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Abstract

Let {Xn} be a sequence of random variables and Xn1 ≤ Xn2 ≤ · · · ≤ Xnn their order
statistics. In this paper a central limit theorem and a strong law of large numbers for randomly

trimmed sums Tn =
βn∑

i=αn+1
Xni are established in the case that αn and βn are positive

integer-valued random variables such that αn/n and βn/n converge to random variables α and
β respectively with 0 ≤ α < β ≤ 1 in certain sense, and {Xn} is a φ-mixing sequence.
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§1. Introduction and Results

Let {Xn, n ≥ 1} be a sequence of random variables with a common distribution function

F (x) and let Xn1 ≤ Xn2 ≤ · · · ≤ Xnn be the order statistics of X1, X2, · · · , Xn. Consider

statistics of form

Tn =

βn∑
i=αn+1

Xni,

where αn and βn are integers with 1 ≤ αn ≤ βn ≤ n. For an i.i.d. sequence {Xn},
many authors studied the asymptotic behavior of the trimmed sums Tn. In this paper,

we try extending the research extent in two directions. First, we assume that {Xn} is φ-

mixing. Moreover, αn and βn may be positive integer-valued random variables such that

the trimming fractions αn and βn converge to random variables α and β respectively with

0 ≤ α < β ≤ 1 in some sense.

For 0 ≤ x ≤ 1, define the x-th quantile of F

F−(x) = inf{t : F (t) ≥ x}, (1.1)

which is left continuous. Let

mαβ =

∫
(α,β)

F−(x)dx/(β − α).
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In the sequel, we always assume that {Xn} is stationary and φ-mixing with coefficients φ(n)

satisfying
∞∑

n=1

φ
1
2 (2n) < ∞. (1.2)

Theorem 1.1. Suppose that αn/n → α, βn/n → β a.s. as n → ∞ and

E|X1I(F
−(α) < X1 < F−(β))| < ∞, (1.3)

and suppose that both α and β are independent of {Xn}. Then

1

n
Tn → mαβ a.s. as n → ∞.

Put

ξi(α, β) = F−(α)I(Xi ≤ F (α)) + F−(β)I(Xi ≥ F−(β)) +XiI(F
−(α) < Xi < F−(β))

− E{[F−(α)I(Xi ≤ F−(α)) + F−(β)I(Xi ≥ F−(β))

+XiI(F
−(α) < Xi < F−(β))]|α, β}, (1.4)

where F−(0)I(Xi ≤ F−(0)) and F−(1)I(Xi ≥ F−(1)) are understood to be zero, and

σ2
αβ = E{ξ1(α, β)2|α, β}+ 2

∞∑
i=2

E{ξ1(α, β)ξi(α, β)|α, β}.

Theorem 1.2. Suppose that
√
n(αn/n − α)

P→ 0,
√
n(βn/n − β)

P→ 0 as n → ∞ and

suppose that both α and β are independent of {Xn}, and the series
∞∑
i=2

E{ξ1(α, β)ξi(α, β)|α, β} (1.5)

converges absolutely a.s. Then, in the case of P (α = 0) = P (β = 1) = 0, if

F−(α+ δ)I(α > 0)
P→ F−(α)I(α > 0), (1.6)

F−(β + δ)I(β < 1)
P→ F−(β)I(β < 1) as δ ↓ 0,

we have √
n( 1nTn −mαβ)

σαβ

D→ N(0, 1) as n → ∞. (1.7)

In the case of P (α = 0) > 0 and/or P (β = 1) > 0, suppose that one of the following two

sets of conditions is satisfied besides (1.6). The first one is

E{X2
1I(F

−(α) < X1 < F−(β))|α, β} < ∞ a.s., (1.8)
√
x|F−(x)| and/or

√
xF−(1− x) are non-decreasing for x near 0 and

αnI(α = 0) ∨ (n− βn)I(β = 1) = Op(log n), (1.9)

condition (1.2) is replaced by
∞∑

n=1

φ
1

2+γ (2n) < ∞, for some γ > 0. (1.10)

The second one is

E{|X1|rI(F−(α) < X1 < F−(β))|α, β} < ∞ a.s. for some r > 2, (1.8)’
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αnI(α = 0) ∨ (n− βn)I(β = 1) = Op(n
(r−2)
2(r−1) ). (1.9)’

Then (1.7) alse holds true.

§2. Proofs

First of all, we show some lemmas which are useful for the proofs of our theorems.

Lemma 2.1. Let U1, U2, ···, Un be φ-mixing U(0, 1) random variables satisfying condition

(1.2), let Un1 ≤ Un2 ≤ · · · ≤ Unn be their order statistics. And let αn be positive integer-

valued random variables with αn ≤ n and α a non-negative random variable independent of

U1, U2, · · ·, Un. Then for any δ > 0,

P
{
|Un,αn+1 − α| > δ,

∣∣∣αn + 1

n
− α

∣∣∣ < δ

2

}
≤ cn−2δ−4;

here and in the sequel, c stands for a positive constant, whose values are irrelevant.

Proof. We need a moment inequality for a ρ-mixing sequence[9]: Let {ηn, n ≥ 1} be a

ρ-mixing sequence with Eηn = 0, E |ηn|q < ∞ (q ≥ 2). Then for any ϵ > 0 there exists a

constant K = K(q, ϵ, ρ(·)) such that

E|Sk(n)|q ≤ K
{(

n exp
[
(1 + ϵ)

[logn]∑
i=0

ρ(2i)
]

max
k<i≤k+n

Eη2i

)q/2

+ n exp
[
K

[logn]∑
i=0

ρ2/q(2i)
]

sup
k<i≤k+n

E|ηi|q
}
,

where Sk(n) =
k+n∑

i=k+1

ηi. Hence when {ηn} is a φ-mixing sequence satisfying condition (1.2),

by noting the fact ρ(n) ≤ 2φ1/2(n), we obtain under condition (1.2)

E|Sk(n)|q ≤ K
{(

n max
k<i≤k+n

Eη2i

)q/2

+ n exp
(
K

[logn]∑
i=0

φ1/q(2i)
)

max
k<i≤k+n

E|ηi|q
}

(2.1)

≤ K
{(

n max
k<i≤k+n

Eη2i

)q/2

+ n exp(K(log n)1−2/q) max
k<i≤k+n

E|ηi|q
}
,

since
[logn]∑
i=0

φ1/q(2i) ≤ (1 + log n)1−2/q
( ∞∑

i=0

φ1/2(2i)
)2/q

.

Write

P
{
|Un,αn+1 − α| > δ,

∣∣αn + 1

n
− α

∣∣ < δ

2

}
≤ P

{
Un,αn+1 > α+ δ,

∣∣αn + 1

n
− α

∣∣ < δ

2

}
+ P

{
Un,αn+1 < α− δ,

∣∣αn + 1

n
− α

∣∣ < δ

2

}
,

P
{
Un,αn+1 > α+ δ,

∣∣αn + 1

n
− α

∣∣ < δ

2

}
(2.2)

≤P
{ n∑

i=1

I(Ui > α+ δ) > n(1− α− δ

2
)
}

= E
(
P
{ n∑

i=1

(Vi − E(Vi | α)) >
nδ

2
| α

})
,
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where Vi = I(Ui > α + δ). In view of independence of α and {Ui}, it is easy to verify that

{Vi −E(Vi | α), i = 1, · · ·, n} is also φ-mixing when α is given. By (2.1) with q = 4, we have

P
{ n∑

i=1

(Vi − E(Vi | α)) > nδ
2 | α

}
≤ cn−2δ−4. Hence

P
{
Un,αn+1 > α+ δ,

∣∣αn + 1

n
− α

∣∣ < δ

2

}
≤ cn−2δ−4.

Similarly

P
{
Un,αn+1 < α− δ,

∣∣αn + 1

n
− α

∣∣ < δ

2

}
≤ cn−2δ−4.

The lemma is proved.

Lemma 2.2. Let Gn(x) be the empirical distribution function of U1, · · ·, Un in Lemma

2.1. Define the empirical process Yn(t) =
√
n(Gn(t)− t), 0 ≤ t ≤ 1. Then we have for any

0 ≤ s ≤ s+ a ≤ 1, λ > 1

P
{

sup
s≤t≤s+a

|Yn(t)− Yn(s)| ≥ λ
}
≤ ca3/2/λ4. (2.3)

Proof. Obviously, for any s ≤ t,

E((I(U1 ≤ t)− t)− (I(U1 ≤ s)− s))i ≤ t− s, i = 2, 4.

Therefore, we have by (2.1)

E(Yn(t)− Yn(s))
4 ≤ c((t− s)2 + n−1 exp(K(log n)

1
2 )(t− s)) ≤ c(t− s)

3
2 (2.4)

if t − s ≥ 1/n. Consider the random variables Yn(s + ip) − Yn(s + (i − 1)p), i = 1, · · ·,m,

where m is a positive integer. Using Theorem 12.2 in [1], we obtain

P
{

max
1≤i≤m

|Yn(s+ ip)− Yn(s)| ≥ λ
}
≤ c

λ4
(mp)3/2.

Note that for 0 ≤ t ≤ p, I(Ui ≤ t)− t ≤ (I(Ui ≤ p)− p) + p. We have

|Yn(t)| ≤ |Yn(p)|+ p
√
n, 0 ≤ t ≤ p. (2.5)

Similarly |Yn(t)− Yn(s)| ≤ |Yn(s+ p)− Yn(s)|+ p
√
n, s ≤ t ≤ s+ p. Hence

sup
s≤t≤s+mp

|Yn(t)− Yn(s)| ≤ 3 max
1≤i≤m

|Yn(s+ ip)− Yn(s)|+ p
√
n.

Then with p = 1/n,m = [an] + 1,

P
{

sup
s≤t≤s+mp

|Yn(t)− Yn(s)| ≥ λ
}
≤ P

{
max

1≤i≤m
|Yn(s+ ip)− Yn(s)| ≥

λ

4

}
≤ c

λ4
(mp)

3
2 ,

which implies (2.3).

Remark 2.1. If condition (1.10) is satisfied, we have

E|Yn(t)− Yn(s)|2+γ ≤ c(t− s)1+γ/2

instead of (2.4) (using the first inequality in (2.1) instead of the second one). Then (2.3)

can be rewritten as

P
{

sup
s≤t≤s+a

|Yn(t)− Yn(s)| ≥ λ
}
≤ ca1+

γ
2 /λ2+γ . (2.3)’

Lemma 2.3. With the notations in Lemma 2.2, suppose that condition (1.10) is satisfied.

Then

P
{

sup
1/n≤t≤a

|Yn(t)/
√
t| ≥ λ(log n)

1
2

}
≤ c/λ2+γ , (2.6)
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P
{

sup
1/n≤t≤a

∣∣∣ 1√
n

n∑
i=1

(I( 1n < Ui ≤ t)
√
Ui

−
EI( 1n < Ui ≤ t)

√
Ui

)∣∣∣ ≥ λ(log n)
1
2

}
≤ c

λ2+γ
. (2.7)

Proof. We have for 1 ≤ i < j ≤ m (recalling p = 1/n,m = [an] + 1),

E
{I(U1 ≤ jp)− jp√

jp
− I(U1 ≤ ip)− ip√

ip

}2

= 2− (i+ j)p− 2

√
i

j
(1− jp) ≤ 2

(
1−

√
i

j

)
≤ 2

j − i

j

and

E
∣∣∣I(U1 ≤ jp)− jp√

jp
− I(U1 ≤ ip)− ip√

ip

∣∣∣2+γ

≤ cE
(
I(ip < U1 ≤ jp)

1√
jp

)2+γ

+ cE
{
I(U1 ≤ ip)

( 1√
ip

− 1√
jp

)}2+γ

= c(jp)−
γ
2
j − i

j
+ c(ip)−

γ
2

(√j −
√
i√

j

)2+γ

≤ cp
− γ

2
(j − i

j

)1+ γ
2

.

Therefore from the first inequality of (2.1) we obtain

E
∣∣∣Yn(jp)√

jp
− Yn(ip)√

ip

∣∣∣2+γ

≤ c
{(j − i

j

)1+ γ
2

+ n− γ
2 p−

γ
2

(j − i

j

)1+ γ
2
}
≤ c

( j∑
k=i+1

1

k

)1+ γ
2

.

Then using Theorem 12.2 in [1], we have

P
{

max
1≤i≤m

∣∣∣Yn(ip)√
ip

− Yn(p)√
p

∣∣∣ ≥ λ
}
≤

c(
m∑

k=2

1
k )

1+γ/2

λ2+γ
≤ c(logm)1+γ/2

λ2+γ

and further

P
{

max
1≤i≤m

|Yn(ip)|√
ip

≥ λ
}
≤ c(logm)1+γ/2

λ2+γ
+ P

{ |Yn(p)|√
p

≥ λ

2

}
≤ c(logm)1+γ/2

λ2+γ
.

Recalling (2.5), we have

sup
1/n≤t≤a

|Yn(t)|√
t

≤ max
1≤i≤m

{ |Yn((i+ 1)p)|√
(i+ 1)p

√
i+ 1

i
+

√
pn

i

}
.

Hence, it follows that

P
{

sup
1/n≤t≤a

|Yn(t)|√
t

≥ λ(log n)
1
2

}
(2.8)

≤ P
{

max
1≤i≤m

|Yn((i+ 1)p)|√
(i+ 1)p

≥ 1

2
λ(log n)

1
2

}
≤ c(logm)1+γ/2

λ2+γ(log n)1+γ/2
≤ c

λ2+γ
.

(2.6) is proved.

(2.17) can be showed in the same way. We omit it.

Lemma 2.4. Let r > 2. With the notations of Lemma 2.2, but putting p = n
−r

2(r−1) , we

have

P
{

sup
p≤t≤a

|Yn(t)|
t1/r

≥ λ
}
≤ c

λr
, (2.9)

P
{

sup
p≤t≤a

∣∣∣ 1√
n

n∑
i=1

(I(p < Ui ≤ t)

U
1/r
i

− E
I(p < Ui ≤ t)

U
1/r
i

)∣∣∣ ≥ λ
}
≤ c

λr
. (2.10)
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Proof. The lines of the proof is similar to that of Lemma 2.3 except that the second

inequality of (2.1) is used instead of the first one. The details are omitted.

We appoint that
∫
(b,a)

= −
∫
(a,b)

, I(b < x < a) = I(a < x < b) for any a < b.

Proof of Theorem 1.1. Define Ui by Xi = F−(Ui). Then {Un, n ≥ 1} is a sequence of

U(0, 1) random variables with the same mixing property. The corresponding order statistics

are denoted by Uni, i = 1, · · ·, n. Consequently, Xni = F−(Uni), i = 1, · · ·, n. Let Fn(x)

and Gn(x) be the empirical distribution functions of X1, · · ·, Xn and U1, · · ·, Un respectively.

Noting the well-known fact that F−(t) ≤ x if and only if t ≤ F (x), we have Fn(x) =

Gn(F (x)).

Write
1

n
Tn =

∫
[Un,αn+1,Unβn ]

F−(x)dGn(x)

= F−(Unβn+)Gn(Unβn)− F−(Un,αn+1)Gn(Un,αn+1−)

−
∫
[Un,αn+1,Unβn ]

Gn(x)dF
−(x) =: t1 + t2 + t3 (2.11)

and

mαβ =

∫
(α,β)

F−(x)dx

= F−(Unβn+)Unβn − F−(Un,αn+1)Un,αn+1 −
∫
[Un,αn+1,Unβn ]

xdF−(x)

+

∫
(α,Un,αn+1)

F−(x)dx+

∫
(Unβn ,β)

F−(x)dx

=: m1 +m2 +m3 +m4 +m5. (2.12)

Now we show that as n → ∞

Un,αn+1 → α and Unβn → β a.s. (2.13)

By Lemma 2.1 and the Borel-Cantelli Lemma for any δ > 0 we have

P

(
{|Un,αn+1 − α| > δ}

∩{∣∣αn + 1

n
− α

∣∣ < δ

2

}
, i.o.

)
= 0,

i.e. there is Ω0 ⊂ Ω with P (Ω0) = 1 such that for any ω ∈ Ω0 either |Un,αn+1 − α| ≤ δ or∣∣αn+1
n − α

∣∣ ≥ δ
2 for each n ≥ some n0(ω). But the condition αn/n → α a.s. implies that

there is Ω1 ⊂ Ω with P (Ω1) = 1 such that for any ω ∈ Ω1,
∣∣αn+1

n − α
∣∣ < δ

2 for each n ≥
some n1(ω). Hence for any ω ∈ Ω0

∩
Ω1 and each n ≥ n0(ω) ∨ n1(ω),

|Un,αn+1 − α| ≤ δ.

This proves the first limit of (2.13). Similarly we can show another limit.

By (2.13) and condition (1.3), we have

m4 =

∫
(α,Un,αn+1)

F−(x)dx → 0, m5 =

∫
(Unβn ,β)

F−(x)dx → 0 a.s. as n → ∞. (2.14)

At first we consider the case of α > 0. In this case F−(Un,αn+1) are bounded a.s. for all

large n by (2.13). Hence we have

t2 −m2 = F−(Un,αn+1)
(
Un,αn+1 −

αn

n

)
→ 0 a.s.

on {α > 0} as n → ∞. (2.15)
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Under condition (1.2), the sequence {Un} obeys the strong law of large numbers (a con-

sequence of Corollary 3.4 in [8]), consequently, which leads to the Glivenko-Cantelli theorem

for {Un} :

sup
−∞<x<∞

|Gn(x)− x| → 0 a.s. as n → ∞. (2.16)

Noting that F−(x) is bounded on [Un,αn+1, (Un,αn+1 + Un,βn)/2] for all large n, by (2.16)

we obtain ∫
[Un,αn+1,(Un,αn+1+Un,βn )/2]

(x−Gn(x))dF
−(x) → 0 (2.17)

a.s. on {α > 0} as n → ∞. Similarly we have

t1 −m1 =F−(Un,βn+)(Gn(Un,βn)− Un,βn) → 0,∫
[(Un,αn+1+Un,βn )/2,Un,βn ]

(Gn(x)− x)dF−(x) → 0 a.s. on {β < 1} as n → ∞.
(2.18)

Now consider the case of α = 0 and/or β = 1. We deal with only the limit on A = {α = 0,

β = 1). By (2.13), for any δ > 0 and almost all ω ∈ A, there exists n0(ω) such that

Un,αn+1 ≤ δ for n ≥ n0. Then, using (1.2) and (1.3), we can employ the SLLN (also from

Corollary 3.4 in [8]) and obtain∣∣∣∣∣
∫
(0,Un,αn+1]

F−(x)dGn(x)

∣∣∣∣∣ ≤
∫
(0,δ]

∣∣F−(x)
∣∣ dGn(x)

=
1

n

n∑
i=1

∣∣F−(Ui)I(0 < Ui ≤ δ)
∣∣ → ∫

(0,δ]

∣∣F−(x)
∣∣ dx < ϵ (2.19)

provided δ > 0 is small enough. Note that F−(x) is non-decreasing. Moreover, since the

case that F−(x) is bounded from below can be treated as in the case of α > 0, we assume

F−(x) < 0 for 0 < x ≤ δ. Hence∣∣F−(t)Gn(t)
∣∣ ≤ ∫

(0,t]

∣∣F−(x)
∣∣ dGn(x) < ϵ (2.20)

for 0 < t ≤ δ and n ≥ n0. And, by (2.13)

|t2| =
∣∣F−(Un,αn+1)Gn(Un,αn+1−)

∣∣ ≤ ∣∣F−(Un,αn+1)Gn(Un,αn+1)
∣∣ < ϵ (2.21)

a.s. on A for n ≥ n0. Noting the last inequality in (2.19), we have |F−(t)t| < ϵ for 0 < t ≤ δ

and n ≥ n0, and hence,

|m2| =
∣∣F−(Un,αn+1)Un,αn+1

∣∣ < ϵ a.s. on A for n ≥ n0. (2.22)

Similarly we have

t1 = F−(Un,βn+)Gn(Un,βn) → 0 and m1 = F−(Un,βn+)Un,βn → 0 (2.23)

a.s. on A as n → ∞. (2.14) still holds on A obviously. Now we consider

t3 −m3 =

∫
(0,Un,αn+1)

(Gn(x)− x)dF−(x)

+

∫
(Un,βn ,1)

(Gn(x)− x)dF−(x) +

∫
(0,1)

(x−Gn(x))dF
−(x).

(2.24)
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It is easy to see from the proofs of (2.21)–(2.23) that∫
(0,1)

(x−Gn(x))dF
−(x) =

∫
(0,1)

F−(x)d(x−Gn(x)) =:
1

n

n∑
i=1

(ξi − Eξi),

where ξi = −F−(Ui). By the SLLN (cf. (2.19)), we obtain∫
(0,1)

(x−Gn(x))dF
−(x) → 0 a.s. on A as n → ∞.

Moreover, recalling (2.21), (2.22) and (2.19), (2.20) we have

lim
n→∞

∫
(0,Un,αn+1)

(Gn(x)− x)dF−(x)

= lim
n→∞

∫
(0,Un,αn+1)

F−(x)d(Gn(x)− x) = 0 a.s. on A . (2.25)

Similarly ∫
(Un,βn ,1)

(Gn(x)− x)dF−(x) → 0 a.s. on A as n → ∞. (2.26)

Thus, the theorem is proved by combining these results.

Proof of Theorem 1.2. At first, we note that by the condition
√
n(αn/n−α)

P→ 0 and
√
n(βn/n− β)

P→ 0 as n → ∞ and Lemma 2.1, for any ϵ > 0 there exist K > 0 and n0 such

that

P (
√
n |Un,αn+1 − α| > K) < ϵ, P (

√
n |Un,βn − β| > K) < ϵ for n ≥ n0. (2.27)

On the set {α > 0}, write

m2 +m4 =

∫
(α,Un,αn+1)

(F−(x)− F−(Un,αn+1))dx− F−(Un,αn+1)α

and hence

t2 −m2 −m4 =

∫
(α,Un,αn+1)

(F−(Un,αn+1)− F−(x))dx− F−(Un,αn+1)
(αn

n
− α

)
. (2.28)

For any ϵ > 0 there is 0 < γ < 1/2, such that P (α > 0)− P (γ < α < 1− γ) < ϵ. So we can

consider {γ < α < 1− γ} instead of {α > 0}. From (2.27) we have

P{
∣∣F−(Un,αn+1)

∣∣ > M, γ < α < 1− γ} < ϵ

for some M > 0 and large n. By condition (1.6) we have

P{
∣∣F−(Un,αn+1)− F−(α)

∣∣ > ϵ2, |Un,αn+1 − α| < δ, γ < α < 1− γ} < ϵ

provided δ > 0 is small enough and n large enough. Therefore, from (2.28)

P{
√
n |t2 −m2 −m4| > ϵ, γ < α < 1− γ}

≤ P
{
M

√
n
∣∣∣αn

n
− α

∣∣∣ > ϵ

2
, γ < α < 1− γ

}
+ ϵ

+ P{ϵ2
√
n |Un,αn+1 − α| > ϵ

2
, |Un,αn+1 − α| < δ, γ < α < 1− γ}+ ϵ

+ P{|Un,αn+1 − α| > δ} ≤ 5ϵ (2.29)

for all large n. Similarly

P{
√
n |t1 −m1 −m5| > ϵ, γ < δ < 1− γ} ≤ 5ϵ. (2.30)
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Now write

t3 −m3 =

∫
(α,β)

(x−Gn(x))dF
−(x) +

∫
(α,Un,αn+1)

(Gn(x)− x)dF−(x)

+

∫
(Un,βn ,β)

(Gn(x)− x)dF−(x) (2.31)

and
√
n

∫
(α,Un,αn+1)

(Gn(x)− x)dF−(x)

=
√
n(Gn(Un,αn+1−)− Un,αn+1)(F

−(Un,α+1)− F−(α))

− 1√
n

n∑
i=1

(I(α < Ui < Un,αn+1)− (Un,αn+1 − α))I(α < Ui < Un,αn+1)

· (F−(Ui)− F−(α))

− 1√
n

n∑
i=1

(Un,αn+1 − α)I(α < Ui < Un,αn+1) (F
−(Ui)− F−(α))

+
√
n

∫
(α,Un,αn+1)

(F−(x)− F−(α))dx =:

4∑
i=1

Dni. (2.32)

By Lemma 2.2, putting

A1 =
{

sup
0≤t≤a

∣∣√n(Gn(α+ t)− (α+ t))
∣∣ ≥ λ, γ < α < 1− γ

}
,

we have for 0 < a < γ

P (A1) ≤ c/λ4, n ≥ n0. (2.33)

Moreover, for given λ ≥ 1/ϵ large enough, taking a > 0 to be small enough and putting

A2 =
{

sup
0≤t≤a

∣∣F−(α+ t)− F−(α)
∣∣ ≥ λ−2, γ < α < 1− γ

}
,

we have

P (A2) < ϵ. (2.34)

When α+ t is replaced by α− t in (2.33) and (2.34), we have the same estimators. Thus

P{|Dn1| > ϵ, γ < α < 1− γ} ≤ P{|Un,αn+1 − α| > a}+ P (A1) + P (A2)

≤ 2ϵ+ cϵ4 (2.35)

for all large n. For Dn2,

0 ≤ Dn2 ≤ (F−(Un,αn+1)− F−(α))
∣∣∣ 1√

n

n∑
i=1

(I(α < Ui < Un,αn+1)− (Un,αn+1 − α))
∣∣∣.

Then we have the result similar to Dn1.

As for Dn3 and Dn4, a combination of (2.27) and condition (1.6) yields the required

estimators. Consequently we obtain

P
{∣∣∣√n

∫
(α,Un,αn+1)

(Gn(x)− x)dF−(x)
∣∣∣ > ϵ, γ < α < 1− γ

}
≤ cϵ (2.36)

provided n is large enough. Similarly

P
{∣∣∣√n

∫
(Un,βn ,β)

(Gn(x)− x)dF−(x)
∣∣∣ > ϵ, γ < β < 1− γ

}
≤ cϵ. (2.37)
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Now we turn to the case of α = 0 and/or β = 1. As an instance we consider the case of

α = 0. First, suppose that conditions (1.8)–(1.10) are satisfied. Define

f(x) =
√
x log x−1

∣∣F−(x)
∣∣ . (2.38)

Conditions (1.8) and (1.9) imply that f(x) → 0 as x → 0 (see [6]). Hence, with q = n−1 log n∣∣∣√n

∫ q

0

F−(x)dx
∣∣∣ ≤ √

n

∫ q

0

(x log x−1)−1/2f(x)dx = o(1) as n → ∞. (2.39)

Therefore E(
√
n
∫ q

0
F−(x)dGn(x))

2, equivalently

E
{ 1√

n

n∑
i=1

[F−(Ui)I(0 < Ui < q)− E(F−(Ui)I(0 < Ui < q))]
}2

≤ c

∫ q

0

F−(x)2dx → 0 as n → ∞

by (2.1) and (1.8). This implies∣∣∣√n

∫ q

0

F−(x)dGn(x)
∣∣∣ P→ 0 as n → ∞. (2.40)

Then similarly to (2.20) we obtain
√
n sup

0<x≤q

∣∣F−(x)x
∣∣ → 0 and

√
n sup

0<x≤q

∣∣F−(x)Gn(x)
∣∣ P→ 0 as n → ∞. (2.41)

Then putting g = Kn−1/2, where K is defined by (2.27), we have

P{
√
n |t2 −m2| ≥ ϵ, α = 0} ≤ P

{√
n sup

0<x≤q

∣∣(Gn(x)− x)F−(x)
∣∣ ≥ ϵ

}
+ P

{√
n sup

q<x≤g

∣∣(Gn(x)− x)F−(x)
∣∣ ≥ ϵ

}
+ P{

√
nUn,αn+1 > K,α = 0}

=: w1 + w2 + w3, (2.42)

where w1 ≤ ϵ and w3 ≤ ϵ by (2.41) and (2.27) for large n respectively,

w2 ≤ P
{√

n sup
q<x≤g

∣∣(Gn(x)− x)/
√
x
∣∣ ≥ ϵ inf

q<x≤g
(log x−1)1/2/f(x)

}
≤ ϵ

by (2.6) of Lemma 2.3 provided n is large enough.

Consider m4. By noting condition (1.9) and recalling the proof of (2.39), we have

P
{√

n
∣∣ ∫ (αn+1)/n

0

F−(x)dx
∣∣ ≥ ϵ, α = 0

}
→ 0 as n → ∞.

Therefore, we may treat

√
n

∫ Un,αn+1

(αn+1)/n

F−(x)dxI
(
Un,αn+1 >

αn + 1

n

)
instead of

√
nm4. From (1.9), for ϵ > 0 there exists M > 0 such that P (αn ≥ M log n) < ϵ

for large n. Put

ϵn = ϵ(log n)1/2/(nf(1/n)).

Then

ϵn ≤ ϵ/
(√

n

∣∣∣∣F−
(αn + 1

n

)∣∣∣∣ )
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by (2.38). Hence

P
{√

n

∫ Un,αn+1

(αn+1)/n

F−(x)dx ≥ ϵ, α = 0, Un,αn+1 >
αn + 1

n

}
≤ P

{∣∣∣√n
(
Un,αn+1 −

αn + 1

n

)
F−

(αn + 1

n

)∣∣∣ ≥ ϵ, α = 0, Un,αn+1 >
αn + 1

n

}
≤ P

{
αn + 1 ≥

n∑
i=1

I
(
Ui ≤

αn + 1

n
+ ϵn

)
, α = 0

}
≤ P

{ n∑
i=1

[
I
(
Ui >

αn + 1

n
+ ϵn

)
−
(
1− αn + 1

n
− ϵn

)]
≥ nϵn, α = 0, αn ≤ M logn

}
+ P (αn > M log n, α = 0)

≤ P
{

sup
0≤t≤(2M logn)/n

∣∣Yn(t)
∣∣ ≥ √

nϵn

}
+ ϵ ≤ c(M/ϵ2)1+γ/2(f(1/n))2+γ + ϵ,

where (2.13)’ in Remark 2.1 is used. Therefore we obtain

P{
√
n
∣∣m4

∣∣ ≥ ϵ, α = 0} → 0 as n → ∞. (2.43)

Consider t3 −m3. Remember (2.31). We investigate

√
n

∫
(0,Un,αn+1)

(Gn(x)− x)dF−(x)I(α = 0),

equivalently

√
n

∫
(0,Un,αn+1)

F−(x)d(Gn(x)− x)I(α = 0),

by (2.42) (and the estimators for w1, w2 and w3), and further, it suffices to consider

√
n

∫
(1/n,Un,αn+1)

F−(x)d(Gn(x)− x)I
(
α = 0,

1

n
< Un,αn+1 ≤ K/

√
n
)

by (2.39), (2.40) and (2.27). Noting F−(x) < 0 for x near zero enough, we have∣∣∣√n

∫
(1/n,Un,αn+1)

(−F−(x))d(Gn(x)− x)I
(
α = 0,

1

n
< Un,αn+1 ≤ K/

√
n
)∣∣∣

=
∣∣∣√n

∫
(1/n,Un,αn+1)

(x log x−1)−
1
2 f(x)d(Gn(x)− x)I

(
α = 0,

1

n
< Un,αn+1 ≤ K√

n

)∣∣∣,
which, as n → ∞, is equivalent to

√
nδn√
log n

∣∣∣∣∣
∫
(1/n,Un,αn+1)

x−1/2d(Gn(x)− x)I
(
α = 0,

1

n
< Un,αn+1 ≤ K/

√
n
)∣∣∣∣∣

(2.44)

≤ δn√
log n

sup
1/n<t≤K/

√
n

∣∣∣∣∣ 1√
n

n∑
i=1

(
1√
Ui

I
( 1

n
< Ui ≤ t

)
− E

1√
Ui

I
( 1

n
< Ui ≤ t

))∣∣∣∣∣
for some δn → 0 as n → ∞. Now (2.17) of Lemma 2.3 implies that the right hand side of

(2.44) tends to zero in probability as n → ∞. Hence

√
n

∫
(0,Un,αn+1)

(Gn(x)− x)dF−(x)I(α = 0)
P→ 0 as n → ∞. (2.45)

For
√
n

∫
(Un,βn ,1)

(Gn(x)− x)dF−(x)I(β = 1),
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we have the same convergence.

Suppose that conditions (1.8)’ and (1.9)’ are satisfied. Instead of (2.38), we can write

F−(x) = x−1/rf(x),

where f(x) → 0 as x → 0. (Note t |F−(x)|r ≤
∫ t

0
|F−(x)|r dx → 0). Then the above

conclusions are also true by using Lemma 2.4 instead of Lemma 2.3.

Finally we consider
√
n
∫
(α,β)

(x−Gn(x))dF
−(x) in (2.31). For α < a < b < β, write∫

(a,b)

(x− I(Ui ≤ x))dF−(x)

= F−(a+)[I(Ui ≤ a)− a]− F−(b)[I(Ui < b)− 1)− (b− 1)]

+ F−(Ui)I(a < Ui < b)−
∫
(a,b)

F−(x)dx.

Therefore in the case of α > 0 and β < 1, when a ↓ α and b ↑ β, by recalling (1.4) and

noting condition (1.6), it follows that

√
n

∫
(a,b)

(x−Gn(x))dF
−(x)

P→ 1√
n

n∑
i=1

ξi(α, β). (2.46)

If α = 0,
√
nF−(a+)[Gn(a)− a)]

P→ 0 as a ↓ 0 since for fixed n

P{|F−(a+)(I(Ui ≤ a)− a)| > ϵ} ≤ 2a|F−(a+)|/ϵ → 0 as a ↓ 0

by (2.19). When β = 1, we have the similar conclusion. So, if we understand F−(0+)[Gn(0)−
0] to mean zero, (2.46) holds for any cases. Now, by the central limit theorem for a φ-mixing

sequence (e.g., cf. [7]), we obtain (1.7) of Theorem 1.2.
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