λ(1 + h(d(x0, xn+1)))
d(xn+1, z1),

which implies that

d(xn+1, z1) ≤
λ

ε
(1 + h(d(x0, xn+1)))

1

n+ 1
≤ c0λ

ε

1

n+ 1
,

where c0 is given by (2.11). Letting n → ∞, we get d(z, z1) = 0. Therefore z1 = z. But it

contradicts (2.14) and completes the proof.

§3. The Weak P. S. Condition and the Existence of Minimal Point

Throughout this section X will denote a Banach space. Recall that a function f : X → R

is said to admit Gateaux derivative at x0 if there exists a continuous linear functional f ′(x0)

such that, for every y ∈ X,

lim
t→0

f(x0 + ty)− f(x0)

t
= ⟨f ′(x0), y⟩.

Theorem 3.1. Let h : [0,∞) → [0,∞) be a continuous function satisfying
∫∞
0

1
1+h(r)dr =

∞. Let X be a Banach space, x0 ∈ X fixed. Suppose that f : X → R is a l.s.c. function,

having Gateaux derivative at every point x in X and bounded from below. Then, for every

ε > 0, every y ∈ X such that

f(y) < inf
X

f + ε, (3.1)

and every λ > 0, there exists z ∈ X such that

f(z) ≤ f(y), (3.2)

∥z − x0∥ ≤ r0 + r, (3.3)

∥f ′(z)∥ ≤ ε

λ(1 + h(∥z − x0∥))
, (3.4)

where r0 = ∥x0 − y∥ and r is such that∫ r0+r

r0

1

1 + h(r)
dr ≥ 2λ. (3.5)

We remark that if we take h(r) ≡ 0 and x0 = y, then (3.3) and (3.4) become respectively

∥z − y∥ ≤ 2λ, (3.6)

∥f ′(z)∥ ≤ ε

λ
. (3.7)

This is almost the same as Theorem 2.1 of [4].

Proof of Theorem 3.1. Using Theorem 1.1 directly, we see that there exist z ∈ X and

a neighborhood B(z, γ) such that (3.2), (3.3) hold and

f(x) ≥ f(z)− ε

λ(1 + h(∥z − x0∥))
∥x− z∥, ∀x ∈ B(z, γ). (3.8)

For every v ∈ X and every t > 0 small enough, x = z + tv ∈ B(z, γ). Hence (3.8) gives

f(z + tv)− f(z)

t
≥ −ε

λ(1 + h(∥x0 − z∥))
∥v∥.
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Letting t → 0, we obtain

⟨f ′(z), v⟩ ≥ −ε

λ(1 + h(∥x0 − z∥))
∥v∥. (3.9)

The inequality (3.9), holding for every v ∈ X, means that

∥f ′(z)∥ ≤ ε

λ(1 + h(∥x0 − z∥))
.

The proof is completed.

Corollary 3.1. Under the hypotheses of Theorem 3.1, for every ε > 0, there exists some

point zε such that

f(zε) < inf
X

f + ε2, (3.10)

∥f ′(zε)∥ ≤ ε

1 + h(∥zε∥)
. (3.11)

Proof. Just take ε2 instead of ε, ε instead of λ and 0 instead of x0 in the preceding

theorem.

Corollary 3.2. Under the hypotheses of Theorem 3.1, there exists a minimizing sequence

{zn} of f such that

∥f ′(zn)∥(1 + h(∥zn∥)) → 0. (3.12)

Proof. Take ε = 1
n , n = 1, 2, · · · in the preceding corollary.

Definition 3.1. Let X be a Banach space, f : X → R a function having Gateaux

derivative at every point x in X. We say that f satisfies the weak P.S. condition if the

existence of a sequence {xn} in X such that {f(xn)} is bounded and ∥f ′(xn)∥(1+h(∥xn∥)) →
0 implies that {xn} has a convergent subsequence, where h : [0,∞) → [0,∞) is a continuous

function such that
∫∞
0

1
1+h(r)dr = ∞.

Remark 3.1. If we take h(r) ≡ 0 and h(r) ≡ r respectively, then the weak P.S. condition

is just the famous P.S. condition and (C) condition respectively (see [1, 3]). In critical point

theory, many results still hold if we take the weak P.S. condition instead of P.S. condition.

Theorem 3.2. Under the hypotheses of Theorem 3.1, suppose that f satisfies the weak

P.S. condition. Then f has a minimal point.

Proof. By Corollary 3.2, there is a sequence {xn} in X such that f(xn) → infX f and

∥f ′(xn)∥(1 + h(∥xn∥)) → 0. The weak P.S. condition implies that {xn} has a subsequence

{xnk
} convergent to some point x∗. Since f is a l.s.c. function, we obtain

inf
X

f ≤ f(x∗) ≤ lim
k→∞

f(xnk
) ≤ inf

X
f.

Therefore, f(x∗) = inf
X

f . The proof is completed.

§4. Some Surjective Mapping Theorems

In this section we apply Theorem 1.1 to obtain two surjective mapping theorems which

generalize Theorem 3.1 and Theorem 3.3 of [6] respectively.

Let X and Y be Banach spaces and F a mapping from X to Y ; F is said to be Gateaux

differentiable if for each x ∈ X there is a function dFx : X → Y satisfying

lim
t→0

F (x+ ty) + F (x)

t
= dFx(y) (y ∈ X) .
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Note we do not require that dFx be linear; it follows from the definition, however, that dFx

is homogeneous, i.e., dFx(λy) = λdFx(y) for all λ.

Theorem 4.1. Let X and Y be Banach spaces and F be a continuous and Gateaux

differentiable mapping from X to Y . Let h : [0,∞) → [0,∞) be a continuous function

satisfying
∫∞
0

1
1+h(r)dr = ∞ and suppose, for each x ∈ X, that

dFx(B(0, 1 + h(∥x∥))) ⊃ B(0, 1). (4.1)

Then F is surjective.

We remark that Theorem 4.1 generalizes Theorem 3.1 of [6] where it is assumed that h

is nondecreasing.

Proof of Theorem 4.1. For every fixed w ∈ Y , set f(x) = ∥F (x) − w∥. Then f is a

continuous mapping from (X, ∥.∥) to [0,∞).

Applying Theorem 1.1, we see that for ε < 1, there exist zε ∈ X and a neighborhood

B(zε, γ) such that

∥F (x)− w∥ ≥ ∥F (zε)− w∥ − ε

1 + h(∥zε∥)
∥x− zε∥, ∀x ∈ B(zε, γ). (4.2)

Hence, for each fixed v ∈ X and t > 0 small enough,

∥F (zε + tv)− w∥ − ∥F (zε)− w∥ ≥ − ε

1 + h(∥zε∥)
t∥v∥. (4.3)

Choose y∗t ∈ Y ∗ such that ∥y∗t ∥ = 1 and

⟨y∗t , F (zε + tv)− w⟩ = ∥F (zε + tv)− w∥. (4.4)

Combining (4.3) and (4.4), we get

⟨y∗t , F (zε + tv)− F (zε)⟩ ≥ ∥F (zε + tv)− w∥ − ∥F (zε)− w∥ ≥ −εt∥v∥
1 + h(∥zε∥)

. (4.5)

It is well known that if a Banach space is separable then the unit ball of its dual space is

weak sequentially compact. Therefore there exists some y∗0 ∈ Y ∗ such that, for y ∈ Y1 =

span{F (zε + tv)}, the closed linear hull of {F (zε + tv)}, ⟨y∗tn , y⟩ → ⟨y∗0 , y⟩ as tn → 0.

Using (4.4) and (4.5) respectively, we have

⟨y∗0 , F (zε)− w⟩ = ∥F (zε)− w∥, (4.6)

⟨y∗0 , dFzε(v)⟩ ≥ − ε∥v∥
1 + h(∥zε∥)

. (4.7)

By virtue of (4.1), there exists some v ∈ X such that

∥v∥ ≤ (1 + h(∥zε∥))∥F (zε)− w∥, dFzε(v) = −(F (zε)− w).

Combining (4.6) and (4.7), we obtain

∥F (zε)− w∥ = ⟨y∗0 , F (zε)− w⟩ = ⟨y∗0 ,−dFzε(v)⟩ ≤
ε∥v∥

1 + h(∥zε∥)
≤ ε∥F (zε)− w∥,

which implies that F (zε) = w and completes the proof.

Theorem 4.2. Let X and Y be Banach spaces, F be an open and continuous mapping

from X to Y . Let h : [0,∞) → [0,∞) be a continuous function for which
∫∞
0

1
1+h(r)dr = ∞.

Suppose for each x ∈ X there is a δ(x) > 0 such that if ∥x− x∥ < δ(x), then

1

1 + h(∥x∥)
∥x− x∥ ≤ ∥F (x)− F (x)∥. (4.8)
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Then F (X) = Y .

Proof. For every fixed w ∈ Y , set f(x) = ∥F (x)−w∥. Applying Theorem 1.1, for ε < 1,

there exist some point zε ∈ X and a neighborhood B(zε, γ) such that

∥F (x)− w∥ ≥ ∥F (zε)− w∥ − ε

1 + h(∥zε∥)
∥x− zε∥, ∀x ∈ B(zε, γ). (4.9)

We proceed by contradiction and suppose that F (zε) ̸= w. Take δ1 = min{δ(zε), γ}.
Since F is an open mapping,

F (B(zε, δ1)) ∩ {tF (zε) + (1− t)w|0 < t < 1} ̸= ∅.

Thus there exist some point v ∈ B(zε, δ1) and 0 < t0 < 1 such that

F (v) = t0F (zε) + (1− t0)w. (4.10)

From (4.9)

∥F (zε)− w∥ − ∥F (v)− w∥ ≤ ε

1 + h(∥zε∥)
∥v − zε∥. (4.11)

Choose y∗ ∈ Y ∗ such that ∥y∗∥ = 1 and

y∗(F (zε)− w) = ∥F (zε)− w∥. (4.12)

Using (4.10), we have F (v)− w = t0(F (zε)− w), and F (zε)− F (v) = (1− t0)(F (zε)− w).

Hence

y∗(F (v)− w) = ∥F (v)− w∥, (4.13)

y∗(F (zε)− F (v)) = ∥F (zε)− F (v)∥. (4.14)

By (4.8),(4.11)–(4.14), we obtain

1

1 + h(∥zε∥)
∥zε − v∥ ≤ ∥F (zε)− F (v)∥ = y∗(F (zε)− F (v))

= y∗(F (zε)− w)− y∗(F (v)− w)

= ∥F (zε)− w∥ − ∥F (v)− w∥

≤ ε

1 + h(∥zε∥)
∥zε − v∥.

It is impossible and completes the proof.
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