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SOME EXTENSIONS OF PALEY-WIENNER THEOREM***

Liu YouMING* SUN QI1yu** HUANG DAREN**

Abstract

The Shannon’s sampling theorem has many extensions, two of which are to wavelet subspaces
of L2(R) and to B2 =: {f(z,y) € L2(R?), supp f C [-=, ] X [-7, 7|}, where suppf denotes
the support of the Fourier transform of a function f. In fact, the Paley-Wienner theorem says
that each f in B?r can be recovered from its sampled values {f(n, Ym ) }n,m if (Zn,ym) satisfies
|lzn —n| < L < % and |ym —m| < L < %. Unfortunately this theorem requires strongly the
product structure of sampling set {(zn,ym)}m,ncz. This paper gives a sampling theorem in
which the sampling set has a general form {(zym,Ynm)}. In addition, G. Walter’s sampling
theorem is extended to wavelet subspaces of L2(R?) and irregular sampling with the general
sampling set {(Znm,Ynm)} is considered in the same spaces. All results in this work can be
written similarly in n-dimensional case for n > 2.
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§1. Introduction and Motivation

The classical Shannon’s sampling theorem holds due to the following two reasons:

(i) q(t,u) = % is the reproducing kernel of By, i.e.,

+oo
£ = [ altu)
for each f € B,, where B, = {f € L*(R), suppf C [—7, 7]}

(ii) q(t,n) = % is an orthonormal basis of B;.

In fact, g(¢,n) being an orthonormal basis implies that f(t) = > (f(-), q(-,n))q(t,n) and

n
furthermore

F(t) =3 1) TS

by (i). A standard argument shows that the series in (1.1) converges uniformly, which

(1.1)

sinw(t —n)
-n

gives the Shannon’s sampling theorem. Furthermore since ¢(¢,t,) is still a Riesz basis if

tn, —n| < L < 1, one obtains the Paley-Wienner Theorem f(t) = 3 f(t,)Sn(t), where
n

Sp(t) is the biothogonal Riesz basis of ¢(t, t,,).
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It turns out that the above Paley-Wienner theorem can be extended to 2-dimensional
case by a similar argument. In fact by denoting

B; = {f(z,y) € L*(R®), supp f C [~m,7]*},
sinm(z — ) sinw(y — v)

- wy-v)
we have the following easily understandable lemmas:

q(z,y,u,v) =

Lemma 1.1. The space B2 is the tensor product of By and By ; that is, B2 is generated by
linear closure of f(x)g(y), where f,g € By. In general we denote this fact by B2 = B, Q) B.

Lemma 1.2. The function q(z,y,u,v) is the reproducing kernel of B2.

Lemma 1.3. If {e,(z)} is a Riesz basis of By, then so is {en(2)em(y) n.m of B2.

By Lemmas 1.1-1.3, we have the following Paley-Wienner theorem in 2-dimensional case.

Theorem 1.1. If |z, —n|] < L < % and |ym —m| < L < %, then there exists {Sn m(z,
Y) }nm C B2 such that

y) = Z f(xna ym)Sn,m(xay)

for each f € B2.

A disadvantage of Theorem 1.1 is the restrictivity of the product structure of the sampling
set {(Zn,Ym)}. Butzer and Hinsen considered the case in which the sampling set has the
form {(%nm,Yn)}mnez (see [1, Theorem 3.8]) while K. Grochenig estabished a sampling
theorem for more general sampling set but with oversampling[?. In Section 2 we shall give
a sampling theorem in B2 with the form of sampling set {(Znm, Ynm)}m.nez. On the other
hand, G. Walter extended the Shannon’s sampling theorem (1.1) to wavelet subspaces (see
[3]) as follows.

Let (t) € L?(R) N C(R) satisfy p(t) = O(|t|~2) at t = oo for some a > 1. If {o(t —n)},
constitutes an orthonormal basis of some subspace V, of L?(R) and if ¢*(w) =: Y ¢(n)e™

has no zeros on the real line, then there exists S, (¢) such that
=D f(n)Sn(®) (12)

for each f € Vy. In wavelet analysis, this Vj is called a wavelet subspace. In Section
3, we shall find both regular and irregular sampling theorems for general sampling set
{(nm,Ynm)} in 2-dimensional wavelet subspaces.

§2. Irregular Sampling in B2

In this section, we shall remove the limitation of the product structure of the sampling
set in Theorem 1.1. We begin with a simple lemmal*.

Lemma 2.1. Let {f,} be an orthonormal basis of a Hilbert space H and {g9,} C H. If
there exists 0 < 6 < 1 such that

|3 s

n

1

<o(>a)’

=1
for any ci,¢9,- - ;en(n=1,2,---), then {gn} is a Riesz basis of H.
Now we are ready to state
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Theorem 2.1. If |tymn — m| < 81, |Smn — 1| < 02 with § =: §; + 53 < 1“72, then there

exists {S%,,(z,y)} C B2 such that
= Z S (tmns Smn) S (%) (2.1)
m,n

holds uniformly on R? for each f € B2.

Proof. Since ¢(z,y,t,s) = Sizgr;ft_)t).sﬁa(f;s)
1.2, one only needs to prove that q¢(z, ¥, tmn, Smn) is a Riesz basis of B2 to have (2.1) in the
sense of L?(R?). Now define

is the reproducing kernel of B2 by Lemma

1 . .
Imn (U, v) =: %e”m""“s’""”K[,

where K[_. ~j2(u,v) is the characteristic function of the square [—, 7]2 in R%. Then it is

]2 (U, U)a

easy to find gpn (-, ) = ¢(*, -, tmn, Smn ). Hence one needs only to show that g,,, constitutes
a Riesz basis of L?[—m, 7% to have (2.1) in the sense of L?*(R?).

It is known that 5-e™* ™" is an orthonormal basis of L?*[—, 7|2, By Lemma 2.1, it is
sufficient to prove that there exists 0 < # < 1 such that

oot (Zcmn) (2.2)

for any finite sequence {¢mn }m,n. Now one can re-express

i § (ei(;,,u—i-ioav . 1)Cmneinu+im'u
2m
m,n

=

1 ) ) ) ,
I = % H § cmn(eztmnu+1smnv _ elnu+1mv)

I =

)

where @ = (m,n) and d, = tmn — N, 06 = Smn — M. By using the Taylor’s formula for
ePautigat at 4y — y = (, one obtains

e’} oo k
) ) 1 1
ezéuu+zoav o § :I? z5au + Z'O'a’l))k — § : § :EC (Uav)kil,
k=1 k=1 1=0
1 N(k=I) .
where C}, = = Therefore it follows that

oo k
1 1 | |
I = %H Z Z Z ycllcik((5au)l(Uav)k—lcmneznu—&-zmv

m,n k=1 1=0

< Qﬂzz HZ& k—1 l k l neinu+imv

IA
NE
=4 I~
._\;51
‘:]E?‘
7 :
>
s:q?r
L
3
~
-

k=1 m,n

S Ty,
k=1 m,n

(e 1>(Zc?m)%

Now one may take § = ¢™ — 1. It is obvious that 0 < 8 < 1 due to the assumption § < 1“2

which proves (2.2). The uniform convergence follows from a standard argument (see [1,
p.254]), since the kernel function ¢(z,y,t, s) is bounded.
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Theorem 2.1 is derived essentially by considering the pertubation of the known orthonor-
mal basis. In fact we can do a little more by considering the pertubation of a known frames.

Definition 2.1. A sequence {g,} of a Hilbert space H is called a frame if there exist
0<m< M < oo such that

ml[fII7 <Y 1f 9a)l? < M| I

for each f € H.

It is known that a Riesz basis is always a frame. The following well-known frame operator
theorem is needed in our discussion.

Lemma 2.2. If {g,} is a frame of H, then there exists another frame {h,}, called dual

frame, such that
f = Z<fa gn>hn = Z<f» hn>gn

for each f € H.
Remark 2.1. By Lemma 2.2 we know that it is sufficient that ¢(z, y, tmn, Smn) is a frame
to have a sampling theorem for a sampling set {(t,un, Smn)} in B2, where
(b s) = sinm(z —t) sinm(y —s)
Tz —t)  7w(y—s)
is the kernel of B2. Hence in order to have a sampling theorem in B2
following condition: there exist 0 < A < B < oo such that

AllfI? < Z|f(tmnv5mn)‘2 < BJ|fI?

we only need the

T

for each f € B2.
Theorem 2.2. Let A||f||? < X |f(tmn, Smn)|? < B||f||? for each f € B2. If

n,m

Emn =: Umn — tmn and dmn = Umn — Smn

satisfy lemn| < €, |dmn| < d and

L JETE< \/ L)

then there exist 0 < mg < My < 0o such that

moll FII* < D 1f (s ) [P < Mo|f]?

mn
for each f € B2.

Proof. Denote o = (m,n),to, = timn, €a = €mn, etc. By applying Taylor’s formula and
Cauchy inequality, one has

1, =: ‘f(uouvoz) - (17504 ’Z

k=11
1
2

leDk Lfel dloe;z’

oMk
?r‘Q

k

[iZ%WfD’“ lf|} [iii 2ld2k 21@5

k=11=0

T O
E[ZZ;TWI Dk lfﬂ

k=11=0

IN

N
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where
n of ne_  O"f
Dy f=: o n(tmsa)a Dyf= 7(tavsa)
and C} = T (k - Hence it follows that
) oo k Cl
DM < =1y SF > DDy P
« k=1 1=0 [e"
o~ k Cl
k g2 k—1 £|2
— YYD IDL YD (2.3)
k=1 1=0 a o
Noticing that
AN NT
(57) (wv) = (=i)' fluv), (2.4)
one has 3} 97 ¢ B2 for each | € Z and

Z|le|2 BH H < Brl||f|]? < B! (2.5)

for each || f|| < 1, where the first inequality follows from the assumption of this theorem and
the second one does from (2.4). Similarly one has

Z|Dk P2 < BH

ak H <Bkl||f‘|2<B7Tkl
for each f € B2 with ||f\| <1 Comblmng (2.3) with (2.5) and (2.6), one obtains
D Il < ZZ kkalek L= B%(e® —1)(e™—1) < A
o k=11=0
due to the assumption on §. Hence for each f € B2 the following inequality holds
I’ = Z |I.|? = Z If (ua,va) —
« «

where C' =: Bz(e52 —1)(e?

(2.6)

f(tassa)> < CIfIP,
—1) < A. Also since

(Z1stassa) )é_x(zma,va £) < < (Sttesar?)’ +

one may find

Nl

+1

VA=V < (X1 (arva)?)”

< (VB+VO)||fl].
The proof is completed by taking mg = (vA — v/C)? and My = (VB + VC)?.
As a particular case, if t,,, = m and $,,, = n, we have

Corollary 2.1. If |um, — m| < e and |Vmy — n| < d with

§=:Ve2+d? < /2 —In(e2™ — 1),
then there exists {S9,,} C B2 such that

= Z f(um”7 Umn)sgnn(l.7 y)

m,n

holds uniformly on R? for each f € B2.



336 CHIN. ANN. OF MATH. Vol.19 Ser.B

The proof of Corollary 2.1 follows from Theorem 2.2 and the Remark following Lemma
2.2.

§3. Sampling in Wavelet Subspaces of L?(R?)

In this part, we shall extend G. Walter’s sampling theorem (1.2) to wavelet subspaces of
L?(R?) and derive a desired irregular sampling theorem in those spaces, for which we need

Lemma 3.1. Let p(z,y) € L?(R?) N C(R?) satisfy

(i) {o(xz —n,y —m)}nm is an orthonormal system of L*(R?);

(ii) |o(x,y)| < C(1 + 2% +y?)~1=° for some C,6 > 0.

Define
VO = {f(aj?y)}f(mvy) = Zanm@(x -y — m)a {anm} € ZQ(ZQ)}7
n,m
A, w,0) = 3 (e —n,y — m)p(u —n, v —m).
Then
(1) 3 apmep(x —n,y —m) converges both uniformly and in L*(R?);

(2) the kernel function q(x,y,u,v) is well-defined on R* and q(x,y,uo,vo) € Vo for any
ug, Vg € R;
(3) for each f € Vy,

[z, y) = /R2 fu,v)q(z, y, u, v)dudv

holds for each x,y € R.

Proof. (1) It is obvious that > anme(z —n,y —m) converges in L?(R?) since {p(z —
n,m

n,y—m)} is an orthonormal system and {a,, } € 12(Z?). The continuity and decay condition

2

(ii) on ¢ imply the uniform convergence of the periodic function Y |p(z —n,y —m)|* and

m,n

furthermore the boundedness. Furthermore it follows that > anpme(x —n,y —m) converges
n,m

uniformly from
2
S tumple—ny—m)| < Y a3 bl —ny—m)l
(2) The function ¢(z, y, u, v) is well-defined due to the assumptions (i) and (ii). The decay
condition on ¢ implies ¢(ug — n,vg — m) € 12(Z?) and therefore q(z,y,ug,vo) € Vo by the
definition of Vj.
(3) It is obvious that f(z,y) = > (f(u,v), p(x—n,y—m)e(u—n,v—m)) in L?(R?)-sense.

n,m

Since
S Ifw,v)e( = n,y — m)p(u—n,v —m)|dudo <> Jp(z —n,y —m)| - ||f]] - [l < oo

for each z,y € R, one has

flz,y) = /R2 f(u,v)q(z,y, u,v)dudv

by the Lebesgue dominated convergence theorem.
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Theorem 3.1. In addition to the assumptions of Lemma 3.1, if

$(u,0) = 3 pln,m)eimime

n,m

has no zeros on R?, then there exists S(x,y) € Vi such that for each f € Vj

f(xvy) :Zf(n,m)S(z—n,y—m) (31)

holds uniformly on R?.
Proof. First one shows that ¢(z,y, k1) = ok —n,l —m)p(x —n,y —m) is a Riesz

n,m

basis of V. It is clear that

.00 = 3 [ ol = nl = m)p(e =y — e dady
n,m R2
= 3l — 1 — m)(u, w)e iy
n,m

= " (u, v)@(u, v)e FUTI (3.2)
Since {¢(x — k,y — 1)} is an orthonormal system and 0 < mg < |¢*(u,v)| < My < 400, one
has

2
dudv < M2 Z i
k.l

m%Zcil < / ‘ chlg@*(u,v)cﬁ(u,v)e_ik"_““
k,l k.l

that is, ¢(u, v, k,!) is a Riesz basis of Vj and so is ¢(u, v, k, ).
Let Spm(z,y) be the bi-orthogonal Riesz basis of g(x,y,n, m), then for each f €V,
f(xa y) = Z<f(u7 U)a Q(ua v,n, m)>Sﬂm«(xa y) = Z f(nv m)Snm(:c, y)

holds in the sense of L?(R?) by (3) of Lemma 3.1. Next one needs to show that S, (z,y)
can be generated from one function S in the sense that Spn(z,y) = S(z —n,y —m). In
fact define S(z,y) by S(u,v) = Sﬁ(&jg). Then S(u,v) is well-defined and S € Vp by the
assumptions of ¢ and ¢*. Furthermore it is easy to see that

@(U, U)efinufim'u

¢*(u,v)

S(.—n,. —m)u,v) = S(u,v)e MM =

Hence one obtains
(S(x —n,y —m)(u,v),q(u,v,k, 1)) = Snk-Omi

by (3.2) and the fact that {¢(z—n,y—m)} is an orthonormal system. Since the bi-orthogonal

Riesz basis of g(x,y, m,n) is unique, one can conclude that Sy, (z,y) = S(x — n,y —m).
Finally the uniform convergence can be obtained as follows: denoting the partial sum of

> f(n,m)Spm(x,y) by gri(z,y), one has the following estimate that

n,m

1£aw) = gua9)| = | [1760.0) = guatus )laCe. ., v)dude]

< ||f —gkl||||Q($7yauaU)|

=11 = gull| X I = ny = m)[?]

uU,v

Nl=
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It is known that > [p(x—n,y—m)|?

n,m

one obtains the uniform convergence, which completes the proof of the theorem.

is bounded from the proof of (1) in Lemma 3.1. Hence

Remark 3.1. Comparing with Walter’s theorem in one dimensional case, the function
@*(u,v) can be thought as a nature extension of ¢*(w). It should be pointed out that the
scaling function in Theorem 3.1 is not even necessarily orthogonal. Instead if ¢ is a Riesz
basis of Vp and ¢*(u,v) # 0, we still have a sampling theorem. In fact ¢(z,y) can be
orthogonalized to ®(z,y) given by

= 95(“7 ’U)
) = .
(u,v) S 1(u + 27k, v + 27) 2
k,j

It is easy to show that Vi(p) = Vo(®) and

*(u,v) = Z d(u+ 27k, v + 27j) = - #(u,v) —.
vy > |p(u+ 2mk, v + 2mj) 2
’ k.j

Hence ®*(u,v) # 0 if and only if ¢*(u,v) # 0.

Example 3.1 (Tensor Product Form). If ¢; and ¢y are orthonormal scaling functions
of L2(R), then ¢(x,y) =: ¢1(z).¢2(y) defines a new orthonormal scaling function of L?(R?).
In this case it is easy to show ¢*(u,v) = &1*(u).¢2”(v). Hence ¢*(u,v) has no zeros if
neither 1™ nor @™ (v) has. A typical example is given by p(z,y) = %%, where

@*(u,v) = 1. Unfortunately this function does not satisfy the decay condition of Theorem
3.1.

Example 3.2 (Space of Splines). Let

Do, 0) = { Dol —27k)* + (v = 2m) )

k,j
(u? +0?)~%
D, (u,v)
Then ¢, is a scaling function of L?(R?) and satisfies all conditions of Lemma 3.1 (see [5,
Proposition 6]). It is true that
B (u,v) = Z Do(m,n)emutine — Z Go(u + 2rm, v + 27n) > 0.

m,n m,n

Nl

Pol(u,v) = with a > 2.

Therefore a sampling theorem
flz,y) = Z f(m,n) S (2, y)
follows from Theorem 3.1.
Example 3.3 (Meyer’s Function). The Meyer’s function ¢(x,y) is given by

1, lul < 2% and |v| < 27,
H(u,v) =< g(x,y), otherwise,
0, lul > 4% or [v| > 4F

with ¢ € C? and 0 < p(u,v) < 1. It is easy to see that

0<my < Z(ﬁ(u+27rk,v+2ﬂ'j) < M; < 400
k,j
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and
0<ma < |p(u+2mk,v+2mj)]* < M.
k7j

Therefore one can have a sampling theorem in the space Vy = span{¢(z — m,y —n)}n m by
Theorem 3.1 and Remark 3.1.

Next we shall extend Theorem 3.1 to the irregular case. It will be shown that under the
assumptions of Theorem 3.1, each f € Vj can be recoved from f(tnm, Snm) if both [, —m)|
and |s,,, — n| are smaller than an pre-assigned positive number.

Theorem 3.2. Under all assumptions of Theorem 3.1 if the sampling function S(z,y)
has the same decay condition as ¢ in Lemma 3.1, then there exist § > 0 and {S),,} C WV
such that for each f € Vg

F@y) =" [(tum: Snm) S (,7)

n,m
holds uniformly on R? as |tum — nl, |Spm —m| < 3, where Sk, C V.

Proof. By the Remark following Lemma 2.2, it is sufficient to show that
A||f||2 < Z |f<tn7n73nm)|2 < B||f||2

But the proof of Theorem 3.1 implies
AollfI1P < D 1f(nym)* < Bol| £ (3.3)

Therefore one only needs to prove that there exists 0 < 6 < v/ Ag such that
1
2
= [ 321 (s sum) = Fn,m) 2] < 01712 (3.4)

for each f € Vy. It is known that
ft,s) = flha,k2)S(t — k1,5 — ka)
k?17k2€Z
from Theorem 3.1 and also it is easy to see that S(x,y) is a continuous function with
S(n,m) = d,m. By using
f(tnm; Snm) = Z f(k17 k2)S(tnm — k1, Spm — k?)a
ki,ke€Z

one has

[N

= [ 5 S 95t s = 0

n,m ki,ko

[N

< [ 10 m)PIS (= 500 — ) = 1]

n,m

2
+|:Z’ Z f(klka)S(tnm_klasnm_kQ)‘ ]
nmo (ki k2)#(n,m)
=: Il + 12.

N
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Combining (3.3) with continuity of S(x,y) and S(0,0) = 1, one obtains

1
3 A
1= [ D21 m)PIS (b = s sam —m) = 1] < 22117 (3:5)
if |tpm —n| and |y, —m| are chosen sufficiently small. Also combining the decay condition
on S with the continuity of S and S(n,m) = ., one can easily show that for any 0 < € <
A
\ iBs
Z IS (tnm — k1, 8pm — k2)| < € (3.6)
(k1,k2)#(n,m)
for each (n,m) € Z? and
Z |S(tnm — k1, Snm — k2)| <e (37)
(n,m)#(k1,k2)
for each (ki1,k2) € Z% as |tpm — n| and |s,,;, — m| are small enough. Therefore one may
conclude that
2
B=X] S kSt — ki, su — bo)|

nm o (ky,k2)#(n,m)

<X G k)PIS (b sum — ko)

nm - (ki,k2)#(n,m)

Z |S(tnm *k‘lasnm *k2)|i|

(k1,k2)#(n,m)

EZ Z |f(k1ak2)|2‘s(tnm_k175nm_k2)|

m,n (k:l,kz);é(n,m)

=e > N f e k2)PIS (b — Kty Sum — K2

k1,k2 (n,m)#(k1,k2)

A
< eBllfI? < 2, (338)

where the first inequality holds due to the Cauchy inequality and the second one does
because of (3.6) and the third one follows from (3.3) and (3.7). The formula (3.8) implies
I, < @Hf“ and furthermore

3
I=15LH+1< ZV Ay by (35)

This shows the inequality (3.4). Similar to Theorem 3.1 the uniform convergence is obtained,

IA

which completes the proof.
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