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Abstract

First, some properties of H-separable rings are discussed, and it is shown that the H-
separable ring A can be represented as the tensor product of its subrings under certain con-
ditions. Secondly, a necessary and sufficient condition is obtained for a Hopf Galois extension
A/B to be H-separable. Finally, some equivalent conditions are got for an H-separable ring A
to be a Hopf-Galois extension over a certain subring B.
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¢1. Introduction

Let A be aring and B a subring of A. A is called an extensiuon of B denoted by A/B if B
and A admit the same identity. For an extension A/B, we always denote by C'(A) the center
of A, and by V4(B) the centralizer of B in A, ie., C(A) = {a € Alad' = d'a, Va' € A},
Va(B) = {a € Alab = ba, Vb € B}. It is clear that both C'(A) and V4 (B) are subrings of A.

Kreimer and Takeuchil'l introduced the notion of Hopy-Galois extension of a noncommu-
tative ring A over its subring B, which generalized the former notions of both the Galois
exiension with Galois group G acting on a ring and the commutative Hopf-Galois exten-
sion defined by Chase and Sweedler!?. Since the concept of H-separable extension was
introduced by K. Hirata, many studies on the property and structure of H-separable rings
in Galois extensions of skew polynormal rings®~7 have revealed closed structure relations
between H-separable extensions and Hopf-Galois extensions.

In Section 2 of this paper, we discuss some properties of H-separable extensions and show
that if A/B is H-separable, the centers of A and B are equal, and B is a direct summand
of A as (B, B)-bimodule, then V4 (B) is C-Azumaya, and A = B ®c Va(B). Since a central
separable extension is H-separable, this result extends the commutor theorem(®%4!, which
says that if A/C is a central separable extension, then for any central separable subalgebra
B, A~ B®V4(B).

It is known that a Galois extension A/B with finite Galois group G is always separable,
but this property does not exist in Hopf-Galois extensions. In the last part of Section
2 we discuss the relations between Hopf-Galois extensions and H-separable extensions, a
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necessary and sufficient condition is given for A/B to be H-separable when it is a Hopf-
Galois extension.

In Section 3, we apply the results in Section 2 to obtain some equivalent conditions for
an H-separable extension A/B to be Hopf-Galois.

§2. Properties of H-Separable Extensions

Let A, A’ be any rings with identities 4Ma/,4 Nas be (A, A')-bimodules. If there are a

bimodule 4L 4/ and an integral n > 0 with M @ L = @ N;, where N; = N, i =1,--- |n,
i=1
then we denote it by 4 Mas|4Nas. In particular, for n = 1, it is denoted by aMar < BaNa:.

n
So aMua/|aN4 means 4 My < A( é Ni)A N, =N, i=1,---,n, for some integral n > 0.
i=1 !

A ring extension A/B is said to be H-separable, if 4A @ g Aa|aAa. Here the (4, A)-

moduleactlononA®BAlsa(ZaZ®a)a —Zaal®aa If we set (A®p A)4 = {z €

A®pAlar = za, Ya € A}, then 1t can be proved that A/B is H-separable iff there exist some
v, €V(i=1---,n)and me®ym (A®pA)“ such that sz%@?%g = 1®1{Z T QYi; €

(Ap A)A, v; € Va(B )} is called an H-separable system of A/B. Separable extenswn has
been studied in [8]. It is known that a ring extension A/B is separable iff there is an element
Sr; @y € (Aep A)A with Y a;y; = 1, while {z;,y;}7, is called a separable system. It
isZ, proved in [9] that if A/B islH -separable then it is also separable and V4(B) is a finite
generated projective C'(A)-module. Denote by p the projection V4(B) — C(A). Then we
have

Lemma 2.1. If A/B is H-separable with H-separable system {x;; @y;; € (A®pA)4, v; €
Va(B)}, the {p(vi)xij, yij }ij is separable system of A over B.

Proof. By hypothesis, p(v;) € C(A), and

> @iy € C(A)
j

Zp(vi)xij R Yij € (A®p A)A.

ij

me ®yz] A®B A)

Then
ZP(Ui)xijyij = ZP(%)(Z%;‘%;‘) = ZP(Zvixijyij) = P(Z’Uﬂijyij) =p(1) =1,

which completes the proof.

For a separable extension A/B, if B C C(A), A is called a separable algebra. When
B = C(A), A becomes a central separable algebra, or a B-Azumaya algebra. It is proved
in [8, Theorem II. 3.4 and Lemma II. 3.1] that if A is C-Azumaya, then (i) C is a direct
summand of A as C-submodule, (ii) A is a C-progenerator, (iii) A ®c A°® = Homc (A4, A).
By them we have the following lemma.

Lemma 2.2. If C = C(A) for a ring A and D is C-Azumaya, then D' = A®¢c D is
H-separable over A and AD' s|laAA.

Proof. Recall that if D is C-Azumaya, then D is a C-progenerator!®: Theorem 3.4] = g
(;l)(j|ccfc7 and then AD/A|AA Rc DA|A ®c Ca. But A ®c C = A, we have ADIA|AAA.
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Still, as a C-Azumaya algebra D has the property D@ D°P = Home (D, D). The isomorphism
isd®d — (¢ :  — dad'), which is also a (D, D)-map. The (D, D)-bimodule action on
D ®¢ D and Home (D, D) are respectively: Va,y,d € D,VY d; @ d} € D ®c D, z(Y d; ®

7 2
d))y = > wd; @ diy, (xfy)(d) = xf(d)y. So the D-bimodule structure of Home (D, D) is

induced by the latter D-bimodule D (the domain). We write the former isomorphism as:
DD Re DD = Homc(D,D DD). So

pD ®c Dp = Home(D,p Dp)|Home(C,p Dp) =p Dp,
that is, D/C is H-separable. As C'is a direct summand of D, A is a subring of A®¢ D and
(A®c D) @4 (A®c D) =2 (A®4 A) @c (D®c D)|(A®4 A)®c D = A®c D.

Checking the morphism we get p D’ ® 4 D', |pr D', that is, D'/A is also H-separable.
Proposition 2.1. Set A/B to be a ring extension, D is one of its intermediate rings.
Then the folloing are equivalent:
(1) The (D, A)-epimorphism m : D @ A — A is splitting (i.e., there exists a (D, A)-
module morphism f: A— D®p A with wf = 14), where 7(d ® a) = da, Yd € D, a € A.
(2) There exists an element > d; @ x; € (D ®@p A)P with Y d;z; = 1.

(3) A is a direct summand of pD ®p Aa as (D, A)-module.
(4) pAalpD ®p Aj.
Proof. (1) = (2). Set f(1) =>_b; ® x;, Vb € D. Then

Here

Zbi@xi e (Dog A)P.

By 7f =14, we get > bjx; = 1.

(2) = (1). Define f(a) =", b; ® x;a, Va € A. It is easy to see that f is a (D, A)-module
map and 7f(a) = (Y biz;)a =a, Ya € A, that is, 7f = 4.

(3) = (4). Recalling the notion of pAa|pD ®p A, we can see that (3) is a spesial case
of (4).

(4) = (2). By the assumption, there exists a natural number n with A a direct summand
of (D ®p A) as (D, A)-bimodule. So we have (D, A)-bimodule maps f;, g; :
1
i,
DAA +— D®p AB
9i D
with
> gifi = Ia.
i=1

Onviously, fi(1) € (D®p A)P, g;(1®1) € Va(B). Denote f;(1) = b;; ® x;;. Then
J

Zbij ® gi(1® 1)z € (D@ A)P.

0]
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Here
Z bij ® gi(l X 1)56@‘ = Zgi(bij ® l‘ij) = Zngl(l) =1.
i i i
So we get D> by @z = b @ gi(1 ® 1)z, as desired.
k 0

(1) & (3). It is easy to see, so we omit the proof.

Note. When D satisfies one of the above conditions in Proposition 2.1, it is called a left
relative separable extension of B in A. From the condition (2) we know that a separable
extension D/B is also a left relative separable extension.

Lemma 2.3. If a ring extension A/B is H-separable and its intermediate subring D is
left relative separable over B, then A/D is also H-separable.

Proof. By the hypothesis D is left relative separable over B, so pAa|pD ®p Aa by
Proposition 2.1(4). Thus

AA®p AplaA®p D ®p Ax =4 A®p Aa,

that is, A/D is H-separable.

Lemma 2.4. If A/B is H-separable, A’ /B is another extension with a ring epimorphism
f:A—= A and f fixes B pointwise, then A'/B is also H-separable.

Proof. Denote by {3 7;; ® y;; € (A®p A)?, v; € Va(B)} the H-separable system of A

J
over B. Then f(v;) € Va/(B). Also Va' € A’, there exists a € A with f(a) = a’. Then we
have

Za’f(»%‘) ® flyij) = f® f(za%‘ ®yij)
= Z f(xij) ® fyija) = Zf(xij) ® flyij)a,

D Fw)f(wi) @ fyi) = f @ f( > vy ® yij)
J j
—feflol)=1aL
So {Z Flxi) @ f(yi) € (A @p AV, flu) € Var(B)}, is the desired H-separable system.
Leinma 2.5. Suppose A/B is H-separable, C(A) = C. For brevity denote Va(B) by V.
B,,B,0,0; are respectively the sets.
B, ={B' D B|pB'p < ®pAp, pB @p As B Ay splits, i.e.,
there is a (B', A)-module map f with pf = Ia, here u(b/ @ a) =b'a};
B ={A D B’ D B|B'/B is separable, g B'p < ®pAp'};
B, ={V' >Clv V' < vV, vV @c VW Sy Vi splits, i.e., there is a (V'V)-module
map g with mg = Iy, m(v' ®v) =v'v};
U ={V>OV' DC|V'/C is separable}.
Then B’ — V4(B') and V +— V4(V') are mutually conversible 1-1 correspondence between
B, (resp.B) and U (resp. V).
For a ring extension A/B, B - V4(B) is its intermdiate subring. In fact, it is obvious
that A D B-Va(B) D B, and Vby,bs € B,v1,va € Va(B), (biv1)(bava) = (b1ba) - (viv2) €
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B - V4(B). That is, the product is closed in B - V4(B) as desired.

Theorem 2.1. Let A/B be a ring extension, C(A) = C(B). Then A/B is H-separable, B
is a direct summand of A as (B, B)-bimodule iff Va(B) is C-Azumaya, and A = BcVa(B).

Proof. (=) A/B is H-separable pBp < ®pAp, so Va(Va(B)) = B (see [9]). Therefore

Vvae)(Va(B)) = Va(B) NVa(Va(B)) = Va(B) N B = Vp(B) = C,
that is,
C(Va(B)) =C.

By the correspondence between B — 0,8 > B +— V4(B), Va(B)/C is separable, so V4(B) is
C-Azumaya. As a notational convenience we set V' = V4(B) afterwords. From [8, Theorem
I1.3.4 and Lemma I1.3], we see that C is a direct summand of V' as C-module, V ®¢ VP =
Homg(V, V), the map is p(v®v')(x) = vav’, and also V is a finitely generated C-projection.

Define the (V ®¢ V°P)-module action on A as: (v®v')a = vav’, Vv,v’' € V, a € A. Now we
prove

HOmV®CVop(V, A) =~ B.
First, Vf € Homyg,ver (V, A), f is determined by f(1), but vf(1) = f(v) = f(1)v, Yv €
V. So f(1) € Va(V) = B. Conversely, Vb € B, define a map f, : fo(v) = bv, Yo € V.

Obviously, fp € Homy g, ver(V, A). So we get that ¢ : f +— f(1) is an isomorphism from B
to Homy g, ver (V, A). Next simce V is a C-generator,

Ic(V) = {Zfz(vz”fz € Home(V,C), v; € V} =C.

So by [10, Proposition A.6] we have
p: HomHornc(V,V)(Vv A) Q¢ V- A7
f@v= f(v),

is an isomorphism. But ¢ : Home(V, V) 2 V ®¢ VP is an algebra isomorphism, we get the
following isomorphism:

P Homyg.ver(V,A) @c V — A.

Hence p” : BRcV =2 A, by b® v — bv, which is induced by p’. Checking it directly we can
see that the map is an algebra morphism.

(<) By Lemma 2.2, A > B ®c V4(B)/B is H-separable, and V4(B)/C is C-Azumaya.
So C' is a direct summand of V4(B) as a C-module. Thus B is a direct summand of A
as a left B-module. But B commutates with V4(B), so B is a direct summand of A as a
B-bimodule.

Before presenting the following Theorem 2.2 we need some preparation. We assume the
reader to be familiar with the basic notions of Hopf algebra theory. Let R be a commutative
ring with identity, J be a finite Hopy algebra over R (that is, J is a finitely generated pro-
jective R-module) with structure maps p, m, A, e. Throughout we adopt Sweedler’s “sigma
notation”. Denote by J* the dual algebra of J. As J is finitely generated projective, the
Hopf algebra structure of J induces that of J*.

Let A be an R-algebra. A is called a right J-comodule algebra if there is an R-algebra
map pa: A — A® J satisfying (1) (Ja @ Ay)pa = (pa @ 1I5)pa, (il) (1@e)pa =I4. If Ais
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an R-algebra, J a Hopf algerbra, then Hompg(J, A) becomes an algebra with the convolution
product
d1 % d2(j) = Y d1(ia))d2(ic), Vi€ J, ¢1,62 € Homp(J, A).
(@)

If A is also a right J-comodule algebra with the structure map ps : A - A® J as before,
¥ € Homp(J, A) is called an integral if 1 is a right J-comodule map, that is, pat =
(¥ ® 1)A, Morefore, if (1) = 14, v is called a total integral. If there is a total integral
1 € Homp(J, A), which is invertible according to the convolution product given above, A is
called left.

Let J be a finite Hopf R-algebra, A an R-algebra with B its subalgebra. Then A/B is
called a J-Galois extension if the following conditions are satisfied:

(1) A is a right J-comodule algebra with its structure map:

a: A= ARJ.

(2) B= A = {a € Ala(a) =a® 1}.
(3) The left A-module map g induced by « is an isomorphism:

B: ARpA— A®J, Bla Zaa(o)@)a(), Va,a’ € A.

Remark. The condition (3) can be replaced by.
(3’) The a-induced right A-module map 8': A®p A — A® J is an isomorphism, where
fla®a) =3 apad @an), Va,a €A

(a)
From [11] we know that when A/B is a J-Galois extension, then besides the right J-

comodule algebra structure inheriting from A’s, V4(B) can also be given a left J*-comodule
algebra structure. In the following we will show the structure. First we say that a left
J*-comodule algebra structure is equivalent to a right J-module algebra structure, then we
give the left J*-comodule structure by showing the right J-module action.

If the Hopf algebra J is a finitely generated projective R-module with its dual basis
{fx € Hompg(J,R), ji € J}, then an R-module M is a J-comodule algebra iff it is a left
J*-module algebra. Set pps : M — M ® J to be the comodule algebra map, denote

par(m Zm(o ® myy, VYm € M.
(m)
Then its left J*-module algebra action is defined by
-m = Zm(o (mey),Ym e M, j* € J*, me M.

Conversely, for a left J*-module algebra M, the map pyM — M ® J, ppr(m) = Z(k) I
mQ jr, Ym € M, defines a right J-comodule algebra structure of M.

If A/B is J-Galois, then the left J*-comodue algebra structure of V4 (B) is induced by the
following J-module action: v-j = Zb vbl, where 371 (1®j) = Zb @b}, Vj € J, ve Va(B).

From now on we denote the rlght J-module action on V4 (B ) by v/, Yv € Va(B), j € J.

Lemma 2.6.11 Theorem 34WI The proceeding right J-module action is characterized by

v-a=Y agu'®, Ya€A, veVa(B),
(a)
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= Za(o) ®a(1). (2.1)
(a)

Theorem 2.2. Let A/B be a J-Galois extension. Then A/B is H-separable iff there
exist integrals ¢; € Homp(J*,Va(B)) and v; € V4(B) with Z(bm = lHomp(J*,Va(B)), &=

1,---,n. (Recall that Homg(J*,Va(B)) is an algebra).
Proof. Necessity. Let A’s H-separable system be { Y20y € (AR A)A, v; € V}?=1
J

Set ¢; = /(X wij ® yij). Recall that
J

B AepA—A®J, fla®d) = Za(oa’ ® aq),
(a)
(3’ is an isomorphism. Then

pila®1) = 5/(Z$zj ® Z/iﬂl) = 5/(2 ari; @ yz’j>
- a(a)ﬂ’(Zmij @) = ala)pr, Va€ A (2.2)

Z (Z(O)Z;lj(l) ® Q5 = Z a(o)zij ® a(l)aij. (23)
J:(a) J:(a)
J is a finitely generated projective R-module, so we have
Va(B) ® J =2 Homp(J*, Va(B)); (2.4)
the isomorphism is
(v@h)(h*)=wv-h*(h), YweV, held h*eJ"
Now we prove that (2.3) is equivalent to that ¢; € V4(B) ® J = Hompg(J*,Va(B)) are

integrals.
Vh e J, 3711 ®@h) =3 b}, ®bg. Then from (2.2) and (2.1) we have
%

ZZZ ®a;j = Zzbzzijbk ®a;j; = Zb’ Z bk(m l] Y ® a;j
j ik

3, (br)

- Zb/ Z Oro) Zij ® by aij = ( Z by © bk(n) (ZZ’J ® a"j)
J

J,(bk) k,(br)
= B(Zbk ®bk)(22ij ®a1‘j) = (1®h)22ij ® a;j = Zzij ®haij~
k J J J
So Vh* € J*, h € J, we have
bi(h* - Zz” (h-aij) Zz”h* aij) = (6s(h*)) - h, (2.5)

that is, ¢; are integrals.
Conversely, when ¢, are integrals, ¢; = > 2z;; @ a;;. Then by (2.5) we have ¢;(h* - h) =
J

(¢s(h*)) - h, VheJ, h* € J*, so

h _ g g
E Zi; ® a;j = g 2ij @ h - a;j.
J J
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For an element a € A, a(a) = Za(o) ® ay,

Z Z%) ® aij = ) 2ij ® an)ai;.
J
So we get

Z a(o)z?j(l) X Qjj = Z a(0)Zij & A1)z,
(a).j (a),j
that is (2.3), the desired equivalence is obtained.
Similarly, by Va(B) ® J = Hompg(J*, Va(B)), 1® 1 ¢ lgom,(s=,va(B)), We have

Z¢ivi = ltomp(s*,vaB) = B'(1®1) =1®1 € V4(B) ® J = Homg(J*, Va(B)).

(Note that Z Qiv; = Z B’( Z Tij ® yijvi).)

Suﬂicienc;. Regardzing qﬁijas elements in V4(B) ® J, we denote B’fl(qﬁi) = me ® Yij-
¢; are inegrals, so (2.2) and then (2.1) is satisfied. Reversing the sufficiency’s pioof we get
inj ®yi; € (A®p A)4. Since V4(B) ® J =2 Hom(J*,V4(B)) and 1 ® 1 <+ Lom(J*,Va(B))s
vsjfe have

Zdh‘vi = lHom(J*,Va(B)) & Z¢ivi =1l®leVy(B)®J

&Y Ty @0 =101 = 3(2% ® yij'Ui)
3

i (@is)
< Zvﬂij @ Yij = inj ®yv; = 1® 1.
2 1,7
This shows that { Y- 2;; ®y;; € (A®p A)4, v; € Va(B)}, is an H-separable system of A/B,
J
the sufficiency is proved.
Corollary 2.1. Let J be a finite Hopf algebra, A/B a J-Galois extension. If A/B is
also H-separable, then there is a total integral ¢ € Hom(J*, V4 (B)).
Proof. From Lemma 2.2 we know that if A/B is H-separable with its H-separable
system { >z ® y;; € (Awp A4, v; € VA(B)}Z., p is the projection V4(B) — C, then
J
{p(vi)@ij, yij }i,; is a separable system. Here C' is C'(A), the center of A. Then Theorem 2.2
shows that there exist integrals ¢; € Hom(J*,V4(B)), so

> p(vi)¢i € Hom(J*, Va(B)), Vj* € J*.

Zp Vi ¢z ZP Vi sz] azj Z P Vi xi](O)ysz (ng(l))

1,3,(2i5)

When j* = 1, = € (the counit of J), we have
ZP(W)%;‘(O)%%(%]’(U) = Zp(vi)xijyij =1¢€Va(B).

Also ¢; are integrals, and so is Y p(v; )¢;; that is, therte exists a total integral ¢ = > p(v;);
in Hom(J*, V4(B)).
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§3. H-Separable Ring’s Hopf-Galois Extension

In this section, we discuss the Hopf-Galois extension of H-separable rings. First we need
the following lemma.

Lemma 3.1.012Lemma 28] 101 A/B be a J-Galois extension. Then Vi(B) is a J-Galois
extension over Vg(B) iff Va(B) is finiely generated Vg (B)-projective, and A is isomorphic
to B®c Va(B) as a Vg(B)-algebra.

Applying Theorem 2.1 we obtain the main theorem in the section.

Theorem 3.1. Let A/B be H-separable, C(A) = C(B), pBp < ®pAp, and B be C-flat.
Then the following are equivalent:

(1) A/B is J-Galois.

(2) Va(B)/C is J-Galois with a total integral ¢ € Hom(J*, V4(B)).

(3) Va(B)/C is J-Galois and C-Azumaya.

Proof. (2) & (3) By [11, Theorem 3.14], V4(B)/C is J-Galois. Then V4(B)/C is
separable iff there exists a total integral ¢ € Hom(J*, V4(B)). But by sBg < ®pAg, we
know that the center of V4(B) is C. Then the equivalence is easy to see.

(1) = (2) Since the condition in Theorem 2.1 is satisfied, we have A =2 BRcVa(B), Va(B)
is C-Azumaya and of ocurse finitely generated projective as C-module. So by Lemma 3.1,
Va(B)/C is J-Galois and there is a total integral ¢ € Hom(J*, V4 (B)) (see Corollary 2.1).

(2) = (1) By Theorem 2.1 we have A = B ®¢ Va(B). It is easy to see the J-comodule
algebra structure map of Va(B)p,,, ) : Va(B) — Va(B) ® J induces that of A:

pa=1® Py o) B ®¢c Va(B) = B®c Va(B) ® J,
i.e., p satisfies

() Ta®Aj)pa = (pa@Li)pa,

(i) 1®e)pa = 1a.

Now we prove the structure defined this way makes A a J-Galois extension of B. First recall

that V4(B)/C is J-Galois means the following conditions are satisfied:

Py () "ty (m)
0— C — Vu(B) BAGEGEN VaB)® J (3.1)

is exact, where iy, (p)(v) =v®1, Vv € Va(B).
ﬁvA(B) : Va(B) ®@c Va(B) = Va(B)® J (3.2)
is an isomorphism, where
Bram @) =3 vify @ vfy, Yo,0' €V,
(v)
Py (V') = ZUEO) © V)
(v)
By the hypothesis, B is C-flat. So we get an exact sequence
(")

IB®PVA(B)*IB®Z'VA(B)
0 — B®¢c — B ®c Va(B) B®c Va(B)®J — 0,

that is,
0B A Ag T
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is exaxt, where is(a) =a®1, Va € A.
So B= A%’ ={a € Alpa(a) = a® 1}, and by (3.2) we have
(ii’) the following diagram is commutative:

Ba
A®p A ——— B®c Va(B)®p BRc Va(B) ——  B®cVa(B)®J
th l1®ﬁVA(B)
B ®c¢ VA(B) (<] VA(B) —— B ®c VA(B) R VA(B)
where

Bala®a') = Zaa'(o) ®a(yy, Va,a' € A= B®c Va(B),
(a’)
t{(b®c v) @p (V' @c v')] = bb ®@c v @c v,
which is an isomorphism.

By the assumption B4(p) is an isomorphism, and so is 1 ® By, (p). Hence, B4 is also
an isomorphism. With (i’) and (ii’) we have shown that A = B ®¢ V4(B) is a J-Galois
extension over B. This completes the proof.

Let R be a commutative ring, A an R-algebra. Suppose A is a right J-comodule algebra
with its structure map pa and B = A’ = {a € A|pa(a) = a®1}. We say A has the normal
basis property, if there exists a left B-module, right J-comodule isomorphism from B ® J
to A. It is easy to see from Theorem 3.1 that

Corollary 3.1. If the equivalent condition in Theorem 3.1 is satisfied, then A has the
normal basis property if and only if V4(B) has the property too.

Proof. (<) V4(B) 2 C® J,s0 A~ B®J as left B-module, right J-comodule.

(=) A2 B®J,so Va(B) 2 (B® J)? = C ® J, which is C-module isomorphic, and
B = A%7.So (A)P = (B® J)B is still a J-comodule isomorphism, that is, V4(B) 2 C ® J
as C-module, right J-comodule.
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