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Abstract

The purpose of this paper is to prove that the quadratic variations of smooth Itô process in
the sense of Malliavin-Nualart can be approximated in Sobolev spaces over the Wiener space
by its discrete quadratic variations.
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§1. Introduction

In [5], Malliavin and Nualart defined the notion of (real) smooth martingales and we then

proved in [6] that the process of quasi sure quadratic variation of a smooth martingale can

be approximated by its processes of discrete quadratic variation quasi surely.

On the other hand, we know the following famous result of Millar in the classical theory

of martingales: If p ≥ 2, then for any continuous Lp-martingale, its process of quadratic

variation can be obtained as the Lp/2-limit of its discrete quadratic variation as the meshes

of divisions tend to zero. So it is natural to ask if the convergence takes place in the

intersection of all Sobolev spaces over Wiener space when we consider smooth martingales

instead of Lp-martingales. It is the very aim of the present paper to give an affirmative

answer to this question. Compared with the case of quasi-sure convergence, the difficulty

here is in that we must show that the approximating series converges in every Sobolev space

whereas it suffices to prove its boundedness in every Sobolev space to establish the quasi

sure convergence. Our main result is stated in Section 2. In Section 3 we shall consider

manifold-valued case and extend our previous results in [6].

Now we explain basic notions and notations we shall use. Our fundamental probability

space will be the classical Wiener space (X,H, µ) of d-dimensional Brownian motion, i.e.,

X is the space of continuous maps from [0, 1] to Rd, null at zero; H is the Cameron-Martin

space and µ the standard Wiener measure. Dp,2r stands for the (p, 2r)-Sobolev space over X

and D∞ their projective limit. In Dp,2r we have two equivalent norms (Meyer’s equivalence):

∥F∥p,2r = ∥(I − L)rF∥p, ∥F∥p,2r = ∥∇2rF∥p + ∥F∥p.
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Here L is the Ornstein-Uhlenbeck operator, ∇ is the gradient operator and we will use δ to

denote the divergence operator (cf., e.g., [3]). The (p, 2r)-capacity is then a set function on

X defined by Cp,2r(O) = inf{∥F∥p,2r;F ≥ 0, F (x) ≥ 1, µ-a.e on O} for any open set O and

Cp,2r(A) = inf{Cp,2r(O);A ⊂ O} for an arbitrary set A ⊂ X.

Throughout the paper C will denote a constant whose value is independent of n but may

be different from one expression to another.

§2. Real Smooth Itô Processes

In order to be able to define smoothness in the manifold-valued case, we need to consider

real smooth Itô processes instead of smooth martingales. First we give the definition.

Let {w(·)} be the canonical realization of the d-dimensional Brownian motion on (X,H, µ)

and we denote by Ft the σ-algebra generated by the paths of w(·) up to time t. Then a real

Itô process is a semimartingale represented in the form

xt =
d∑

j=1

∫ t

0

ajsdw
j
s +

∫ t

0

bsds, 0 ≤ t ≤ 1. (2.1)

Definition 2.1. An Itô process {x(·)} represented as (2.1) is called smooth if

d∑
j=1

∫ 1

0

∥ajs∥
p
p,2rds+

∫ 1

0

∥bs∥pp,2rds < ∞, ∀p > 1, r > 1. (2.2)

It is a classical result that the process of quadratic variation of {x(·)} is given by

[x]t =
d∑

j=1

∫ t

0

(ajs)
2ds, 0 ≤ t ≤ 1. (2.3)

We shall denote ηni = 2−ni and put tni = t ∧ ηni . The main result of this paper is the

following:

Theorem 2.1. Suppose that x(·) is a smooth Itô process represented as (2.1). Put

Sn(t) =
2n−1∑
i=0

(x(tni+1)− x(tni ))
2. Then Sn(·) → [x](·) in D∞.

Proof. We shall in fact prove a stronger result:

sup
t∈[0,1]

∥Sn(t)− [x](t)∥p,2r −→ 0, ∀p > 1, r ≥ 0. (2.4)

Since (2.4) is trivial for r = 0, we only need to look at the case r ≥ 1. First, for r = 1 we

have

L(
2n−1∑
i=0

(x(tni+1)− x(tni ))
2) =

2n−1∑
i=0

2(x(tni+1)− x(tni ))(Lx(t
n
i+1)− Lx(tni ))

+
2n−1∑
i=0

2∥∇(x(tni+1)− x(tni ))∥2H := I1 + I2. (2.5)

Using Stroock’s commutation relation δ(L− I) = Lδ and standard argument in Itô calculus

we easily see that

sup
t∈[0,1]

∥∥∥I1(t)− 2
d∑

j=1

∫ t

0

ajs(La
j
s − ajs)ds

∥∥∥
p
−→ 0. (2.6)
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For I2 we can again use a formula of Stroock, i.e., formula (7.9) in [7] to obtain

I2(t) = 4
d∑

j=1

2n−1∑
i=0

∫ tni+1

tni

⟨∇(x(s)− x(tni )),∇ajs⟩dwj
s

+ 4
d∑

j=1

2n−1∑
i=0

∫ tni+1

tni

⟨∇(x(s)− x(tni )),∇bs⟩ds

+ 2

d∑
j=1

2n−1∑
i=0

∫ tni+1

tni

∥∇ajs∥2ds+ 2

d∑
j=1

2n−1∑
i=0

∫ tni+1

tni

|ajs|2ds =
4∑

k=1

I2k. (2.7)

Applying Burkholder’s inequalities for (both discrete and continuous) martingales we have

∥I21(t)∥pp = CE
∣∣∣ d∑
j=1

2n−1∑
i=0

∫ tni+1

tni

⟨∇(x(s)− x(tni )),∇ajs⟩dwj
s

∣∣∣p
≤ CE

∣∣∣ d∑
j=1

2n−1∑
i=0

(∫ tni+1

tni

< ∇(x(s)− x(tni )),∇ajs⟩dwj
s

)2∣∣∣p/2
≤ C2

n(p−2)
2 E

d∑
j=1

2n−1∑
i=0

∣∣∣ ∫ tni+1

tni

⟨∇(x(s)− x(tni )),∇ajs⟩dwj
s

∣∣∣p
≤ C2

n(p−2)
2 E

d∑
j=1

2n−1∑
i=0

(∫ tni+1

tni

⟨∇(x(s)− x(tni )),∇ajs⟩2ds
)p/2

≤ CE
d∑

j=1

2n−1∑
i=0

∫ tni+1

tni

⟨∇(x(s)− x(tni )),∇ajs⟩pds

≤ C
( d∑
j=1

2n−1∑
i=0

(∫ tni+1

tni

E(∥∇(x(s)− x(tni ))∥p∥∇ajs∥p
)
ds
)

≤ C

d∑
j=1

2n−1∑
i=0

∫ tni+1

tni

(E∥∇(x(s)− x(tni ))∥2p)
1
2 (E∥∇ajs∥2p)

1
2 ds

≤ C
d∑

j=1

2n−1∑
i=0

∫ ηn
i+1

ηn
i

(E∥∇(x(s)− x(ηni ))∥2p)
1
2 (E∥∇ajs∥2p)

1
2 ds. (2.8)

But, since ∇δu = δ∇u+ u, we have

∇(x(s)− x(ηni )) =
d∑

j=1

(∫ s

ηn
i

∇ajudw
j
u +

∫ s∧·

ηn
i

ajudu
)
+

∫ s

ηn
i

∇bsds.

Hence we have

sup
i

sup
s∈[ηn

i ,ηn
i+1]

E∥∇(x(s)− x(tni ))∥2p

≤
d∑

j=1

(
2−n(p−1)

∫ 1

0

(∥∇aju∥)2pdu+ 2−n(2p−1)

∫ 1

0

∥aju∥2pdu
)

+ 2−n(2p−1)

∫ 1

0

∥∇bs∥2pds → 0, n → ∞.
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Consequently

sup
t

∥I21(t)∥p → 0, n → ∞. (2.9)

Similarly

sup
t

∥I22(t)∥p → 0, n → ∞. (2.10)

Finally, since it is trivial that

sup
t

∥∥∥I23(t) + I24(t)− 2
d∑

j=1

∫ t

0

(∥∇ajs∥+ (ajs)
2)ds

∥∥∥ → 0, (2.11)

combining (2.6), (2.9), (2.10), (2.11) we arrive at

sup
τ∈[0,1]

∥∥∥L( 2n−1∑
i=0

∥x(tni+1)− x(tni )∥2
)
−
(∫ t

0

2ajsLa
j
s + 2∥∇ajs∥2

)∥∥∥
p
→ 0

in Lp for any p > 1. Since L[x](t) = 2
∫ t

0
(ajsLa

j
s + ∥ajs∥2)ds, (2.4) is proved for r = 1.

Now we turn to the case r = 2. Making use of the relation L∇ = ∇L −∇ we easily see

that L2f2 = 2(Lf)2 + 2fL2f + 4⟨∇f,∇Lf⟩+ 2L∥∇f∥2. Hence

L2
( 2n−1∑

i=0

(x(tni+1)− x(tni ))
2
)

= 2
2n−1∑
i=0

{
(Lx(tni+1)− Lx(tni ))

2 + 2
2n−1∑
i=0

(x(tni+1)− x(tni ))(L
2(x(tni+1)− x(tni )))

+ 4

2n−1∑
i=0

⟨∇(x(tni+1)− x(tni )),∇L(x(tni+1)− x(tni ))⟩

+ 2L

2n−1∑
i=0

∥∇(x(tni+1)− x(tni ))∥2
}
=

4∑
k=1

I3k. (2.12)

It is now trivial that

sup
t∈[0,1]

∥∥∥I31(t)− 2

d∑
j=1

∫ t

0

(Lajs − ajs)
2ds

∥∥∥
p
→ 0. (2.13)

sup
t∈[0,1]

∥∥∥I32(t)− 2

d∑
j=1

∫ t

0

(ajs(L
2ajs − 2Lajs + ajs)ds

∥∥∥
p
→ 0. (2.14)

By polarization we can use the result for I2 to deduce that

sup
t∈[0,1]

∥∥∥I33(t)− 4
d∑

j=1

∫ t

0

{
⟨∇Lajs,∇ajs⟩H + ajsLa

j
s − ∥∇ajs∥2H − (ajs)

2
}
ds
∥∥∥
p
→ 0. (2.15)

Finally, noting that I34 = LI2 we can use the expression (2.7) and the same argument for

I2 to establish

sup
t∈[0,1]

∥∥∥I34(t)− 2
d∑

j=1

∫ t

0

L(∥∇ajs∥2 + ∥ajs∥2)ds
∥∥∥
p
→ 0. (2.16)

Combining (2.12)–(2.16) and noting that Lf2 = 2fLf + 2∥∇f∥2 gives the desired result.
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Doing the same calculation for higher order derivatives, we can finally achieve the proof

of the theorem.

Remark. More careful calculation can give the speed of the convergence which implies

the quasi sure convergence of the series. Hence the above result can in fact be strengthened

to cover [6]. We do not give the details.

§3. Manifold-Valued Smooth Itô Processes

The result just established above combined with that in [6] can be considered as a complete

study of process of quadratic variation of Euclidean space valued smooth Itô processes. In

this section we will define manifold valued smooth Itô processes and state a generalization

of the result in [6].

Suppose that M is a compact manifold. We give

Definition 3.1. Let {xt, t ∈ [0, 1]} be an M-valued process. If for every f ∈ C∞(M)

{f(x·)} is a real smooth Itô process, then one says that {x·} is a smooth Itô process.

By imbedding M into a Euclidean space, we see easily that any smooth Itô process admits

an ∞-modification (cf. [5]). Moreover, we have

Proposition 3.1. {x(·)} is a smooth Itô process if and only if there exist an integer l,

an Rl-valued smooth Itô process {ut = (u1
t , · · · , ul

t)} and vector fields Xj (1 ≤ j ≤ l) such

that {x(·)} solves SDE

dxt =
l∑

j=1

Xj(xt) ◦ duj
t , (3.1)

where ◦ designs the Stratonovich integral.

Proof. “if” part: Suppose (3.1) is fulfilled. Let f ∈ M . When M is Euclidean, the result

is obvious by a simple application of Picard’s iteration plus the invariance of D∞ under

composition by smooth functions null outside of compacts. We then proceed to general

manifold. By definition of SDE on manifold, for any f ∈ C∞, writing yt = f(xt), we have

dyt =
l∑

j=1

(Xf)(xt) ◦ duj
t . (3.2)

Without any loss of generality we can assume that f is bijective, since otherwise we can first

imbed M into a Euclidean space and then use the invariance of D∞. But this time we can

rewrite (3.1) as

dyt =
l∑

j=1

Yj(yt) ◦ duj
t , (3.3)

where Yj = df(Xj); we can therefore use the just established result for Euclidean spaces.

“only if” part: This part has been essentially proved by [2]. But we feel that his proof

needs slight modification. In fact, one can take, for example, l = 2m + 1, F the Whitney

imbedding of M into Rl, ut = F (xt) and

Xj(m) = dF−1
m (π′

F (m)(ej)),

where {ej , j = 1, · · · , l} is the standard ONB of Rl, π′
F (m) the orthogonal projection of

Rl
F (m)(= Rl) to F (M)F (m).
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Now suppose {xt} and {yt} are two smooth Itô processes solving respectively

dxt =

l∑
j=1

Xj(xt) ◦ duj
t , dyt =

l′∑
k=1

Yj(yt) ◦ duk
t .

The following definition is taken from [2]

Definition 3.2. The mutual quadratic variation is the (T ∗M ×T ∗M)∗-valued process V

such that for θ ∈ T ∗M × T ∗M

Vx·,y·(θ) =

l∑
j=1

l′∑
k=1

∫ t

0

θ(Xj , Yk)(xs, ys)d[u
j , vk]s,

where TM , T ∗M are tangent bundle and cotangent bundle respectively.

It is then easily seen that V (θ) has an ∞-modification. Suppose that em ∈ C∞(M,Mm)

satisfying the following conditions:

(1) ex(x) = 0, (2) ∀f ∈ C∞, f(m′)− f(m)− em(m′)f = o(|m′ −m|),
where | · | is a (so any) local Euclidean metric.

Then writing △ix· = ex(sni )(x(t
n
i+1))− ex(sni )(x(t

n
i )), we have

Theorem 3.1. lim
n→∞

n∑
i=0

θ(△ix·,△iy·) → Vx·,y·(θ), q.s.

Proof. Whitney’s imbedding plus results on Rd-valued smooth Itô process[6].

As an example of applications of Proposition 3.1 and Theorem 3.1 we consider the quasi

sure Riemannian quadratic variation of Riemannian Brownian motion.

Suppose that M is a compact Riemannian manifold with Levi-Civita connection and

x(t) is the Brownian motion on M . By [1] x is a martingale with Riemannian quadratic

variation
∫
θ(dx, dx) =

∫
Tr θ(x)dt. On the other hand, according to [4] x is part of the

solution of a (horizontal) stochastic differential equation, and hence is a smooth Itô process

by Proposition 3.1. Combining these two facts and applying Theorem 3.1 gives

Corollary 3.1.

lim
n→∞

n∑
i=0

θ(△ix·,△ix·) →
∫

Tr θ(x), q.s.

Moreover, as already mentioned in [1], we can take ex in the definition of △ix· in such a

way that g(ex, ey) = d2(x, y) where g is the Riemannian metric.
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