H-SEPARABLE RINGS AND THEIR HOPF-GALOIS EXTENSIONS

JIANG XIAOLONG* XU YONGHUA**

Abstract

First, some properties of *H*-separable rings are discussed, and it is shown that the *H*-separable ring *A* can be represented as the tensor product of its subrings under certain conditions. Secondly, a necessary and sufficient condition is obtained for a Hopf Galois extension A/B to be *H*-separable. Finally, some equivalent conditions are got for an *H*-separable ring *A* to be a Hopf-Galois extension over a certain subring *B*.

Keywords *H*-separable ring, Hopf-Galois extension, Subring1991 MR Subject Classification 16W30Chinese Library Classification 0153.3

§1. Introduction

Let A be a ring and B a subring of A. A is called an extension of B denoted by A/B if B and A admit the same identity. For an extension A/B, we always denote by C(A) the center of A, and by $V_A(B)$ the centralizer of B in A, i.e., $C(A) = \{a \in A | aa' = a'a, \forall a' \in A\},$ $V_A(B) = \{a \in A | ab = ba, \forall b \in B\}$. It is clear that both C(A) and $V_A(B)$ are subrings of A.

Kreimer and Takeuchi^[1] introduced the notion of Hopy-Galois extension of a noncommutative ring A over its subring B, which generalized the former notions of both the Galois exiension with Galois group G acting on a ring and the commutative Hopf-Galois extension defined by Chase and Sweedler^[2]. Since the concept of H-separable extension was introduced by K. Hirata, many studies on the property and structure of H-separable rings in Galois extensions of skew polynormal rings^[3-7] have revealed closed structure relations between H-separable extensions and Hopf-Galois extensions.

In Section 2 of this paper, we discuss some properties of *H*-separable extensions and show that if A/B is *H*-separable, the centers of *A* and *B* are equal, and *B* is a direct summand of *A* as (B, B)-bimodule, then $V_A(B)$ is *C*-Azumaya, and $A \cong B \otimes_C V_A(B)$. Since a central separable extension is *H*-separable, this result extends the commutor theorem^[8,§4], which says that if A/C is a central separable extension, then for any central separable subalgebra $B, A \cong B \otimes V_A(B)$.

It is known that a Galois extension A/B with finite Galois group G is always separable, but this property does not exist in Hopf-Galois extensions. In the last part of Section 2 we discuss the relations between Hopf-Galois extensions and H-separable extensions, a

Manuscript received November 6, 1995.

^{*}Department of Mathematics, Zhongshan University, Guangzhou 510275, China.

^{**}Institute of Mathematics, Fudan University, Shanghai 200433, China.

necessary and sufficient condition is given for A/B to be H-separable when it is a Hopf-Galois extension.

In Section 3, we apply the results in Section 2 to obtain some equivalent conditions for an *H*-separable extension A/B to be Hopf-Galois.

\S 2. Properties of *H*-Separable Extensions

Let A, A' be any rings with identities ${}_{A}M_{A',A}N_{A'}$ be (A, A')-bimodules. If there are a bimodule ${}_{A}L_{A'}$ and an integral n > 0 with $M \oplus L = \bigoplus_{i=1}^{n} N_i$, where $N_i = N$, $i = 1, \dots, n$, then we denote it by ${}_{A}M_{A'}|_{A}N_{A'}$. In particular, for n = 1, it is denoted by ${}_{A}M_{A'} < \bigoplus_{A}N_{A'}$. So $_AM_{A'}|_AN_{A'}$ means $_AM_{A'} < _A \left(\bigoplus_{i=1}^n N_i \right)_{A'} N_i = N, \ i = 1, \cdots, n$, for some integral n > 0.

A ring extension A/B is said to be *H*-separable, if ${}_{A}A \otimes_{B} A_{A}|_{A}A_{A}$. Here the (A, A)module action on $A \otimes_{B} A$ is $a(\sum_{i} a_{i} \otimes a'_{i})a' = \sum_{i} aa_{i} \otimes a'_{i}a'$. If we set $(A \otimes_{B} A)^{A} = \{x \in A\}$ $A \otimes_B A | ax = xa, \forall a \in A$, then it can be proved that A/B is *H*-separable iff there exist some $v_i \in V(i = 1, \cdots, n)$ and $\sum_j x_{ij} \otimes y_{ij} \in (A \otimes_B A)^A$ such that $\sum_{i,j} v_i x_{ij} \otimes y_{ij} = 1 \otimes 1\{\sum_{i,j} x_{ij} \otimes y_{ij} \in A \otimes_B A\}$ $(A \otimes_B A)^A$, $v_i \in V_A(B)$ is called an *H*-separable system of A/B. Separable extension has been studied in [8]. It is known that a ring extension A/B is separable iff there is an element $\sum x_i \otimes y_i \in (A \otimes_B A)^A$ with $\sum x_i y_i = 1$, while $\{x_i, y_i\}_{i=1}^n$ is called a separable system. It is proved in [9] that if A/B is H-separable then it is also separable and $V_A(B)$ is a finite generated projective C(A)-module. Denote by p the projection $V_A(B) \to C(A)$. Then we have

Lemma 2.1. If A/B is H-separable with H-separable system $\{x_{ij} \otimes y_{ij} \in (A \otimes_B A)^A, v_i \in A\}$ $V_A(B)$, the $\{p(v_i)x_{ij}, y_{ij}\}_{ij}$ is separable system of A over B.

Proof. By hypothesis, $p(v_i) \in C(A)$, and

$$\sum_{j} x_{ij} \bigotimes y_{ij} \in (A \otimes_B A)^A \Rightarrow \begin{cases} \sum_{j} x_{ij} y_{ij} \in C(A), \\ \sum_{ij} p(v_i) x_{ij} \otimes y_{ij} \in (A \otimes_B A)^A. \end{cases}$$

Then

$$\sum_{ij} p(v_i) x_{ij} y_{ij} = \sum_i p(v_i) \left(\sum_j x_{ij} y_{ij}\right) = \sum_i p\left(\sum_j v_i x_{ij} y_{ij}\right) = p\left(\sum_{ij} v_i x_{ij} y_{ij}\right) = p(1) = 1,$$
which completes the proof

which completes the proof.

For a separable extension A/B, if $B \subset C(A)$, A is called a separable algebra. When B = C(A), A becomes a central separable algebra, or a B-Azumaya algebra. It is proved in [8, Theorem II. 3.4 and Lemma II. 3.1] that if A is C-Azumaya, then (i) C is a direct summand of A as C-submodule, (ii) A is a C-progenerator, (iii) $A \otimes_C A^{\text{op}} \cong \text{Hom}_C(A, A)$. By them we have the following lemma.

Lemma 2.2. If C = C(A) for a ring A and D is C-Azumaya, then $D' = A \otimes_C D$ is *H*-separable over A and ${}_{A}D'{}_{A}|_{A}A_{A}$.

Proof. Recall that if D is C-Azumaya, then D is a C-progenerator^[8, Theorem 3.4]. So ${}_{C}D_{C}|_{C}C_{C}$, and then ${}_{A}D'_{A}|_{A}A \otimes_{C} D_{A}|_{A}\otimes_{C} C_{A}$. But $A \otimes_{C} C \cong A$, we have ${}_{A}D'_{A}|_{A}A_{A}$.

Still, as a C-Azumaya algebra D has the property $D \otimes D^{\text{op}} \cong \text{Hom}_C(D, D)$. The isomorphism is $d \otimes d' \mapsto (\psi : x \mapsto dxd')$, which is also a (D, D)-map. The (D, D)-bimodule action on $D \otimes_C D$ and $\operatorname{Hom}_C(D,D)$ are respectively: $\forall x, y, d \in D, \forall \sum_i d_i \otimes d'_i \in D \otimes_C D, \ x (\sum_i d_i \otimes d_i) \otimes_C D = 0$ $d'_i y = \sum x d_i \otimes d'_i y, (x f y)(d) = x f(d) y.$ So the D-bimodule structure of $\operatorname{Hom}_C(D, D)$ is induced by the latter D-bimodule D (the domain). We write the former isomorphism as: $_DD \otimes_C D_D \cong \operatorname{Hom}_C(D,_D D_D)$. So

$$_D D \otimes_C D_D \cong \operatorname{Hom}_C(D,_D D_D) | \operatorname{Hom}_C(C,_D D_D) \cong_D D_D,$$

that is, D/C is H-separable. As C is a direct summand of D, A is a subring of $A \otimes_C D$ and

$$(A \otimes_C D) \otimes_A (A \otimes_C D) \cong (A \otimes_A A) \otimes_C (D \otimes_C D) | (A \otimes_A A) \otimes_C D \cong A \otimes_C D.$$

Checking the morphism we get $_{D'}D' \otimes_A D'_{D'}|_{D'}D'_{D'}$, that is, D'/A is also H-separable.

Proposition 2.1. Set A/B to be a ring extension, D is one of its intermediate rings. Then the folloing are equivalent:

(1) The (D, A)-epimorphism $\pi : D \otimes_B A \to A$ is splitting (i.e., there exists a (D, A)module morphism $f: A \to D \otimes_B A$ with $\pi f = I_A$, where $\pi(d \otimes a) = da$, $\forall d \in D, a \in A$.

(2) There exists an element
$$\sum_{i} d_i \otimes x_i \in (D \otimes_B A)^D$$
 with $\sum_{i} d_i x_i = 1$.

(3) A is a direct summand of $_D D \otimes_B A_A$ as (D, A)-module.

(4) ${}_{D}A_{A}|_{D}D \otimes_{B} A_{A}$.

Proof. (1) \Rightarrow (2). Set $f(1) = \sum_{i} b_i \otimes x_i, \forall b \in D$. Then

$$bf(1) = f(b) = f(1)b$$

Here

$$\sum_{i} b_i \otimes x_i \in (D \otimes_B A)^D.$$

By $\pi f = I_A$, we get $\sum b_i x_i = 1$.

(2) \Rightarrow (1). Define $f(a) = \sum_{i} b_i \otimes x_i a$, $\forall a \in A$. It is easy to see that f is a (D, A)-module map and $\pi f(a) = \left(\sum_{i} b_i x_i\right) a = a$, $\forall a \in A$, that is, $\pi f = I_A$. (3) \Rightarrow (4). Recalling the notion of ${}_DA_A|_DD \otimes_B A_A$, we can see that (3) is a spesial case

of (4).

 $(4) \Rightarrow (2)$. By the assumption, there exists a natural number n with A a direct summand of $\bigoplus (D \otimes_B A)$ as (D, A)-bimodule. So we have (D, A)-bimodule maps f_i, g_i :

$${}_{D}A_{A} \xleftarrow{f_{i}}{g_{i}}_{D} D \otimes_{B} A_{B}$$

with

$$\sum_{i=1}^{n} g_i f_i = I_A.$$

Onviously, $f_i(1) \in (D \otimes_B A)^D$, $g_i(1 \otimes 1) \in V_A(B)$. Denote $f_i(1) = \sum_j b_{ij} \otimes x_{ij}$. Then

$$\sum_{i,j} b_{ij} \otimes g_i (1 \otimes 1) x_{ij} \in (D \otimes_B A)^D$$

Here

$$\sum_{i,j} b_{ij} \otimes g_i(1 \otimes 1) x_{ij} = \sum_{i,j} g_i(b_{ij} \otimes x_{ij}) = \sum_i g_i f_i(1) = 1.$$

So we get $\sum_{k} b_k \otimes x_k = \sum_{i,j} b_{ij} \otimes g_i(1 \otimes 1) x_{ij}$ as desired. (1) \Leftrightarrow (3). It is easy to see, so we omit the proof.

(1) \Leftrightarrow (3). It is easy to see, so we omit the proof.

Note. When D satisfies one of the above conditions in Proposition 2.1, it is called a left relative separable extension of B in A. From the condition (2) we know that a separable extension D/B is also a left relative separable extension.

Lemma 2.3. If a ring extension A/B is H-separable and its intermediate subring D is left relative separable over B, then A/D is also H-separable.

Proof. By the hypothesis D is left relative separable over B, so ${}_{D}A_{A}|_{D}D \otimes_{B} A_{A}$ by Proposition 2.1(4). Thus

$${}_AA \otimes_D A_A |_AA \otimes_D D \otimes_B A_A \cong_A A \otimes_D A_A,$$

that is, A/D is *H*-separable.

Lemma 2.4. If A/B is H-separable, A'/B is another extension with a ring epimorphism $f: A \to A'$, and f fixes B pointwise, then A'/B is also H-separable.

Proof. Denote by $\{\sum_{j} x_{ij} \otimes y_{ij} \in (A \otimes_B A)^A, v_i \in V_A(B)\}$ the *H*-separable system of *A* over *B*. Then $f(v_i) \in V_{A'}(B)$. Also $\forall a' \in A'$, there exists $a \in A$ with f(a) = a'. Then we have

$$\sum_{j} a' f(x_{ij}) \otimes f(y_{ij}) = f \otimes f\left(\sum_{j} a x_{ij} \otimes y_{ij}\right)$$
$$= \sum_{j} f(x_{ij}) \otimes f(y_{ij}a) = \sum_{j} f(x_{ij}) \otimes f(y_{ij})a',$$
$$\sum_{j} f(v_i) f(x_{ij}) \otimes f(y_{ij}) = f \otimes f\left(\sum_{j} v_i x_{ij} \otimes y_{ij}\right)$$
$$= f \otimes f(1 \otimes 1) = 1 \otimes 1.$$

So $\left\{\sum_{i} f(x_{ij}) \otimes f(y_{ij}) \in (A' \otimes_B A')^{A'}, f(v_i) \in V_{A'}(B)\right\}_i$ is the desired *H*-separable system.

Lemma 2.5. Suppose A/B is H-separable, C(A) = C. For brevity denote $V_A(B)$ by V. $\mathfrak{B}_l, \mathfrak{B}, \mathfrak{N}, \mathfrak{N}_l$ are respectively the sets.

 $\mathfrak{B}_l = \{B' \supset B|_{B'}B'_{B'} < \oplus_{B'}A_{B'}, \ _{B'}B' \otimes_B A_A \xrightarrow{\mu}_{B'}A_A \ splits, \ i.e.,$

there is a (B', A)-module map f with $\mu f = I_A$, here $\mu(b' \otimes a) = b'a$;

 $\mathfrak{B} = \{A \supset B' \supset B | B' / B \text{ is separable, } _{B'}B'_{B'} < \bigoplus_{B'}A_{B'}\};$

 $\mathfrak{V}_i = \{ V' \supset C |_{V'} V' < \bigoplus_{V'} V, \ _{V'} V' \otimes_C V_V \xrightarrow{\pi}_{V'} V_V \ splits, \ i.e., \ there \ is \ a \ (V'V) - module \\ map \ g \ with \ \pi g = I_V, \ \pi(v' \otimes v) = v'v \};$

 $\mathfrak{V} = \{ V \supset V' \supset C | V'/C \text{ is separable} \}.$

Then $B' \mapsto V_A(B')$ and $V \mapsto V_A(V')$ are mutually conversible 1-1 correspondence between \mathfrak{B}_l (resp. \mathfrak{B}) and \mathfrak{N}_l (resp. \mathfrak{V}).

For a ring extension A/B, $B \cdot V_A(B)$ is its intermdiate subring. In fact, it is obvious that $A \supset B \cdot V_A(B) \supset B$, and $\forall b_1, b_2 \in B, v_1, v_2 \in V_A(B), (b_1v_1)(b_2v_2) = (b_1b_2) \cdot (v_1v_2) \in$ $B \cdot V_A(B)$. That is, the product is closed in $B \cdot V_A(B)$ as desired.

Theorem 2.1. Let A/B be a ring extension, C(A) = C(B). Then A/B is H-separable, B is a direct summand of A as (B, B)-bimodule iff $V_A(B)$ is C-Azumaya, and $A \cong B \otimes_C V_A(B)$.

Proof. $(\Rightarrow) A/B$ is *H*-separable ${}_{B}B_{B} < \oplus_{B}A_{B}$, so $V_{A}(V_{A}(B)) = B$ (see [9]). Therefore

$$V_{V_A(B)}(V_A(B)) = V_A(B) \cap V_A(V_A(B)) = V_A(B) \cap B = V_B(B) = C,$$

that is,

$$C(V_A(B)) = C.$$

By the correspondence between $\mathfrak{B} \to \mathfrak{V}, \mathfrak{B} \ni B \mapsto V_A(B), V_A(B)/C$ is separable, so $V_A(B)$ is *C*-Azumaya. As a notational convenience we set $V = V_A(B)$ afterwords. From [8, Theorem II.3.4 and Lemma II.3], we see that *C* is a direct summand of *V* as *C*-module, $V \otimes_C V^{\mathrm{op}} \cong$ $\operatorname{Hom}_C(V, V)$, the map is $\varphi(v \otimes v')(x) = vxv'$, and also *V* is a finitely generated *C*-projection. Define the $(V \otimes_C V^{\mathrm{op}})$ -module action on *A* as: $(v \otimes v')a = vav', \forall v, v' \in V, a \in A$. Now we prove

$$\operatorname{Hom}_{V\otimes_{C}V^{\operatorname{op}}}(V,A)\cong B$$

First, $\forall f \in \operatorname{Hom}_{V \otimes_C V^{\operatorname{op}}}(V, A)$, f is determined by f(1), but vf(1) = f(v) = f(1)v, $\forall v \in V$. So $f(1) \in V_A(V) = B$. Conversely, $\forall b \in B$, define a map $f_b : f_b(v) = bv$, $\forall v \in V$. Obviously, $f_b \in \operatorname{Hom}_{V \otimes_C V^{\operatorname{op}}}(V, A)$. So we get that $\psi : f \mapsto f(1)$ is an isomorphism from Bto $\operatorname{Hom}_{V \otimes_C V^{\operatorname{op}}}(V, A)$. Next simce V is a C-generator,

$$I_C(V) = \left\{ \sum_i f_i(v_i) | f_i \in \operatorname{Hom}_C(V, C), \ v_i \in V \right\} = C.$$

So by [10, Proposition A.6] we have

$$\rho: \operatorname{Hom}_{\operatorname{Hom}_{C}(V,V)}(V,A) \otimes_{C} V \to A,$$
$$f \otimes v \mapsto f(v),$$

is an isomorphism. But φ : Hom_C(V, V) \cong V \otimes_C V^{op} is an algebra isomorphism, we get the following isomorphism:

$$\rho' : \operatorname{Hom}_{V \otimes_C V^{\operatorname{op}}}(V, A) \otimes_C V \to A$$

Hence $\rho'': B \otimes_C V \cong A$, by $b \otimes v \mapsto bv$, which is induced by ρ' . Checking it directly we can see that the map is an algebra morphism.

(⇐) By Lemma 2.2, $A \cong B \otimes_C V_A(B)/B$ is *H*-separable, and $V_A(B)/C$ is *C*-Azumaya. So *C* is a direct summand of $V_A(B)$ as a *C*-module. Thus *B* is a direct summand of *A* as a left *B*-module. But *B* commutates with $V_A(B)$, so *B* is a direct summand of *A* as a *B*-bimodule.

Before presenting the following Theorem 2.2 we need some preparation. We assume the reader to be familiar with the basic notions of Hopf algebra theory. Let R be a commutative ring with identity, J be a finite Hopy algebra over R (that is, J is a finitely generated projective R-module) with structure maps μ, m, Δ, ϵ . Throughout we adopt Sweedler's "sigma notation". Denote by J^* the dual algebra of J. As J is finitely generated projective, the Hopf algebra structure of J induces that of J^* .

Let A be an R-algebra. A is called a right J-comodule algebra if there is an R-algebra map $\rho_A : A \to A \otimes J$ satisfying (i) $(I_A \otimes \Delta_J)\rho_A = (\rho_A \otimes I_J)\rho_A$, (ii) $(1 \otimes e)\rho_A = I_A$. If A is an *R*-algebra, *J* a Hopf algerbra, then $\operatorname{Hom}_{R}(J, A)$ becomes an algebra with the convolution product

$$\phi_1 * \phi_2(j) = \sum_{(j)} \phi_1(j_{(1)}) \phi_2(j_{(2)}), \quad \forall j \in J, \quad \phi_1, \phi_2 \in \operatorname{Hom}_R(J, A)$$

If A is also a right J-comodule algebra with the structure map $\rho_A : A \to A \otimes J$ as before, $\psi \in \operatorname{Hom}_R(J, A)$ is called an integral if ψ is a right J-comodule map, that is, $\rho_A \psi = (\psi \otimes 1)\Delta_J$, Morefore, if $\psi(1_J) = 1_\Lambda$, ψ is called a total integral. If there is a total integral $\psi \in \operatorname{Hom}_R(J, A)$, which is invertible according to the convolution product given above, A is called left.

Let J be a finite Hopf R-algebra, A an R-algebra with B its subalgebra. Then A/B is called a J-Galois extension if the following conditions are satisfied:

(1) A is a right J-comodule algebra with its structure map:

$$\alpha: \quad A \to A \otimes J.$$

(2)
$$B = A^{\operatorname{co} J} = \{a \in A | \alpha(a) = a \otimes 1\}.$$

(3) The left A-module map β induced by α is an isomorphism:

$$\beta: A \otimes_B A \to A \otimes J, \quad \beta(a \otimes a') = \sum_{(a')} aa'_{(0)} \otimes a'_{(1)}, \quad \forall a, a' \in A.$$

Remark. The condition (3) can be replaced by:

(3') The α -induced right A-module map $\beta' : A \otimes_B A \to A \otimes J$ is an isomorphism, where $\beta'(a \otimes a') = \sum_{(a)} a_{(0)}a' \otimes a_{(1)}, \quad \forall a, a' \in A.$

From [11] we know that when A/B is a J-Galois extension, then besides the right Jcomodule algebra structure inheriting from A's, $V_A(B)$ can also be given a left J*-comodule algebra structure. In the following we will show the structure. First we say that a left J*-comodule algebra structure is equivalent to a right J-module algebra structure, then we give the left J*-comodule structure by showing the right J-module action.

If the Hopf algebra J is a finitely generated projective R-module with its dual basis $\{f_k \in \operatorname{Hom}_R(J, R), j_k \in J\}_k$, then an R-module M is a J-comodule algebra iff it is a left J^* -module algebra. Set $\rho_M : M \to M \otimes J$ to be the comodule algebra map, denote

$$\rho_M(m) = \sum_{(m)} m_{(0)} \otimes m_{(1)}, \ \forall m \in M$$

Then its left J^* -module algebra action is defined by

$$j^* \cdot m = \sum_{(m)} m_{(0)} j^*(m_{(1)}), \forall m \in M, \ j^* \in J^*, \ m \in M.$$

Conversely, for a left J*-module algebra M, the map $\rho_M M \to M \otimes J$, $\rho_M(m) = \sum_{(k)} f_k \cdot m \otimes j_k$, $\forall m \in M$, defines a right J-comodule algebra structure of M.

If A/B is J-Galois, then the left J^* -comodue algebra structure of $V_A(B)$ is induced by the following J-module action: $v \cdot j = \sum_i b_i v b'_i$, where $\beta^{-1}(1 \otimes j) = \sum_i b_i \otimes b'_i$, $\forall j \in J$, $v \in V_A(B)$.

From now on we denote the right *J*-module action on $V_A(B)$ by v^j , $\forall v \in V_A(B)$, $j \in J$. Lemma 2.6.^[11, Theorem 3.4(1)] The proceeding right *J*-module action is characterized by

$$v \cdot a = \sum_{(a)} a_{(0)} v^{a_{(1)}}, \quad \forall a \in A, \ v \in V_A(B),$$

$$\lambda(a) = \sum_{(a)} a_{(0)} \otimes a_{(1)}.$$
(2.1)

Theorem 2.2. Let A/B be a J-Galois extension. Then A/B is H-separable iff there exist integrals $\phi_i \in \operatorname{Hom}_R(J^*, V_A(B))$ and $v_i \in V_A(B)$ with $\sum_i \phi_i v_i = 1_{\operatorname{Hom}_R(J^*, V_A(B))}$, $i = 1, \dots, n$. (Recall that $\operatorname{Hom}_R(J^*, V_A(B))$ is an algebra).

Proof. Necessity. Let A's H-separable system be $\left\{\sum_{j} x_{ij} \otimes y_{ij} \in (A \otimes_B A)^A, v_i \in V\right\}_{i=1}^n$. Set $\phi_i = \beta' \left(\sum_{j} x_{ij} \otimes y_{ij}\right)$. Recall that

$$\beta': A \otimes_B A \to A \otimes J, \ \beta'(a \otimes a') = \sum_{(a)} a_{(0}a' \otimes a_{(1)}$$

 β' is an isomorphism. Then

$$\phi_i(a \otimes 1) = \beta' \Big(\sum_j x_{ij} \otimes y_{ij} a \Big) = \beta' \Big(\sum_j a x_{ij} \otimes y_{ij} \Big)$$
$$= \alpha(a)\beta' \Big(\sum_j x_{ij} \otimes y_{ij} \Big) = \alpha(a)\phi_i, \quad \forall a \in A.$$
(2.2)

$$\sum_{j,(a)} a_{(0)} z_{ij}^{a_{(1)}} \otimes a_{ij} = \sum_{j,(a)} a_{(0)} z_{ij} \otimes a_{(1)} a_{ij}.$$
(2.3)

J is a finitely generated projective R-module, so we have

$$V_A(B) \otimes J \cong \operatorname{Hom}_R(J^*, V_A(B)); \tag{2.4}$$

the isomorphism is

$$(v \otimes h)(h^*) = v \cdot h^*(h), \quad \forall v \in V, \quad h \in J, \quad h^* \in J^*.$$

Now we prove that (2.3) is equivalent to that $\phi_i \in V_A(B) \otimes J \cong \operatorname{Hom}_R(J^*, V_A(B))$ are integrals.

$$\forall h \in J, \ \beta^{-1}(1 \otimes h) = \sum_{k} b'_{k} \otimes b_{k}. \text{ Then from } (2.2) \text{ and } (2.1) \text{ we have}$$

$$\sum_{j} z_{ij}^{h} \otimes a_{ij} = \sum_{j} \sum_{k} b'_{k} z_{ij} b_{k} \otimes a_{ij} = \sum_{k} b'_{k} \sum_{j,(b_{k})} b_{k_{(0)}} z_{ij}^{b_{k}(1)} \otimes a_{ij}$$

$$= \sum_{k} b'_{k} \sum_{j,(b_{k})} b_{k_{(0)}} z_{ij} \otimes b_{k_{(1)}} a_{ij} = \Big(\sum_{k,(b_{k})} b'_{k} b_{k_{(0)}} \otimes b_{k_{(1)}}\Big) \Big(\sum_{j} z_{ij} \otimes a_{ij}\Big)$$

$$= \beta \Big(\sum_{k} b'_{k} \otimes b_{k}\Big) \Big(\sum_{j} z_{ij} \otimes a_{ij}\Big) = (1 \otimes h) \sum_{j} z_{ij} \otimes a_{ij} = \sum_{j} z_{ij} \otimes ha_{ij}.$$
So $\forall h^{*} \in J^{*}, h \in J$, we have

$$\phi_i(h^* \cdot h) = \sum_j z_{ij}h^*(h \cdot a_{ij}) = \sum_j z_{ij}^h h^*(a_{ij}) = (\phi_i(h^*)) \cdot h, \qquad (2.5)$$

that is, ϕ_i are integrals.

Conversely, when ϕ_i are integrals, $\phi_i = \sum_j z_{ij} \otimes a_{ij}$. Then by (2.5) we have $\phi_i(h^* \cdot h) = (\phi_i(h^*)) \cdot h$, $\forall h \in J, h^* \in J^*$, so $\sum z_{ii}^h \otimes a_{ij} = \sum z_{ij} \otimes h \cdot a_{ij}$.

$$\sum_{j} z_{ij}^h \otimes a_{ij} = \sum_{j} z_{ij} \otimes h \cdot a_{ij}.$$

For an element $a \in A$, $\alpha(a) = \sum_{(a)} a_{(0)} \otimes a_{(1)}$,

$$\sum_{j} z_{ij}^{a_{(1)}} \otimes a_{ij} = \sum_{j} z_{ij} \otimes a_{(1)} a_{ij}.$$

So we get

$$\sum_{(a),j} a_{(0)} z_{ij}^{a_{(1)}} \otimes a_{ij} = \sum_{(a),j} a_{(0)} z_{ij} \otimes a_{(1)} a_{ij},$$

that is (2.3), the desired equivalence is obtained.

Similarly, by
$$V_A(B) \otimes J \cong \operatorname{Hom}_R(J^*, V_A(B)), \ 1 \otimes 1 \leftrightarrow 1_{\operatorname{Hom}_R(J^*, V_A(B))}$$
, we have

$$\sum_{i} \phi_{i} v_{i} = 1_{\operatorname{Hom}_{R}(J^{*}, V_{A}(B))} = \beta'(1 \otimes 1) = 1 \otimes 1 \in V_{A}(B) \otimes J \cong \operatorname{Hom}_{R}(J^{*}, V_{A}(B)).$$

(Note that $\sum_{i} \phi_{i} v_{i} = \sum_{i} \beta' (\sum_{j} x_{ij} \otimes y_{ij} v_{i}).)$ Sufficiency. Regarding ϕ_{i} as elements in $V_{A}(B) \otimes J$, we denote ${\beta'}^{-1}(\phi_{i}) = \sum_{j} x_{ij} \otimes y_{ij}.$

 ϕ_i are inegrals, so (2.2) and then (2.1) is satisfied. Reversing the sufficiency's proof we get $\sum_{j} x_{ij} \otimes y_{ij} \in (A \otimes_B A)^A. \text{ Since } V_A(B) \otimes J \cong \text{Hom}(J^*, V_A(B)) \text{ and } 1 \otimes 1 \leftrightarrow 1_{\text{Hom}(J^*, V_A(B))}.$ we have

$$\sum_{i} \phi_{i} v_{i} = 1_{\operatorname{Hom}(J^{*}, V_{A}(B))} \Leftrightarrow \sum_{i} \phi_{i} v_{i} = 1 \otimes 1 \in V_{A}(B) \otimes J$$
$$\Leftrightarrow \sum_{i,j} \sum_{(x_{ij})} x_{ij(0)} y_{ij} v_{i} \otimes x_{ij(1)} = 1 \otimes 1 = \beta' \Big(\sum_{i,j} x_{ij} \otimes y_{ij} v_{i} \Big)$$
$$\Leftrightarrow \sum_{i,j} v_{i} x_{ij} \otimes y_{ij} = \sum_{i,j} x_{ij} \otimes y_{ij} v_{i} = 1 \otimes 1.$$

This shows that $\left\{\sum_{j} x_{ij} \otimes y_{ij} \in (A \otimes_B A)^A, v_i \in V_A(B)\right\}_i$ is an *H*-separable system of A/B, the sufficiency is proved.

Corollary 2.1. Let J be a finite Hopf algebra, A/B a J-Galois extension. If A/B is also H-separable, then there is a total integral $\phi \in \text{Hom}(J^*, V_A(B))$.

Proof. From Lemma 2.2 we know that if A/B is H-separable with its H-separable system $\left\{\sum_{i} x_{ij} \otimes y_{ij} \in (A \otimes_B A)^A, v_i \in V_A(B)\right\}_i$, p is the projection $V_A(B) \to C$, then $\{p(v_i)x_{ij}, y_{ij}\}_{i,j}$ is a separable system. Here C is C(A), the center of A. Then Theorem 2.2 shows that there exist integrals $\phi_i \in \text{Hom}(J^*, V_A(B))$, so

$$\sum_{i} p(v_i)\phi_i \in \text{Hom}(J^*, V_A(B)), \quad \forall j^* \in J^*.$$
$$\sum_{i} p(v_i)\phi_i(j^*) = \sum_{i} p(v_i)z_{ij}j^*(a_{ij}) = \sum_{i,j,(x_{ij})} p(v_i)x_{ij(0)}y_{ij}j^*(x_{ij(1)}).$$

When $j^* = 1_{J^*} = \epsilon$ (the counit of J), we have

$$\sum_{i} p(v_i) x_{ij(0)} y_{ij} \epsilon(x_{ij(1)}) = \sum_{i} p(v_i) x_{ij} y_{ij} = 1 \in V_A(B).$$

Also ϕ_i are integrals, and so is $\sum_i p(v_i)\phi_i$; that is, there exists a total integral $\phi = \sum_i p(v_i)\phi_i$ in Hom $(J^*, V_A(B))$.

§3. *H*-Separable Ring's Hopf-Galois Extension

In this section, we discuss the Hopf-Galois extension of H-separable rings. First we need the following lemma.

Lemma 3.1.^[12, Lemma 2.8] Let A/B be a J-Galois extension. Then $V_A(B)$ is a J-Galois extension over $V_B(B)$ iff $V_A(B)$ is finitely generated $V_B(B)$ -projective, and A is isomorphic to $B \otimes_C V_A(B)$ as a $V_B(B)$ -algebra.

Applying Theorem 2.1 we obtain the main theorem in the section.

Theorem 3.1. Let A/B be H-separable, C(A) = C(B), ${}_{B}B_{B} < \bigoplus_{B}A_{B}$, and B be C-flat. Then the following are equivalent:

(1) A/B is J-Galois.

(2) $V_A(B)/C$ is J-Galois with a total integral $\phi \in \text{Hom}(J^*, V_A(B))$.

(3) $V_A(B)/C$ is J-Galois and C-Azumaya.

Proof. (2) \Leftrightarrow (3) By [11, Theorem 3.14], $V_A(B)/C$ is J-Galois. Then $V_A(B)/C$ is separable iff there exists a total integral $\phi \in \text{Hom}(J^*, V_A(B))$. But by ${}_BB_B < \bigoplus_B A_B$, we know that the center of $V_A(B)$ is C. Then the equivalence is easy to see.

 $(1) \Rightarrow (2)$ Since the condition in Theorem 2.1 is satisfied, we have $A \cong B \otimes_C V_A(B)$, $V_A(B)$ is C-Azumaya and of ocurse finitely generated projective as C-module. So by Lemma 3.1, $V_A(B)/C$ is J-Galois and there is a total integral $\phi \in \text{Hom}(J^*, V_A(B))$ (see Corollary 2.1).

(2) \Rightarrow (1) By Theorem 2.1 we have $A = B \otimes_C V_A(B)$. It is easy to see the *J*-comodule algebra structure map of $V_A(B)\rho_{V_A(B)}: V_A(B) \rightarrow V_A(B) \otimes J$ induces that of *A*:

$$\rho_A = 1 \otimes \rho_{V_A(B)} : B \otimes_C V_A(B) \to B \otimes_C V_A(B) \otimes J,$$

i.e., ρ satisfies

(i) $(I_A \otimes \Delta_J)\rho_A = (\rho_A \otimes I_J)\rho_A$,

(ii) $(1 \otimes \epsilon)\rho_A = I_A$.

Now we prove the structure defined this way makes A a J-Galois extension of B. First recall that $V_A(B)/C$ is J-Galois means the following conditions are satisfied:

$$0 \to C \to V_A(B) \xrightarrow{\rho_{V_A(B)} - i_{V_A(B)}} V_A(B) \otimes J$$
(3.1)

is exact, where $i_{V_A(B)}(v) = v \otimes 1$, $\forall v \in V_A(B)$.

$$\beta_{V_A(B)}: \ V_A(B) \otimes_C V_A(B) \to V_A(B) \otimes J \tag{3.2}$$

is an isomorphism, where

$$\beta_{V_A(B)}(v \otimes v') = \sum_{(v')} v v'_{(0)} \otimes v'_{(1)}, \ \forall v, v' \in V,$$
$$\rho_{V_A(B)}(V') = \sum_{(v')} v'_{(0)} \otimes v'_{(1)}.$$

By the hypothesis, B is C-flat. So we get an exact sequence (i')

$$0 \to B \otimes_C \to B \otimes_C V_A(B) \xrightarrow{I_B \otimes_{P_{V_A(B)}} - I_B \otimes_{I_{V_A(B)}}} B \otimes_C V_A(B) \otimes J \to 0,$$

t is,

that is,

$$0 \to B \to A \xrightarrow{\rho_A - i_A} A \otimes J$$

is exact, where $i_A(a) = a \otimes 1$, $\forall a \in A$.

So $B = A^{\text{co}J} = \{a \in A | \rho_A(a) = a \otimes 1\}$, and by (3.2) we have

(ii') the following diagram is commutative:

where

$$\beta_A(a \otimes a') = \sum_{(a')} aa'_{(0)} \otimes a'_{(1)}, \ \forall a, a' \in A = B \otimes_C V_A(B),$$
$$t[(b \otimes_C v) \otimes_B (b' \otimes_C v')] = bb' \otimes_C v \otimes_C v',$$

which is an isomorphism.

By the assumption $\beta_{A(B)}$ is an isomorphism, and so is $1 \otimes \beta_{V_A(B)}$. Hence, β_A is also an isomorphism. With (i') and (ii') we have shown that $A = B \otimes_C V_A(B)$ is a *J*-Galois extension over *B*. This completes the proof.

Let R be a commutative ring, A an R-algebra. Suppose A is a right J-comodule algebra with its structure map ρ_A and $B = A^{\operatorname{co}J} = \{a \in A | \rho_A(a) = a \otimes 1\}$. We say A has the normal basis property, if there exists a left B-module, right J-comodule isomorphism from $B \otimes J$ to A. It is easy to see from Theorem 3.1 that

Corollary 3.1. If the equivalent condition in Theorem 3.1 is satisfied, then A has the normal basis property if and only if $V_A(B)$ has the property too.

Proof. (\Leftarrow) $V_A(B) \cong C \otimes J$, so $A \cong B \otimes J$ as left *B*-module, right *J*-comodule.

(⇒) $A \cong B \otimes J$, so $V_A(B) \cong (B \otimes J)^B = C \otimes J$, which is *C*-module isomorphic, and $B = A^{\operatorname{co} J}$. So $(A)^B \cong (B \otimes J)^B$ is still a *J*-comodule isomorphism, that is, $V_A(B) \cong C \otimes J$ as *C*-module, right *J*-comodule.

References

- [1] Hirata, K., Some types of separable extensions of rings, Nagora Math. J., 33 (1968), 107–115.
- [2] Chase, S. U. & Sweedler, M. E., Hopf algebras and Galois theory, Lecture Notes in Mathematics, Vol. 97, Springer-Verlag, Berlin, 1969.
- [3] Ikehata, S., Note on Azumaya algebra and H-separable extensions, Math. J. Okayama Univ., 23 (1981), 17–18.
- [4] Ikehata, S., Azumaya algebras and skew polynomial rings, Math. J. Okayama Univ., 23 (1981), 19–32.
- [5] Nakamoto, T., On QF-extensions in an H-separable extensions, Proc. Japan Acad., 50 (1974), 440–443.
- [6] Okamoto, H., On projective H-separable extensions of Azumaya algebras, Results in Math., 141 (1988), 330–332.
- [7] Nakajima, A., On Hopf-Galois extensions, Azumaya algebras and skew polynomial rings, Math. J. Okayama Univ., 29 (1987), 109–117.
- [8] DeMeyer, F. R. & Ingraham, E., Separable algebars over commutative rings, Lecture Notes Math., Vol. 181, Springer-Verlag, Berlin, 1971.
- [9] Nakamoto, T. & Sugano, K., Notes on H-separable extensions, Hokkaido Math. J., 4:2(1975), 295–299.
- [10] Auslander, M. & Goldman, O., Maximal orders, Trans. Amer. Math. Soc., 97 (1960), 1–24.
- [11] Doi, Y. & Takeuchi, M., Hopf-Galois extensions of algebras, the Miyashita-Ulbrich action and Azumaya algebras, J. Alg., 2 (1989), 488–516.
- [12] Kreimer, H. F. & Takeuchi, M., Hopf algebars and Galois extensions of an algebra, Indiana Univ. Math. J., 30: 5(1981), 675–692.