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Abstract

The semisimple structure, which generalizes the complex and the paracomplex structures,
is considered. The authors classify all the homogeneous semisimple spaces whose underlying
spaces are G/C(W )0, where G is a real simple Lie Group, W ∈ g,C(W )0 is the identity

component of the centralizer C(W ) of W in G.
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§1. Introduction

Consider a 1-1 tensor field I on a smooth manifold M . The natural generalization of the

complex structure and para-complex structure is called the semisimple structure, which just

forgets I2 = ±1, precisely:

Definition 1.1. I is called semisimple if

(1) ∃ a real polynomial f(x), which has no multiple root, such that f(I) = 0,

(2) I satisfies the integrability condition:

I2[X, Y ]− I[I X, Y ]− I[X, I Y ] + [I X, I Y ] = 0, ∀ X,Y ∈ X (M),

where X (M) is the set of all vector fields of M .

If I2 = ±1, (2) coincides with the integrability condition of (para-)complex structure. So

both complex structure and paracomplex structure are semisimple structures.

Proposition 1.1. Given smooth manifold M , there exists a semisimple structure I if

and only if X (M)C =
m⊕

a=1
Xa as vector space over C , such that

(1) [Xa, Xb] ⊂ Xa + Xb, ∀ 1 ≤ a, b ≤ m, (2) ∀ a, ∃b such that Xa = Xb,

where X (M)C is the complexifocation of X (M).

Proof. Consider I as the endmorphism of X (M)C. Since I is semisimple, we can get

X (M)C =
m⊕

a=1
Xa as the eigenspace decomposition of I, the rest is easy to check. Conversely,
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given such a decomposition: X (M)C =
m⊕

a=1
Xa, define I acting on Xa by scale λa, then I

becomes a semisimple structure on M .

Remark 1.1. Once we get a semisimple structure I, by Proposition 1.1, we can get a class

of semisimple structures by changing the eigenvalues of I (i.e, all p(I), ∀ polynomial p(x)).

To consider the geometry of M , it is essential to consider the decomposition of Proposition

1.1.

Definition 1.2. If we collapse the decomposition X (M)C =
m⊕

a=1
Xa to X (M)C =

m′⊕
a′=1

X ′
a by letting Xa′ be the sum of some terms Xa, so that the property ∀ a′ ∃ b such that

Xa′ = Xb′ still holds, then we get a new semisimple structure on M . We say a semisimple

structure is maximal if it can not be obtained by some collapsion of another semisimple

structure.

Since m = 2 is just the case of complex structure or (partly) paracomplex structure,

which is more or less clear, here we only consider the case m ≥ 3. To make the expression

simpler, we define the semisimple manifold as:

Definition 1.3. A semisimple manifold M is a smooth manifold M with a maximal

semisimple structure I with m ≥ 3.

Definition 1.4. The semisimple structure I over G/U is called homogeneous if dτ(g)◦I =

I ◦ dτ(g), ∀g ∈ G, where τ(g) is the left multiplication by g.

Definition 1.5. A homogeneous semisimple space G/U is the homogeneous space G/U

with a maximal homogeneous semisimple structure I with m ≥ 3.

Remark 1.2. G/U is semisimple if and only ifG/U0 is semisimple, and u·I(X) = I(u·X),

∀ u ∈ U,X ∈ TU (G/U).

In this paper, we found all the homogeneous semisimple spaces whose underlying space

is G/C(W )0 where G is a real simple Lie Group, W ∈ g is a semisimple element (Theorems

4.2, 4.3). Above Remark helps us to give all G/C(W ). For general G/C(W ), where G is

semisimple and C(W ) is not connected, we have locally decomposition (Corollary 2.1).

§2. Homogeneous Semisimple Space G/C(W )0

Consider the manifoldM = G/C(W )0, where G is a connected real semisimple Lie Group,

W is a semisimple element of g = Lie (G), C(W ) is the centralizer ofW in G and U = C(W )0
its identity component of G/C(W ). Denote u = Lie (U). Then TU (G/U) ∼= g/u. Find a

subspace p of g such that g = u⊕p and [u, p] ⊂ p. Then p ∼= g/u ∼= TU (G/U). View I as the

automorphism of p, define the associated Koszul operator J : g → g as J |u = 0, J | p = I | p .
We identify the complexifocation of J with J . Then

Proposition 2.1.[1] Suppose I is a homogeneous semisimple structure on G/U . Then I

satisfies the integrability condition (Definition 1.1) if and only if J satisfies

J2[X, Y ]− J [J X, Y ]− J [X, J Y ] + [J X, J Y ] ⊂ u, ∀ X,Y ∈ g. (2.1)

Theorem 2.1. G/U is a homogeneous semisimple space if and only if, as a complex

vector space, gC =
m∑

a=1
ga satisfies:
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(1) [ga, gb] ⊂ ga + gb, 1 ≤ a, b ≤ m; (2) ga ∩ gb = uC, 1 ≤ a, b ≤ m;

(3) ∀ a ∃ b such that ga = gb.

Proof. “only if”: By Remark 1.1, suppose I has eigenvalues λ1, · · · , λm with no λa = 0.

Then J has eigenvalues: 0, λ1, · · · , λm with corresponding eigenspaces: uC, p1, · · · , pm. Let

X ∈ pa, Y ∈ pb by equation (2.1). Then

(J − λa)(J − λb)[X, Y ] ⊂ uC ⇒ [X, Y ] ⊂ uC + pa + pb.

If let X ∈ uC, Y ∈ pa by equation (2.1), then

J(J − λa)[X, Y ] ⊂ uC ⇒ [X, Y ] ⊂ uC + pa.

Now, define ga = uC + pa. Then gC = uC +
m⊕

a=1
pa =

m∑
a=1

ga satisfying (1),(2). (3) comes

from the fact that J is real.

“if” Define J | pC∩ga
= λa, 1 ≤ a ≤ m.

Lemma 2.1. Suppose l is an ideal of g, let la = lC ∩ ga, 1 ≤ a ≤ m. Then lC =
m∑

a=1
la

satisfies:

(1) [la, lb] ⊂ la + lb, 1 ≤ a, b ≤ m; (2) la ∩ lb = (l ∩ u)C, 1 ≤ a, b ≤ m;

(3) ∀ a ∃ b such that la = lb.

Proof. Since g is semisimple, l is an ideal and W is a semisimple element of g, it is

possible to find an element Y such that l = {X ∈ g | [X, Y ] = 0} and [Y, W ] = 0. Recall

gC = uC ⊕ p1 ⊕ · · · ⊕ pm,

∀X ∈ l, X = X0 +X1 + · · ·+Xm.

[Y, ∗] acts on both sides. Since Y ∈ u , 0 = [Y, X] = [Y, X0] + [Y, X1] + · · ·+ [Y, Xm] is

still a decomposition of type gC = uC ⊕ p1 ⊕ · · · ⊕ pm. Then, [Y, Xi] = 0, Xi ∈ l hence.

Since l is a real subalgebra of g, (1), (2), (3) are easy to check. This Lemma also holds when

l is a Levi subgroup of g and contains a Cantan subalgebra h such that W ∈ h.

Corollary 2.1. The homogeneous semisimple space G/C(W ) can be locally decomposed

into the product of some generalized homogeneous semisimple spaces Gi/C(W i) (i.e m can

be 1, 2 or ≥ 3), where Gi is the simple factor of G, and W i is the factor of W in every

simple component gi.

Theorem 2.2. If we identify semisimple homogeneous space G/C(W )0 with (g, u), and

if g is simple real Lie algebra, then we have the following two cases:

(1) gC = g1 + g1 as Complex Lie algebra. Let g1a = ga ∩ g1. Then

(i) g1 =
m∑

a=1
g1a; (ii) [g1a, g1b ] ⊂ g1a + g1b , ∀ 1 ≤ a, b ≤ m;

(iii) g1a ∩ g1b = ∅, ∀ 1 ≤ a ̸= b ≤ m; (iv) g1a ∩ g1b = ∅, ∀ 1 ≤ a, b ≤ m.

(2) gC is simple. Then

(i) [ga, gb] ⊂ ga + gb, 1 ≤ a, b ≤ m; (ii) ga ∩ gb = uC, 1 ≤ a, b ≤ m;

(iii) ∀ a ∃ b such that ga = gb.

Proof. (2) is trivial. For (1), since g1 is a complex ideal of gC, similar proof of Lemma

2.1 shows (i), (ii) are true. (iii) is because g1 ∩ g1 = ∅.
In the following sections, we will find all such pairs (g, u).



324 CHIN. ANN. OF MATH. Vol.19 Ser.B

§3. Semisimple Decomposition of Complex Simple Lie Algebras

Definition 3.1. Given a complex simple Lie algebra gC, a semisimple decomposition of

gC is a complex vector space decomposition: gC =
m∑

a=1
ga (with m ≥ 3) satisfies:

(1) [ga, gb] ⊂ ga + gb, 1 ≤ a, b ≤ m; (2) ga ∩ gb = uC, 1 ≤ a, b ≤ m.

In this section, we will find all possible semisimple decompositions of gC. Let hC be a

Cartan subalgebra containing W , then hC ⊂ uC. Denote

△ = △(gC, hC), △0 = △(uC, hC), △a = △(pa, hC).

Theorem 3.1. gC has a semisimple decomposition if and only if △ = △0

∪( m∪
a=1

△a

)
satisfies:

(1) ∀ α ∈ △0, β ∈ △a, α+ β ∈ △ ⇒ α+ β ∈ △a;

(2) ∀ α ∈ △a, β ∈ △b, α+ β ∈ △ ⇒ α+ β ∈ △0 ∪△a ∪△b;

(3) ∀ α ∈ △0, β ∈ △0, α+ β ∈ △ ⇒ α+ β ∈ △0;

(4) −△0 = △0.

Proof. (3) and (4) are because uC is a Levi subalgebra, (1) is because ga is a subalgebra,

(2) is obtained by [ga, gb] ⊂ ga + gb.

Definition 3.2. Define △ab = {α ∈ △a | −α ∈ △b, ∀ 1 ≤ a, b ≤ m}.

Theorem 3.2. gC has a semisimple decomposition if and only if △ = △0

∪( m∪
a,b=1

△ab

)
with

(1) α ∈ △ab, β ∈ △cd, α+ β ∈ △ ⇒ a = d or b = c or “a = c and b = d”;

(2) α ∈ △ab, β ∈ △bc, α+ β ∈ △ ⇒ α+ β ∈ △ac ∀ a ̸= c;

(3) α ∈ △0 , β ∈ △ab, α+ β ∈ △ ⇒ α+ β ∈ △ab;

(4) α ∈ △ab, β ∈ △ba, α+ β ∈ △ ⇒ α+ β ∈ △0 ∪△aa ∪△bb ∪△ab ∪△ba;

(5) α ∈ △ab, β ∈ △ab, α+ β ∈ △ ⇒ α+ β ∈ △ab;

(6) −△ab = △ba,−△0 = △0.

Proof. “=⇒” (3) and (6) are trivial. Let us prove the following claim:

“if α ∈ △a,−β ∈ △b, a ̸= b, and α+ β ∈ △, then α+ β ∈ △ab.”

Since α = (α+β)−β, α ∈ △a, −β ∈ △b, and a ̸= b by Theorem 3.1, it forces α+β ∈ △a;

symmetrically, −(α+ β) ∈ △b; hence α+ β ∈ △ab.

By this claim, (2) and (5) hold. For (1), if a ̸= d and b ̸= c, we get α+β ∈ △ad∩△cb ̸= ∅;
this forces a = c and b = d. (4) can be obtained directly by Theorem 3.1.

“⇐=” Since △a =
m∪
b=1

(△ab), calculate directly.

Corollary 3.1. In Theorem 3.2, define △′

0 = △0

∪( m∪
a=1

△aa

)
. Then

△ = △
′

0

∪( ∪
1≤a ̸=b≤m

△ab

)
still satisfies the conditions of Theorem 3.2.

Definition 3.3. If
m∪

a=1
△aa = ∅, we say the decomposition △ = △0

∪( ∪
a ̸=b

△ab

)
is

reduced.
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Theorem 3.3. For type Al, gC = sl(l + 1,C), △ = {ei − ej | 1 ≤ i ̸= j ≤ l + 1}. For

any reduced semisimple decomposition △ = △0

∪( ∪
a̸=b

△ab

)
up to an isomorphism of the

root system △, there exists a partition of N
def.
= {1, 2, · · · , l + 1}: N =

m∪
a=1

Na such that

△ab = {ei − ej | i ∈ Na, j ∈ Nb}, ∀ 1 ≤ a ̸= b ≤ l + 1,

△0 =

m∪
a=1

{ei − ej | i, j ∈ Na, i ̸= j}.

Proof. Fix ei0−ej0 ∈ △a0b0 a0 ̸= b0. Since ei0−e1, · · · , ei0−el+1 generate△, andm ≥ 3,

it follows that ∃ k0 such that ei0 − ek0 ̸∈ △0 ∪ △a0b0 ∪ △b0a0 . Suppose ei0 − ek0 ∈ △c0d0 .

Since (ei0 − ej0) + (ek0 − ei0) ∈ △, by Theorem 3.2, we have c0 = a0 or b0 = d0. Choose

a0 = c0 (if b0 = d0, change all ei into −ei), of course b0 ̸= d0 .

Claim. ei0 − ei ∈ △0 ∪△a0 , ∀ i ̸= i0.

Proof of the Claim. When i = j0 or k0, it is true. If i ̸= j0 and k0, since (ei0 − ei) +

(ej0 − ei0) ∈ △ and (ei0 − ei)+ (ek0 − ei0) ∈ △, by Theorem 3.2, we get ei0 − ei ∈ △0 ∪△a0 .

By the claim, we can define Na0 = {i ∈ N | (ei0 − ei) ∈ △0}, Na = {i ∈ N | (ei0 − ei) ∈
△a0a}, 1 ≤ a ̸= a0 ≤ m. Now, N =

m∪
a=1

Na, ∀ a ̸= a0, b ̸= b0 and a ̸= b.

ei − ej = (ei − ei0) + (ei0 − ej) ∈ △aa0 +△a0b ⊂ △ab, ∀ i ∈ Na, j ∈ Nb;

ei − ek = (ei − ei0) + (ei0 − ek) ∈ △aa0 +△a0a ⊂ △0 ∪△aa0 ∪△a0a;

ei − ek = (ei − ej0) + (ej0 − ek) ∈ △ab0 +△b0a ⊂ △0 ∪△ab0 ∪△b0a.

Therefore, ei − ek ∈ △0, where k ̸= i, k, i ∈ △a. Hence,

△ab = {ei − ej | i ∈ Na, j ∈ Nb}, ∀ 1 ≤ a ̸= b ≤ l + 1,

△0 =

m∪
a=1

{ei − ej | i, j ∈ Na i ̸= j}.

Theorem 3.4. For type Bl, g
C = so(2l + 1,C) has no semisimple decomposition.

Proof. Let △ = {ei ± ej ,±ek | 1 ≤ i ̸= j ≤ l, 1 ≤ k ≤ l}. Since e1, · · · , el generate
△, choose ei ∈ △ab for some a ̸= b. Then ∀ j ̸= i, ei ± ej ∈ △. By Theorem 3.2,

ej ∈ △0 ∪ △aa ∪ △bb ∪ △ab ∪ △ba ⊂ △0 ∪ △a ∪ △b. Now △ ⊂ △0 ∪ △a ∪ △b ⊂ △, so

△ = △0 ∪△a ∪△b forces m = 2, a contradiction!

Theorem 3.5. For type Cl, g
C = sp(2l,C) has no semisimple decomposition, either.

Proof. Let △ = {±(ei ± ej),±2ek | 1 ≤ i ≤ j ≤ l, 1 ≤ k ≤ l}. Since m ≥ 3, and

{ei ± ej | 1 ≤ i ̸= j ≤ l} generates △, without loss of generality, we can assume ∃ i, j, k such

that ei − ej ∈ △ab and ei − ek ∈ △ac for some a ̸= b ̸= c. Since (ei + ej)± (ei − ej) ∈ △,

by Theorem 3.2, we have ei + ej ∈ △′

0 ∪ △ab ∪ △ba. But (ei + ej) − (ei − ek) ∈ △ implies

ei + ej ∈ △′

0 ∪ △ab. Thus 2ei = (ei + ej) + (ei − ej) ∈ △ab. Symmetrically we have

ei+ek ∈ △′
0∪△ac, so 2ei = (ei+ek)+(ei−ek) ∈ △ac. But △ab∩△ac = ∅, a contradiction!

Theorem 3.6. For type Dl (l ≥ 4), gC = so(2l,C), △ = {±(ei ± ej) | 1 ≤ i < j ≤ l} up

to an isomorphism of △, Every semisimple decomposition is given by:

△12 = {ei + ej | 2 ≤ i < j ≤ l}, △23 = {e1 − ei | 2 ≤ i ≤ l},
△13 = {e1 + ei | 2 ≤ i ≤ l}, △0 = {ei − ej | 2 ≤ i ̸= j ≤ l},



326 CHIN. ANN. OF MATH. Vol.19 Ser.B

specially, m = 3.

Proof. First assume the semisimple decomposition is reduced. Find a root. Without

loss of generality, suppose el−1 + el ∈ △0 (if does not exist such root, let △′′ = △). Since

△′ def.
= {ei−ej) | 1 ≤ i < j ≤ l} and el−1+el generate △, by Theorem 3.2, △′ has a reduced

semisimple decomposition by restriction. Because △′ is of type Al−1, by Theorem 3.3, there

exists a partition of N = {1, 2, · · · , l} =
m∪

a=1
Na. For each a, choose an element ia ∈ Na, to

generate a type Dm root system △′′ def.
= {±(eia ± eib) | 1 ≤ a < b ≤ m}. Then △′′ has also

a semisimple decomposition (with the same m). If m ≥ 4, by Theorem 3.2

ei1 − ei3 ∈ △′′
13ei2 − ei3 ∈ △′′

23 ⇒ ei3 + ei4 ∈ △′′
0 ∪△′′

3

ei1 − ei4 ∈ △′′
14ei2 − ei4 ∈ △′′

24 ⇒ ei3 + ei4 ∈ △′′
0 ∪△′′

4

}
⇒ ei3 + ei4 ∈ △′′

0 .

By the same reason, ei2 + ei3 ∈ △′′
0 . Now ei2 − ei4 = (ei2 + ei3) − (ei3 + ei4) ∈ △′′

0 , but in

fact (ei2 − ei4) ∈ △′′
24, a contradiction!

Hence m = 3. Now come back to △′. By Theorem 3.3, we can suppose the partition

of N = Na ∪ Nb ∪ Nc since l ≥ 4. Without loss of generality, suppose |Nc| ≥ 2, choose

k, k′ ∈ Nc.

Case 1. if |Nb| ≥ 2, and |Na| ≥ 2, choose i, i′ ∈ Na; j, j′ ∈ Nb. Now

(ek + ek′) + (ei − ek) ∈ △
(ek + ek′) + (ej − ek′) ∈ △
(ei − ek) + (ek + ek′) + (ej − ek′) ∈ △

 Theorem 3.2
=⇒ (ek + ek′) ∈ △ca ∪△cb,

(ek + ek′) + (ei − ek) ∈ △
(ek + ek′) + (ej − ek′) ∈ △
(ej′ − ek) + (ek + ek′) + (ej − ek′) ∈ △

 Theorem 3.2
=⇒ (ek + ek′) ∈ △0 ∪△cb,

(ek + ek′) + (ei − ek) ∈ △
(ek + ek′) + (ej − ek′) ∈ △
(ei′ − ek) + (ek + ek′) + (ei − ek′) ∈ △

 Theorem 3.2
=⇒ (ek + ek′) ∈ △0 ∪△ca.

Now, (ek + ek′) ∈ (△0 ∪△ca) ∩ (△0 ∪△cb) ∩ (△ca ∪△cb) = ∅, a contradiction!

Case 2. Without loss of generality, assume |Na| = 1. If |Nb| ≥ 2, above calculation

shows ek + ek′ ∈ △cb; if |Nb| = 1, we get ek + ek′ ∈ △cb ∪△ca. Since a, b are symmetric in

this case, without loss of generality, assume ek + ek′ ∈ △cb and Na = {1}. It is easy to get:

e1 + ek ∈ △ab, ∀k ∈ Nc; ej + ek ∈ △0, ∀j ∈ Nb, k ∈ Nc;

e1 + ej ∈ △ac, ∀j ∈ Nb; ej + ej′ ∈ △bc, ∀j ̸= j′ ∈ Nb;

plus what we have already known for the roots of △′:

e1 − ej ∈ △ab, ∀j ∈ Nb; ej − ek ∈ △bc, ∀j ∈ Nb, k ∈ Nc;

e1 − ek ∈ △ac, ∀k ∈ Nc; ej − ej′ ∈ △0, ∀j ̸= j′ ∈ Nb;

ek − ek′ ∈ △0, ∀k ̸= k′ ∈ Nb.

Now take an isomorphism △ −→ △ by

e1 −→ −e1; ej −→ ej , ∀ j ∈ Nb; ek −→ −ek, ∀ k ∈ Nc.
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Let b = 1, c = 2, a = 3. Rewrite the result as

△12 = {ei + ej | 2 ≤ i < j ≤ l}; △23 = {e1 − ei | 2 ≤ i ≤ l};
△13 = {e1 + ei | 2 ≤ i ≤ l}; △0 = {ei − ej | 2 ≤ i ̸= j ≤ l}.

For general case, since △′
0 = {ei − ej | 2 ≤ i ̸= j ≤ l}, △12, △23, △13 are given above.

Hence, ∀ α ∈ △′
0, α +△12 ̸= ∅, we get △33 = ∅; for the same reason, △22 = △11 = ∅, i.e.,

the semisimple decomposition is automatically reduced.

Corollary 3.2. For type Al, as a complex semisimple space, every maximal semisimple

space is 1-1 corresponding to the reduced semisimple decomposition of gC, which is given by

Theorem 3.3. For type Dl, every semisimple decomposition is automatically maximal.

Theorem 3.7. For types G2,F4, there are no semisimple decompositions.

Proof. Since the Dykin diagram for G2 is

the only possible case (m ≥ 3) is α1 ∈ △ab, α2 ∈ △bc for some a ̸= b ̸= c. But α1+α2 ∈ △ac,

α1 + 2α2 = (α1 + α2) + α2 ∈ △ac +△bc = ∅, a condiction!

For type F4, the Dykin diagram is

which contains two subsystems

One is of type B3, and the other is of type C3. By Theorems 3.4, 3.5, both of them have

m ≤ 2, so the possible case might be: α1 ∈ △ab, α2 ∈ △0, α3 ∈ △0, α4 ∈ △bc for some

a ̸= b ̸= c. Consider the subroot system C3, which has the restricted semisimple

decomposition with m = 3, a contradiction to Theorem 3.5!

Theorem 3.8. For types E7 and E8, there are no semisimple decompositions with m ≥ 3.

But for type E6, up to an isomorphism, there is a unique semisimple decomposition, given

by: consider the Dykin diagram of E6:

with α1 ∈ △ab α2, α3, α4, α6,∈ △0 α5 ∈ △bc, then

△ab = {all positive roots containing α1, not containing α5},
△bc = {all positive roots containing α5, not containing α1},
△ac = {all positive roots containing both α5 and α1},
△0 = {all roots generated by α2, α3, α4, α6,}.

Proof. Since gC contains a subalgebra of type D5, by Theorem 3.6, ∃ α ∈ △0. Find

a subalgebra l of type D5, D6 or D7 which does not contain α. Then l has a semisimple

decomposition from that of gC. By Theorem 3.6 and the fact that l and α generate gC, if gC

has such a decomposition, then m = 3. We list in the left the possible cases that the simple

roots belong to. By Theorem 3.2, it is possible to give some limit to all roots. Write the
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roots which make this case impossible in the right. For E7:

For E8, there are also three possible cases:

Two possible cases for E6:

The only remainding case is the last case for E6, which can be conjugated to:

By Theorem 3.2, we can write down all roots of △ab △bc △ac and △0 as the theorem gives.

§4. Real Homogeneous Semisimple Space G/C(W )0

By Theorem 2.2, there are two classes of semisimple pairs (g, u), each pair of which arises

to a real semisimple homogeneous space G/C(W )0. For the first class, every semisimple
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decomposition (here we allow m = 2) g1 =
m∑

a=1
ga induces the semisimple decomposition

gC =

m∑
a=1

(ga + uC ∩ g1) +

m∑
a=1

(ga + uC ∩ g1),

and f(x), the minimal polynomial of I, has 2m imaginary roots. Conversely, by Theorem

2.2, every semisimple decomposition of gC arises in above way.

Theorem 4.1 (see [1, Chapter 3]). Every reduced semisimple decomposition with m = 2

is given by gC = g1 + g2 where g1 , g2 are the opposited parabolic subalgebra with Levi

subalgebra uC.

Corollary 4.1. Given a fixed prime root system Γ, up to an isomorphism of root system,

every semisimple decomposition of △ with m = 2 is given by △ = △0 ∪ △11 ∪ △22 ∪ △12

∪△21, where

(1) △ is generated by the subset Γ0 of Γ, △′
0 is generated by the subset Γ′

0, Γ0 ⊂ Γ′
0 ⊂ Γ,

(2) △11 ∪△22 = △′
0 \ △0, △11 +△22 = ∅,

(3) △12 ⊂ △+, △12 = −△21, △11 = −△11, △22 = −△22.

Theorem 4.2. All the semisimple homogeneous spaces (g, u) of first class whose f(x)

has 4 imaginary roots are determined by Theorem 2.2, Corollary 4.1 (too many, including all

the complexifocation of complex homogeneous spaces and paracomplex homogeneous spaces

G/C(W )0, we do not list here). Other case (f(x) has 2s imaginary roots and s ≥ 3) is given

by

(1)
(
sl(n,C), s

( m∑
a=1

gl(na,C)
))
, with 2s = 2m, s ≥ 3. The semismiple decomposition is

determined by Theorem 3.3.

(2) (so(2n,C), C + gl(n − 1,C)), where C + gl(n − 1,C) ↪→ gl(n,C) ↪→ so(2n,C), with
2s = 6. The semisimple decomposition is determined by Theorem 3.6.

(3) (e6,C2 + so(8,C)) with 2s = 6, where the semisimple decomposition is determined by

Theorem 3.8.

For the second type, gC is simple, and the semisimple decompositions of gC are given

by Theorems 3.3–3.8. We only need to find all real forms g, such that the associated

conjugation σ respects above decomposition, i.e ∀ a, ∃ b such that σ(ga) = gb. Choose

Cartan subalgebra h ⊂ u as we did in Section 3. Now the action of σ on roots satisfies:

σ(△0) = △0 and σ(△ab) = △σ(a)σ(b), where σ(a) is defined by σ(△a) = △σ(a).

Lemma 4.1. All σ which respects the semisimple decomposition (in Theorems 3.3, 3.4

and 3.8) arise in the following way:

(1) For type Al, let σ be an involutive permutation of N = {1, 2, · · · , n}, such that ∀ a ∃ b

such that σ(Na) = Nb, define σ(ei − ej) = eσ(i) − eσ(j), ∀ 1 ≤ i ̸= j ≤ n.

(2) For type Dl, let σ be an involutive permutation of N ′ = {2, · · · , n}, define σ(e1) =

eσ(1), σ(ei) = ±eσ(i), ∀ i ∈ N ′.

(3) For type E6, given a member w of Wyel Group of △0, viewed as the element of the

Wyle Group of △, then σ = w or σ = −wρ , where ρ is the regular outer isomorphism (see

[2]) of △ (i.e the Graph isomorphism of Dykin diagram E6).

We omit the proof, it is a corollary of Theorems 3.3, 3.4 and 3.8.
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Theorem 4.3. The semisimple homogeneous spaces (g, u) of the second class are given

by following table: Table 1. Here we suppose I has a minimal polynomial f(x), denote the

number of real roots of f(x) by r and the number of complex roots of f(x) by 2s.

Table 1. Real Homogeneous Semisimple Space

Proof. As [2] or [4] did, we start from a compact real form gC , choose some isomorphism

θ of gC , and give the real form g. For type Al, since σ is determined by above Lemma, it

forces θ to be an outer isomorphism, so g must be sl(n,R) or su∗(2n). Find all W , calculate

directly. For type Dl, if σ(ei) = −eσ(i) and l is odd, θ is inner; if σ(ei) = −eσ(i) and l is

even, or if σ(ei) = eσ(i), then θ is outer. For every case, find all W such that the root system

admits such decomposition (Theorem 3.6) and σ (above Lemma). For type E6, θ is always

outer, so g must be e6(6) or e6(−26). Find all W such that the root system admits such

decomposition (Theorem 3.8) and σ (above Lemma).

First, although on G/C(W )0 there is a natural symplectic form, it is difficult to define a

metric on the semisimple homogeneous space such that the symplectic form, metric and the

semisimple structure fit nicely like the Kähler manifold or para-Kähaler manifold. Second,

the semisimple manifold seems more “rigid” than the complex manifold, so the semisimple

homogeneous space is much less than the complex homogeneous space.
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