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SOME EXTENSIONS OF PALEY-WIENNER THEOREM***
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Abstract

The Shannon’s sampling theorem has many extensions, two of which are to wavelet subspaces

of L2(R) and to B2
π =: {f(x, y) ∈ L2(R2), supp f̂ ⊆ [−π, π] × [−π, π]}, where suppf̂ denotes

the support of the Fourier transform of a function f . In fact, the Paley-Wienner theorem says
that each f in B2

π can be recovered from its sampled values {f(xn, ym)}n,m if (xn, ym) satisfies

|xn − n| ≤ L < 1
4

and |ym − m| ≤ L < 1
4
. Unfortunately this theorem requires strongly the

product structure of sampling set {(xn, ym)}m,n∈Z . This paper gives a sampling theorem in

which the sampling set has a general form {(xnm, ynm)}. In addition, G. Walter’s sampling
theorem is extended to wavelet subspaces of L2(R2) and irregular sampling with the general
sampling set {(xnm, ynm)} is considered in the same spaces. All results in this work can be

written similarly in n-dimensional case for n ≥ 2.
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§1. Introduction and Motivation

The classical Shannon’s sampling theorem holds due to the following two reasons:

(i) q(t, u) = sinπ(t−u)
π(t−u) is the reproducing kernel of Bπ, i.e.,

f(t) =

∫ +∞

−∞
q(t, u)f(u)du

for each f ∈ Bπ, where Bπ = {f ∈ L2(R), suppf̂ ⊆ [−π, π]};
(ii) q(t, n) = sinπ(t−n)

π(t−n) is an orthonormal basis of Bπ.

In fact, q(t, n) being an orthonormal basis implies that f(t) =
∑
n
⟨f(·), q(·, n)⟩q(t, n) and

furthermore

f(t) =
∑
n

f(n)
sinπ(t− n)

π(t− n)
(1.1)

by (i). A standard argument shows that the series in (1.1) converges uniformly, which

gives the Shannon’s sampling theorem. Furthermore since q(t, tn) is still a Riesz basis if

|tn − n| ≤ L < 1
4 , one obtains the Paley-Wienner Theorem f(t) =

∑
n
f(tn)Sn(t), where

Sn(t) is the biothogonal Riesz basis of q(t, tn).

Manuscript received October 6, 1995.

∗Departement of Mathematics, Beijing Polytechnic University, Beijing 100022, China.

∗∗Center for Mathematical Sciences, Zhejiang University, Hangzhou 310027, China.

∗ ∗ ∗Project supported by the Science Foundation of New Stars of Beijing.



332 CHIN. ANN. OF MATH. Vol.19 Ser.B

It turns out that the above Paley-Wienner theorem can be extended to 2-dimensional

case by a similar argument. In fact by denoting

B2
π = {f(x, y) ∈ L2(R2), supp f̂ ⊆ [−π, π]2},

q(x, y, u, v) =
sinπ(x− u)

π(x− u)

sinπ(y − v)

π(y − v)
,

we have the following easily understandable lemmas:

Lemma 1.1. The space B2
π is the tensor product of Bπ and Bπ; that is, B

2
π is generated by

linear closure of f(x)g(y), where f, g ∈ Bπ. In general we denote this fact by B2
π = Bπ

⊗
Bπ.

Lemma 1.2. The function q(x, y, u, v) is the reproducing kernel of B2
π.

Lemma 1.3. If {en(x)} is a Riesz basis of Bπ, then so is {en(x)em(y)}n,m of B2
π.

By Lemmas 1.1–1.3, we have the following Paley-Wienner theorem in 2-dimensional case.

Theorem 1.1. If |xn − n| ≤ L < 1
4 and |ym −m| ≤ L < 1

4 , then there exists {Sn,m(x,

y)}n,m ⊆ B2
π such that

f(x, y) =
∑
n,m

f(xn, ym)Sn,m(x, y)

for each f ∈ B2
π.

A disadvantage of Theorem 1.1 is the restrictivity of the product structure of the sampling

set {(xn, ym)}. Butzer and Hinsen considered the case in which the sampling set has the

form {(xnm, yn)}m,n∈Z (see [1, Theorem 3.8]) while K. Gröchenig estabished a sampling

theorem for more general sampling set but with oversampling[2]. In Section 2 we shall give

a sampling theorem in B2
π with the form of sampling set {(xnm, ynm)}m,n∈Z . On the other

hand, G. Walter extended the Shannon’s sampling theorem (1.1) to wavelet subspaces (see

[3]) as follows.

Let φ(t) ∈ L2(R)∩C(R) satisfy φ(t) = O(|t|−a) at t = ∞ for some a > 1. If {φ(t− n)}n
constitutes an orthonormal basis of some subspace V0 of L2(R) and if φ̂⋆(ω) =:

∑
n
φ(n)einω

has no zeros on the real line, then there exists Sn(t) such that

f(t) =
∑
n

f(n)Sn(t) (1.2)

for each f ∈ V0. In wavelet analysis, this V0 is called a wavelet subspace. In Section

3, we shall find both regular and irregular sampling theorems for general sampling set

{(xnm, ynm)} in 2-dimensional wavelet subspaces.

§2. Irregular Sampling in B2
π

In this section, we shall remove the limitation of the product structure of the sampling

set in Theorem 1.1. We begin with a simple lemma[4].

Lemma 2.1. Let {fn} be an orthonormal basis of a Hilbert space H and {gn} ⊆ H. If

there exists 0 < θ < 1 such that∥∥∥ k∑
n=1

cn(fn − gn)
∥∥∥ ≤ θ

( k∑
n=1

c2n

) 1
2

for any c1, c2, · · · , cn(n = 1, 2, · · · ), then {gn} is a Riesz basis of H.

Now we are ready to state
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Theorem 2.1. If |tmn − m| ≤ δ1, |smn − n| ≤ δ2 with δ =: δ1 + δ2 < ln 2
π , then there

exists {S⋆
mn(x, y)} ⊆ B2

π such that

f(x, y) =
∑
m,n

f(tmn, smn)S
⋆
mn(x, y) (2.1)

holds uniformly on R2 for each f ∈ B2
π.

Proof. Since q(x, y, t, s) = sinπ(x−t)
π(x−t) . sinπ(y−s)

π(y−s) is the reproducing kernel of B2
π by Lemma

1.2, one only needs to prove that q(x, y, tmn, smn) is a Riesz basis of B2
π to have (2.1) in the

sense of L2(R2). Now define

gmn(u, v) =:
1

2π
eitmnu+ismnvK[−π,π]2(u, v),

where K[−π,π]2(u, v) is the characteristic function of the square [−π, π]2 in R2. Then it is

easy to find ĝmn(·, ·) = q(·, ·, tmn, smn). Hence one needs only to show that gmn constitutes

a Riesz basis of L2[−π, π]2 to have (2.1) in the sense of L2(R2).

It is known that 1
2π e

inu+imv is an orthonormal basis of L2[−π, π]2. By Lemma 2.1, it is

sufficient to prove that there exists 0 < θ < 1 such that

I =
1

2π

∥∥∥∑
m,n

cmn(e
itmnu+ismnv − einu+imv)

∥∥∥
L2[−π,π]2

≤ θ
(∑

m,n

c2mn

) 1
2

(2.2)

for any finite sequence {cmn}m,n. Now one can re-express

I =
1

2π

∥∥∥∑
m,n

(eiδαu+iσαv − 1)cmne
inu+imv

∥∥∥,
where α = (m,n) and δα = tmn − n, σα = smn − m. By using the Taylor’s formula for

eiδαu+iσαv at u = v = 0, one obtains

eiδαu+iσαv − 1 =
∞∑
k=1

1

k!
(iδαu+ iσαv)

k =
∞∑
k=1

k∑
l=0

1

k!
Cl

ki
k(δαu)

l(σαv)
k−l,

where Cl
k = l!(k−l)!

k! . Therefore it follows that

I =
1

2π

∥∥∥∑
m,n

∞∑
k=1

k∑
l=0

1

k!
Cl

ki
k(δαu)

l(σαv)
k−lcmne

inu+imv
∥∥∥

≤ 1

2π

∞∑
k=1

k∑
l=0

Cl
k

k!

∥∥∥∑
m,n

δlασ
k−l
α ulvk−lcmne

inu+imv
∥∥∥

≤
∞∑
k=1

k∑
l=0

Cl
k

k!
πk

[∑
m,n

(δlασ
k−l
α cmn)

2
] 1

2

≤
∞∑
k=1

πk

k!
(δ1 + δ2)

k
(∑

m,n

c2mn

) 1
2

= (eπδ − 1)
(∑

m,n

c2mn

) 1
2

.

Now one may take θ = eπδ − 1. It is obvious that 0 < θ < 1 due to the assumption δ < ln 2
π ,

which proves (2.2). The uniform convergence follows from a standard argument (see [1,

p.254]), since the kernel function q(x, y, t, s) is bounded.
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Theorem 2.1 is derived essentially by considering the pertubation of the known orthonor-

mal basis. In fact we can do a little more by considering the pertubation of a known frames.

Definition 2.1. A sequence {gn} of a Hilbert space H is called a frame if there exist

0 < m ≤ M < ∞ such that

m||f ||2 ≤
∑
n

|⟨f, gn⟩|2 ≤ M ||f ||2

for each f ∈ H.

It is known that a Riesz basis is always a frame. The following well-known frame operator

theorem is needed in our discussion.

Lemma 2.2. If {gn} is a frame of H, then there exists another frame {hn}, called dual

frame, such that

f =
∑
n

⟨f, gn⟩hn =
∑
n

⟨f, hn⟩gn

for each f ∈ H.

Remark 2.1. By Lemma 2.2 we know that it is sufficient that q(x, y, tmn, smn) is a frame

to have a sampling theorem for a sampling set {(tmn, smn)} in B2
π, where

q(x, y, t, s) =
sinπ(x− t)

π(x− t)
· sinπ(y − s)

π(y − s)

is the kernel of B2
π. Hence in order to have a sampling theorem in B2

π, we only need the

following condition: there exist 0 < A < B < ∞ such that

A||f ||2 ≤
∑
n,m

|f(tmn, smn)|2 ≤ B||f ||2

for each f ∈ B2
π.

Theorem 2.2. Let A||f ||2 ≤
∑
n,m

|f(tmn, smn)|2 ≤ B||f ||2 for each f ∈ B2
π. If

emn =: umn − tmn and dmn =: vmn − smn

satisfy |emn| ≤ e, |dmn| ≤ d and

δ =:
√
e2 + d2 <

√
ln

A+B2(e2π − 1)

B2(e2π − 1)
,

then there exist 0 < m0 < M0 < ∞ such that

m0||f ||2 ≤
∑
m,n

|f(umn, vmn)|2 ≤ M0||f ||2

for each f ∈ B2
π.

Proof. Denote α = (m,n), tα = tmn, eα = emn, etc. By applying Taylor’s formula and

Cauchy inequality, one has

Iα =: |f(uα, vα)− f(tα, sα)| =
∣∣∣ ∞∑
k=1

k∑
l=0

Cl
k

k!
Dl

xfD
k−l
y felαd

k−l
α

∣∣∣
≤

[ ∞∑
k=1

k∑
l=0

Cl
k

k!
|Dl

xfD
k−l
y f |2

] 1
2
[ ∞∑
k=1

k∑
l=0

Cl
k

k!
|e2lα d2k−2l

α |
] 1

2

≤ (eδ
2

− 1)
1
2

[ ∞∑
k=1

k∑
l=0

Cl
k

k!
|Dl

xfD
k−l
y f |2

] 1
2

,
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where

Dn
xf =:

∂nf

∂xn
(tα, sα), Dn

y f =
∂nf

∂yn
(tα, sα)

and Cl
k = k!

l!.(k−l)! . Hence it follows that

∑
α

|Iα|2 ≤ (eδ
2

− 1)
∞∑
k=1

k∑
l=0

Cl
k

k!

∑
α

|Dl
xfD

k−l
y f |2

≤ (eδ
2

− 1)
∞∑
k=1

k∑
l=0

Cl
k

k!

[∑
α

|Dl
xf |2.

∑
α

|Dk−l
y f |2

]
. (2.3)

Noticing that (∂lf

∂xl

)∧
(u, v) = (−iu)lf̂(u, v), (2.4)

one has ∂lf
∂xl ∈ B2

π for each l ∈ Z+ and∑
α

|Dl
xf |2 ≤ B

∥∥∥∂lf

∂xl

∥∥∥2 ≤ Bπl||f ||2 ≤ Bπl (2.5)

for each ||f || ≤ 1, where the first inequality follows from the assumption of this theorem and

the second one does from (2.4). Similarly one has∑
α

|Dk−l
y f |2 ≤ B

∥∥∥∂k−lf

∂yk−l

∥∥∥2 ≤ Bπk−l||f ||2 ≤ Bπk−l (2.6)

for each f ∈ B2
π with ||f || ≤ 1. Combining (2.3) with (2.5) and (2.6), one obtains∑

α

|Iα|2 ≤ (eδ
2

− 1)
∞∑
k=1

k∑
l=0

Cl
k

k!
BπlBπk−l = B2(eδ

2

− 1)(e2π − 1) < A

due to the assumption on δ. Hence for each f ∈ B2
π the following inequality holds:

I2 =:
∑
α

|Iα|2 =
∑
α

|f(uα, vα)− f(tα, sα)|2 ≤ C||f ||2,

where C =: B2(eδ
2 − 1)(e2π − 1) < A. Also since(∑

n,m

|f(tα, sα)|2
) 1

2 − I ≤
(∑

n,m

|f(uα, vα)|2
) 1

2 ≤
(∑

n,m

|f(tα, sα)|2
) 1

2

+ I,

one may find

(
√
A−

√
C)||f || ≤

(∑
α

|f(uα, vα)|2
) 1

2 ≤ (
√
B +

√
C)||f ||.

The proof is completed by taking m0 = (
√
A−

√
C)2 and M0 = (

√
B +

√
C)2.

As a particular case, if tmn = m and smn = n, we have

Corollary 2.1. If |umn −m| ≤ e and |vmn − n| ≤ d with

δ =:
√
e2 + d2 <

√
2π − ln(e2π − 1),

then there exists {S0
mn} ⊂ B2

π such that

f(x, y) =
∑
m,n

f(umn, vmn)S
0
mn(x, y)

holds uniformly on R2 for each f ∈ B2
π.
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The proof of Corollary 2.1 follows from Theorem 2.2 and the Remark following Lemma

2.2.

§3. Sampling in Wavelet Subspaces of L2(R2)

In this part, we shall extend G. Walter’s sampling theorem (1.2) to wavelet subspaces of

L2(R2) and derive a desired irregular sampling theorem in those spaces, for which we need

Lemma 3.1. Let φ(x, y) ∈ L2(R2) ∩ C(R2) satisfy

(i) {φ(x− n, y −m)}n,m is an orthonormal system of L2(R2);

(ii) |φ(x, y)| ≤ C(1 + x2 + y2)−1−δ for some C, δ > 0.

Define

V0 =
{
f(x, y)

∣∣f(x, y) = ∑
n,m

anmφ(x− n, y −m), {anm} ∈ l2(Z2)
}
,

q(x, y, u, v) =
∑
m,n

φ(x− n, y −m)φ(u− n, v −m).

Then

(1)
∑
n,m

anmφ(x− n, y −m) converges both uniformly and in L2(R2);

(2) the kernel function q(x, y, u, v) is well-defined on R4 and q(x, y, u0, v0) ∈ V0 for any

u0, v0 ∈ R;

(3) for each f ∈ V0,

f(x, y) =

∫
R2

f(u, v)q(x, y, u, v)dudv

holds for each x, y ∈ R.

Proof. (1) It is obvious that
∑
n,m

anmφ(x − n, y −m) converges in L2(R2) since {φ(x −

n, y−m)} is an orthonormal system and {anm} ∈ l2(Z2). The continuity and decay condition

(ii) on φ imply the uniform convergence of the periodic function
∑
m,n

|φ(x− n, y −m)|2 and

furthermore the boundedness. Furthermore it follows that
∑
n,m

anmφ(x−n, y−m) converges

uniformly from∣∣∣∑
n,m

anmφ(x− n, y −m)
∣∣∣2 ≤

∑
n,m

|anm|2.
∑
n,m

|φ(x− n, y −m)|2.

(2) The function q(x, y, u, v) is well-defined due to the assumptions (i) and (ii). The decay

condition on φ implies φ(u0 − n, v0 −m) ∈ l2(Z2) and therefore q(x, y, u0, v0) ∈ V0 by the

definition of V0.

(3) It is obvious that f(x, y) =
∑
n,m

⟨f(u, v), φ(x−n, y−m)φ(u−n, v−m)⟩ in L2(R2)-sense.

Since∫ ∑
n,m

|f(u, v)φ(x− n, y −m)φ(u− n, v −m)|dudv ≤
∑
n,m

|φ(x− n, y −m)| · ||f || · ||φ|| < ∞

for each x, y ∈ R, one has

f(x, y) =

∫
R2

f(u, v)q(x, y, u, v)dudv

by the Lebesgue dominated convergence theorem.
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Theorem 3.1. In addition to the assumptions of Lemma 3.1, if

φ̂⋆(u, v) =
∑
n,m

φ(n,m)einu+imv

has no zeros on R2, then there exists S(x, y) ∈ V0 such that for each f ∈ V0

f(x, y) =
∑
n,m

f(n,m)S(x− n, y −m) (3.1)

holds uniformly on R2.

Proof. First one shows that q(x, y, k, l) =
∑
n,m

φ(k − n, l −m)φ(x− n, y −m) is a Riesz

basis of V0. It is clear that

q̂(u, v, k, l) =
∑
n,m

∫
R2

φ(k − n, l −m)φ(x− n, y −m)e−ixu−iyvdxdy

=
∑
n,m

φ(k − n, l −m)φ̂(u, v)e−inu−imv

= φ̂⋆(u, v)φ̂(u, v)e−iku−ilv. (3.2)

Since {φ(x− k, y− l)} is an orthonormal system and 0 < m0 ≤ |φ̂⋆(u, v)| ≤ M0 < +∞, one

has

m2
0

∑
k,l

c2kl ≤
∫ ∣∣∣∑

k,l

cklφ̂
⋆(u, v)φ̂(u, v)e−iku−ilv

∣∣∣2dudv ≤ M2
0

∑
k,l

c2kl;

that is, q̂(u, v, k, l) is a Riesz basis of V0 and so is q(u, v, k, l).

Let Snm(x, y) be the bi-orthogonal Riesz basis of q(x, y, n,m), then for each f ∈ V0,

f(x, y) =
∑
n,m

⟨f(u, v), q(u, v, n,m)⟩Snm(x, y) =
∑
n,m

f(n,m)Snm(x, y)

holds in the sense of L2(R2) by (3) of Lemma 3.1. Next one needs to show that Snm(x, y)

can be generated from one function S in the sense that Snm(x, y) = S(x − n, y − m). In

fact define S(x, y) by Ŝ(u, v) = φ̂(u,v)
φ̂∗(u,v) . Then S(u, v) is well-defined and S ∈ V0 by the

assumptions of φ and φ̂∗. Furthermore it is easy to see that

S(.− n, .−m)∧(u, v) = Ŝ(u, v)e−inu−imv =
φ̂(u, v)e−inu−imv

φ̂∗(u, v)
.

Hence one obtains

⟨S(x− n, y −m)∧(u, v), q̂(u, v, k, l)⟩ = δnk.δml

by (3.2) and the fact that {φ(x−n, y−m)} is an orthonormal system. Since the bi-orthogonal

Riesz basis of q(x, y,m, n) is unique, one can conclude that Snm(x, y) = S(x− n, y −m).

Finally the uniform convergence can be obtained as follows: denoting the partial sum of∑
n,m

f(n,m)Snm(x, y) by gkl(x, y), one has the following estimate that

|f(x, y)− gkl(x, y)| =
∣∣∣ ∫ [f(u, v)− gkl(u, v)]q(x, y, u, v)dudv

∣∣∣
≤ ||f − gkl||||q(x, y, u, v)||u,v

= ||f − gkl||
[∑
n,m

|φ(x− n, y −m)|2
] 1

2

.
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It is known that
∑
n,m

|φ(x−n, y−m)|2 is bounded from the proof of (1) in Lemma 3.1. Hence

one obtains the uniform convergence, which completes the proof of the theorem.

Remark 3.1. Comparing with Walter’s theorem in one dimensional case, the function

φ̂⋆(u, v) can be thought as a nature extension of φ̂⋆(ω). It should be pointed out that the

scaling function in Theorem 3.1 is not even necessarily orthogonal. Instead if φ is a Riesz

basis of V0 and φ̂⋆(u, v) ̸= 0, we still have a sampling theorem. In fact φ(x, y) can be

orthogonalized to Φ(x, y) given by

Φ̂(u, v) =
φ̂(u, v)∑

k,j

|φ̂(u+ 2πk, v + 2πj)|2
.

It is easy to show that V0(φ) = V0(Φ) and

Φ̂⋆(u, v) =
∑
k,j

Φ̂(u+ 2πk, v + 2πj) =
φ̂⋆(u, v)∑

k,j

|φ̂(u+ 2πk, v + 2πj)|2
.

Hence Φ̂⋆(u, v) ̸= 0 if and only if φ̂⋆(u, v) ̸= 0.

Example 3.1 (Tensor Product Form). If φ1 and φ2 are orthonormal scaling functions

of L2(R), then φ(x, y) =: φ1(x).φ2(y) defines a new orthonormal scaling function of L2(R2).

In this case it is easy to show φ̂⋆(u, v) = φ̂1
⋆(u).φ̂2

⋆(v). Hence φ̂⋆(u, v) has no zeros if

neither φ̂1
⋆ nor φ̂2

⋆(v) has. A typical example is given by φ(x, y) = sinπx
πx . sinπy

πy , where

φ̂⋆(u, v) = 1. Unfortunately this function does not satisfy the decay condition of Theorem

3.1.

Example 3.2 (Space of Splines). Let

Φα(u, v) =
{∑

k,j

[(u− 2πk)2 + (v − 2πj)2]−α
} 1

2

,

φ̂α(u, v) =
(u2 + v2)−

α
2

Φα(u, v)
with α > 2.

Then φα is a scaling function of L2(R2) and satisfies all conditions of Lemma 3.1 (see [5,

Proposition 6]). It is true that

φ̂α
⋆(u, v) =

∑
m,n

φα(m,n)eimu+inv =
∑
m,n

φ̂α(u+ 2πm, v + 2πn) > 0.

Therefore a sampling theorem

f(x, y) =
∑
m,n

f(m,n)Sα
mn(x, y)

follows from Theorem 3.1.

Example 3.3 (Meyer’s Function). The Meyer’s function φ(x, y) is given by

φ̂(u, v) =

 1, |u| ≤ 2π
3 and |v| ≤ 2π

3 ,
g(x, y), otherwise,
0, |u| ≥ 4π

3 or |v| ≥ 4π
3

with φ̂ ∈ C2 and 0 ≤ φ̂(u, v) ≤ 1. It is easy to see that

0 < m1 ≤
∑
k,j

φ̂(u+ 2πk, v + 2πj) ≤ M1 < +∞
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and

0 < m2 ≤
∑
k,j

|φ̂(u+ 2πk, v + 2πj)|2 ≤ M2.

Therefore one can have a sampling theorem in the space V0 = span{φ(x−m, y− n)}n,m by

Theorem 3.1 and Remark 3.1.

Next we shall extend Theorem 3.1 to the irregular case. It will be shown that under the

assumptions of Theorem 3.1, each f ∈ V0 can be recoved from f(tnm, snm) if both |tnm−m|
and |snm − n| are smaller than an pre-assigned positive number.

Theorem 3.2. Under all assumptions of Theorem 3.1 if the sampling function S(x, y)

has the same decay condition as φ in Lemma 3.1, then there exist δ > 0 and {S∗
nm} ⊆ V0

such that for each f ∈ V0

f(x, y) =
∑
n,m

f(tnm, snm)S∗
nm(x, y)

holds uniformly on R2 as |tnm − n|, |snm −m| ≤ δ, where S∗
nm ⊆ V0.

Proof. By the Remark following Lemma 2.2, it is sufficient to show that

A||f ||2 ≤
∑
n,m

|f(tnm, snm)|2 ≤ B||f ||2.

But the proof of Theorem 3.1 implies

A0||f ||2 ≤
∑
n,m

|f(n,m)|2 ≤ B0||f ||2. (3.3)

Therefore one only needs to prove that there exists 0 < θ <
√
A0 such that

I =:
[∑
n,m

|f(tnm, snm)− f(n,m)|2
] 1

2 ≤ θ||f ||2 (3.4)

for each f ∈ V0. It is known that

f(t, s) =
∑

k1,k2∈Z

f(k1, k2)S(t− k1, s− k2)

from Theorem 3.1 and also it is easy to see that S(x, y) is a continuous function with

S(n,m) = δnm. By using

f(tnm, snm) =
∑

k1,k2∈Z

f(k1, k2)S(tnm − k1, snm − k2),

one has

I =
[∑
n,m

∣∣∣ ∑
k1,k2

f(k1, k2)S(tnm − k1, snm − k2)− f(n,m)
∣∣∣2] 1

2

≤
[∑
n,m

|f(n,m)|2|S(tnm − n, snm −m)− 1|2
] 1

2

+
[∑
n,m

∣∣∣ ∑
(k1,k2 )̸=(n,m)

f(k1, k2)S(tnm − k1, snm − k2)
∣∣∣2] 1

2

=: I1 + I2.
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Combining (3.3) with continuity of S(x, y) and S(0, 0) = 1, one obtains

I1 =
[∑
n,m

|f(n,m)|2|S(tnm − n, snm −m)− 1|2
] 1

2 ≤ A0

4
||f || (3.5)

if |tnm −n| and |snm −m| are chosen sufficiently small. Also combining the decay condition

on S with the continuity of S and S(n,m) = δnm, one can easily show that for any 0 < ϵ <√
A0

4B0 ∑
(k1,k2 )̸=(n,m)

|S(tnm − k1, snm − k2)| ≤ ϵ (3.6)

for each (n,m) ∈ Z2 and ∑
(n,m)̸=(k1,k2)

|S(tnm − k1, snm − k2)| ≤ ϵ (3.7)

for each (k1, k2) ∈ Z2 as |tnm − n| and |snm − m| are small enough. Therefore one may

conclude that

I22 =
∑
n,m

∣∣∣ ∑
(k1,k2) ̸=(n,m)

f(k1, k2)S(tnm − k1, snm − k2)
∣∣∣2

≤
∑
n,m

[ ∑
(k1,k2 )̸=(n,m)

|f(k1, k2)|2|S(tnm − k1, snm − k2)|

·
∑

(k1,k2 )̸=(n,m)

|S(tnm − k1, snm − k2)|
]

≤ ϵ
∑
m,n

∑
(k1,k2 )̸=(n,m)

|f(k1, k2)|2|S(tnm − k1, snm − k2)|

= ϵ
∑
k1,k2

∑
(n,m)̸=(k1,k2)

|f(k1, k2)|2|S(tnm − k1, snm − k2)|

≤ ϵ2B0||f ||2 <
A0

4
, (3.8)

where the first inequality holds due to the Cauchy inequality and the second one does

because of (3.6) and the third one follows from (3.3) and (3.7). The formula (3.8) implies

I2 <
√
A0

2 ||f || and furthermore

I =: I1 + I2 <
3

4

√
A0 by (3.5).

This shows the inequality (3.4). Similar to Theorem 3.1 the uniform convergence is obtained,

which completes the proof.
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