Chin. Ann. of Math.
19B: 3(1998),341-348.

THE STRONG LAW FOR THE P-L ESTIMATE IN THE
LEFT TRUNCATED AND RIGHT CENSORED MODEL (I)**
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Abstract

For the model with both left truncation and right censoring, suppose all the distributions
are continuous. It is proved that the sampled cumulative hazard function A, and the product-
limit estimate F}, are strong consistent. For any nonnegative measurable ¢, the almost sure
convergences of [¢dAn and [ @dF, to the true values [¢dA and [ ¢ dF respectively are
obtained. The strong consistency of the estimator for the truncation probability is proved.
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¢1. Introduction

Suppose that {X,}, {Y,} and {T,,} are three i.i.d. random sequences and independent
one another. Let F'; G and L be their right continuous distribution functions respectively. In
many applications, only the right censored data of the form (X; AY;, §;) with 6; = I1X; < Yj]
are available. Here and in what follows we use I[A] for the indicator of an event A and use
A, V for the minimum and maximum respectively. Write Z; = X; AY;. The K-M (cf. [5])
estimator of F'| based on (Z;,6;), 1 =1,2,--- n, is defined by

% #{ii Zi:t,éizl}
Fn(s)zl—H(l— 750 ) (1.1)

t<s

where an empty product is interpreted as one. It is clear that we can not estimate F'(x) for
x > bg from the right censored data. Here and in what follows for any distribution function
S, ag =inf{y : S(y) > 0} and bg =sup{y: S(y) < 1}.

Another model of incomplete observation is the left truncated model, which assumes the
presence of truncation variable T;, so that (X;,T;) can be observed only when X; > T;.

In this case, the data consist of n ii.d. observation (X?,Tio), i = 1,2,--- ,n and the
nonparametric MLE is defined by
i X0 = s}
0 1 _ o 7
fe =111 <1 i T0<s< X?}> 2
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(see [10]). Based on (X?,Y?), i = 1,2,---,n, for continuous F' we can estimate Fy(x) =
P(X < z|X > ay) only (see [10]).

Mixed models with both left truncation and right censoring (LTRC) often arise in bio-
statistical applications such as epidemiology and individual follow-up study (cf. [9]). The
LTRC model assumes that (Z;,d;,T;) = (X; AY:, 6;,T;) is observable only if Z; > T;. Thus,
the observation consists of the i.i.d. data

(Ui,ni, Vi), with U; >V;, p; =0o0r 1, i=1,2,-- n. (1.3)
Based on (1.3) the product-limit (P-L) estimator of F is defined by

Fn(x)zl—H(l—#{i: Ui:s’mzl}). (1.4)

e #{i: V; <s<U}

Note that F,, reduces to the K-M estimator (1.1) for right censored data if L = 1, and
reduces to the product-limit estimator (1.2) for left truncated data if G = 0. Tt is clear
that in the LTRC model, for continuous F, only Fy = P(X < z|X > ar), < bg can be
estimated.

For continuous F, G and L, the strong uniform consistency of F* and F? are known
(see e.g., [1, 8]). For the LTRC model and continuous F, let W denote the distribution
function of Z. In the case of ay > ar, which insures the denominator in the expression of
F,, bounded from zero (with probability 1) in a neighborhood of ar and hence makes the
study of F), relatively easy, the uniform consistency was also proved (e.g., Theorem 2 of [3]).
For the case of ay = ar, the strong uniform consistency of F,, kept unknown.

In this paper, for the LTRC model and continuous F, G and L we prove the strong
uniform consistency of F,, (and the P-L estimates of G and L). In fact we will prove that

for any nonnegative measurable ¢(z),

/(b(x) dF,(z) — /¢($) dFy(z) a.s. (1.5)

For the right ensored model, (1.5) was proved in [8] in 1993.

A natural estimate for the truncation probability « = P(Z > T) is o, = [ Ly, (s) dWy,(s),
where L,, and W,, are P-L estimates of L and W. For left truncated model and continuous
F and L, the weakly consistency of o, to a was proved in [10]. In this paper, for the LTRC
model we will provide a simple expression for «,. As a corollary of the strong consistency
of L, and W,,, the strong consistency of «,, follows.

§2. Preliminaries
For the LTRC model we can image the i.i.d. data (1.3) coming from a large population
(X;,Y, 1), i = 1,2,--- ;my, with m,, = inf{m : in: I[Z; > T;] = n}. For any right-
continuous non-decreasing function S, if infs S(s) < Jsflios S(s), define
as = inf{y : S(y) > infS(s)} and bs =sup{y: S(y) < sup S(s)},
S(z)=1-S(x), S_(z) = S(z—) = 131%1 S(s) and S{z} = S(z) — S_(z). To avoid the case

of mathematical trivial, we assume a;, < by, where W(z) = P(Z; < z) = 1 — F(z2)G(x).
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It is clear that aw = ap A ag and by = bp A bg. From the law of large numbers and the

equality
nISTIU < uypy =6,V < o] = 12 N2 < u b = 0,13 < 0, Ty < 7 2.1
; w o) = nmz " WT<Z],  (21)
we get, for u,v € (—oo,00) and § =0 or 1,
PU; <u,mi =6,V; <v) = 'P(Z; <u, 6 = 6,T, <0, T, < Zy), (2.2)

where « = P(Z > T) = deW > 0. In describing the distributional properties we use
(X,Y,T) to refer to any (X;,Y:, 1), (Z,9) to (Z;,6;) and (U,n, V) to (U;,n;,V;). The
following equations can be obtained directly from (2.2):

(al) Ho(u) = P(U <u,n=0)=a'P(Y <u,Y <X, Y >T)=a"' ["_(1-F)LdG,

(a2) Hi(u)=PU <u,n=1)=a'P(X <u, X <Y, X>T)=0a"'[" (1-G_)LdF,
(a3) Ho(u) = Ho(u) + Hi(u) = P(U <u) = a~" [1 LdW

(ad) K(u)=P(V<u)=a 'P(T<u,Z2>T)=a"' [* _(1-W_)dL,

(a5) R(u) = P(V <u<U) =« HTgugm:alu)u_W4my

Whenever it makes sense, define Go(u) = P(Y < u|Y > ap,) for v < by, and Go(u) =
G(bp,) for u > bp,; Fo(u) = P(X < u|X > ap,) for u < by, and Fy(u) = F(by,) for
u > by, ; and Wy(u) = P(Z < ulZ > ap,). It is obtained that

1-Go(u=)=(1-G(u—-))/PY > an,) for u € [an,,bn,],
1—Fy(u—)=(1—-F(u—))/P(X > ag,) for u € [ay,,by,| and
1-Wy(u—)=1—-W(u-))/P(Z > an,) for u € [ay,, o).

Write A;(uw)

[* . dH;/R. 1t is obtained that for continuous F,

dho(u) = dG(U)/( G- (u)) = dGo(u)/(1 = Go(u—)), for u € [any, bm, ),
Ay (u) = ( )/(1 = F_(u)) = dFy(u)/(1 = Fo(u—)), for u € [an,,bn,],
dAs(u) = (u)/(1 —W_(u)) = dWp(u)/(1 — Wy(u—)), for u € [am,,bm,].

So, Ag, A1, A are the cumulative hazard functions of Gy, Fy and W, respectively.
Lemma 2.1. Let F, G and L be continuous.
(i) If ag < bp, then Go(u) = { P <uly 2 az), foru < bw,
P(Y <bwl|Y >ar), foru>by.
(ii) If ap < bg, then Fy(u) = { PX s ulX 2 ap), for u < bw,
P(X <bw|X >ar), foru>by.

(iil) Wo(u) = P(Z < u|Z > ar.).

Proof. From (al) it is seen that ag, > ag V ar, and by, < bp A bg = by .

If ag, = ag > ar, then Plar, <Y <ap,) =0. If ag, > ag V ar, then ar, > ag (note
that ar, < ag implies ag, = ag). Hence, Ho(ag,—) = 0, Ho(ap, +¢€) > 0 (Ve > 0) and (al)
imply P(ar <Y <apg,)=0; that is, P(Y <wu|Y > ar)=P(Y <u|Y >ay,), Yu.

If by, < by, then bp < bg (note that by > bg implies by, = by ). Hence, (al) implies
P(bg, <Y < bwy) = 0. It follows that for u € (bg,,bw], we have P(Y < u|Y > ap,) =
P(Y S bH0|Y Z (ZHO).

(ii) and (iii) can be proved similarly.



344 CHIN. ANN. OF MATH. Vol.19 Ser.B

According to [10], for the model of left truncation, only Wy and Lo(u) = P(T < u|T <
bw ) can be estimated. Hence, for the LTRC model only Gy, Fy, Wy and Lg can be estimated.
Fortunately, we have the following

Corollary 2.2. Let F', G and L be continuous.

(i) ag > ar, bg < bp tmply Go =G. (i) ar > ar, bp < bg imply Fy = F.

(iil) aw > ay, implies Wo = W. (iv) by, < bw implies Lo = L.

¢3. The Strong Law for F,, G,, and L,

It is known that a cumulative hazard function Ag(z) of S determines the distribution
S(z) through the algorithm (see [4])

Sy =1-[] (0= As{shexp [ > As{s} - As(z) | . (3.1)

s<z s<z

So, for continuous Fy and Wy we have Fy(z) = 1—exp(—A1(z)), Wo(z) = 1—exp(—Az(z)).

Now, based on (1.3), let us introduce the following sub-empiricaled functions.

Hop(u) =n"" Y IU; Su,mp =0, Hip(u)=n"'Y I[U; <u,m=1],

i=1 i=1

Hy . (u) = Hop(u) + Hyp(u), Kp(u)=n"" iI[Vi <,

Ry(u) =n"" Y IV; u < U] = Kp(u) — Hyp(u—);
i=1
and the following empiricaled cumulative hazard functions:

“ dH'n .
Ammn:/ i =0,1.2 (3.2)

Here and in what follows we use f: for |, (@]
According to (3.1), the estimators of Fy and Wy should be

Fu(@)=1-]] <1 - }2;1”5)}) and W, (z) =1~ [ <1 - %:é?) (3.3)

respectively, which coincide the estimators defined by (1.4) and (1.2) and ensure that the

s<xz s<xz

corresponding cumulative hazard function to A; ., j = 1,2. By symmetry, the estimates of
Gp and L are defined by

Gu(z)=1-]] <1 - Iig:é?) and Ly(z) = [] (1 - f{jﬁ) (3.4)

s<z s>z

respectively.
In what follows, if without further statement, F', G and L are supposed to be continuous.
Let Uy, < Ugip, -+, < Up.py be the ordered values of the U;’s and (91.n, Vi), (20, Vain),
-+, (Mn:n, Vain) be the concomitants corresponding to the U;’s (that is, (1.0, Vjin) = (i, Vi)
if and only if U;.,, = U;). Define F,, = 0{(Uj.n, Mj:ns Vjin)s Uk, M, Vi); 1 < j < n,k > n}.
Then Vn > 1, Fp1 C Fp and Ay, Ag, € Fp. It is clear that for any n > 1, k =
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1,2,---,n+1, PUpt1 = Ugny1|Fns1) = 1/(n+ 1) and U1 = Ug.pgq implies

Ujn+1 = Ujin, Ujny1 = Uj_1n,
Njn+1 = Njm, for j <k —1 and Njn+1 = Nj—1m, forj>k+1. (3.5)
ij:n+1 = ij:n, ij:nJrl = ijfl:nu

For any (measurable) ¢(z) > 0, define W; ,, = [ ¢ dA;,,, i = 1,2. We have the following
result.

Lemma 3.1. Let ¢(x) > 0 and i = 1 or 2. Suppose ap < bg for i = 1. Then
(Win, Fn;n > 1) is a nonnegative reverse supermartingale; that is, Yn > 1, W; , € F,, and
E(W; n|Fns1) < Wint1.

Proof A1 n(x) is a step function and has jumps only at each Uj.,, j = 1,---,n. So,

Wln* Z(b( ]n)Aln{an}efn and

n+1

Win= Z A(Ujingt1) Mo {Ujins1}, with (U ng1) € Frg- (3.6)
j=1
Therefore, it suffices to show
E(A 1 n{Ujins1 HFns1) < Aps1{Ujinsa} as. (3.7)

Write A = I[Upt1 = Uging1]. It follows that Ay ,{Ukn+1}Ar = 0 a.s. and
E(A o {Ujing1 HFns1)

]. Z < 77j:n+1 > a.s
n+1 oy (m+DRpt1(Ujin+1) — IVim+1 < Ujing1 < Ukinti]

Let By, = {(n + 1)Rp41(Ujin41) = m}, m = 1,2,--- ,n+ 1. For m > 1, on B,, we have

> IVimt1 < Ujing1 < Uging1] = m — 1 and it follows that
=y

E(A1n{Ujins1HFns1) = nj;“ = A1 n+1{Ujm+1} as.

On B1, Y IVint+1 < Ujint1 < Uging1] = 0, which implies
k#j
n Njn+1
E(A . .
( 17n{UJ-n+1}“Fn+1) n4+1 n+1

This proves (3.7) and hence the lemma for ¢ = 1. The proof for i = 2 is similar.

7]] n+l — n+1{Uj:n+1} -

By Hewitt-Savage Zero-One Law (see [2]), Foo = [ Fn is trivial. Hence, the following
n>1
is a direct corollary of Proposition 5-3-11 of [6].

Corollary 3.1. Let i =1 or 2 and ¢(x) > 0. Suppose ap < bg fori=1.
(i) & = n11_>rr;o EW, ,, exists (possibly infinite).  (ii) W, ,, — & a.s.
(iii) If & < oo, then {W; ,} is uniformly integrable and E\W;.,, — &| — 0.
Theorem 3.1. Leti =1 or 2 and ¢(x) > 0. Suppose ap < bg fori=1. We have
lim W;, = /¢ YdA;(z) a.s.
n—oo
Proof. We only give the proof for i = 1. The proof for ¢ = 2 is similar. Let (,(u) =
(n+1)/(nR,(u) + 1) € F,,. We have EWy,, = [ ¢E(,_1(u)dH;. So, by Corollary 3.1, it

suffices to prove EC,(u) ,/ R(u)~!. By the same method used in the proof of Lemma 3.1, we
have E(C,(u)|Fni1) < Cuyr(u). Hence, E¢,(u) / R(u)~! follows from R, (u) — R(u) a.s
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For ¢(x) = I[—o0, ] it is obtained that Vx
A n(x) = Ai(z) as. asn — oo. (3.8)
The fact that A;(z) is continuous and A;, is monotone implies that for any x < by,

sup |[A; n(s) — Ai(s)] = 0 as.as n— oo.
s<

Now, using (3.1) we get the following theorem.

Theorem 3.2. Define F,(z) =1 — exp(—A1 ,(x)) and Wy, (x) = 1 — exp(—Ag,,()).

(i) If ap < b, then sup |F,(z) — Fo(z)] = 0 a.s. as n — 0.

(ii) sup [Wy(x) — Wo(z)| = 0 a.s. as n — .

Thegrem 3.3. With probability 1, as n — oo

(i) ap < bg implies sup |F,, (z)—Fp(z)| — 0, (ii) ag < bp implies sup |Gy (z)—Go(z)| — 0,

(iii) sup |Wy(x) — Wo(z)| — 0, sup |L,(x) — Lo(z)| — 0.

Proof. The proof is only for F,,. The proof for W, can be completed by considering the
case 1; = 1. The proof for G,, and L,, can be finished by symmetry (consider X; =Y;, ¥; =
X; and Z; = —T;, T; = —Z; respectively).

Set ¢, = (logn/n)'/? and d,, = inf{z;L(z) > ©,}. We get L(d,) = ¢, — 0 and
d, — ar, as n — oco. Note a;, < ap,, we have A1(d,,) = 0, as n — o0. Va € (am,,bn,),
using (3.1) and [[a; — [[b; <> |a; — b;] for a;,b; € [0,1], we obtain

Fo(dn) =1—exp(—Ai1(dy)) = 0, and F,(d,) < Ay ,(dn) — 0.
The product form of the estimate F,(z) = 1 — F,,(x) can be spliced as follows. Let

o= I (1 - ) W) = exp (— A (2) + Aa(dn))

Then Fy(x) = (1 = Fo(dn))Ma(2), Fo(z) = (1 - Fo(dn))Ma ().
Hence, |F,,(z) — Fo(z)| < Fo(dyn) + Fo(dy) + | Mp(x) — M, (x)]. It suffices to prove

sup | M, (z) — M, ()| = 0 a.s. (3.9)
Note, Va € (am,, b, ) by (ab), . i<nf< R(z) > a~'F(a)G(a)L(d,). Applying Theorem 2.1.4B
of [7], we have T
R, (z) . «
—1| < limsup ——=|R,(z) — R(z)| = 0 as.
Ry 1| S e Sy o) - Kol =0

So, V& € (ap,,bm, ), with probability 1 for large n,

inf (nRy(s)) =n inf (R"(s) .R(3)> > g R(s) > My+/nlogn,

limsup sup
n—oo d,<zr<a

dp<s<zx dp<s<zx R(S) - 2 dp<s<z
where M, is a positive constant. Hence, by Taylor’s formula
1
M, (x) = exp (—Al)n(x) + Aq1(dy) + O(logn)) — 1— Fy(z). as. (3.10)

Since M, (x) is monotone in x and Fj, is continuous, the convergence in (3.10) must be
uniform in z. Now (3.9) is proved by combining with the fact that

sup |M,,(z) — Fo(z)| = sup lexp (—A1(x) + A1(dy)) — exp (—A1(z)) | = 0 a.s.



No.3 He, S. Y. STRONG LAW FOR P-L ESTIMATE (I) 347

§¢4. The Strong Law for [¢dF,, [¢dG, and [ ¢dL,

Lemma 4.1. Suppose ¢(x) > 0. Then
(i) ar < bg and [ ¢dA; < oo imply [ $dF, — [ ¢dF, a.s.
(ii) [ ¢dAs < oo implies [ ¢dW,, — [ ¢dWy a.s.
Proof. We give the proof for (i). By the definition of F,,, we have
F.{z} = F,(x—)Hy ,{z}/R.(2) = F,(x—)A1 n{x}. (4.1)
Now the result follows from Theorems 3.1 and 3.3.
To get a more general result, we need the following lemma.

Lemma 4.2. For maybe non-continuous F', G and L,
Ln(Uj)Wn{Uj} = Oé,,,lygm{[]j}7 j = 1,27 e, N, (42)
an:/Lnde:Ln(Uj)(l—W( )/ Ru(U})s G = 1,2, m. (4.3)

Proof. Let Uy < Ugg) < -+ < Uy, be the distinct ordered values of Uy, Us, - - -, U, and
Vi) < Vig)y <+ < Vg the distinct ordered values of Vi, Va, -, V,. Then, for each fixed j

B Hyo{Uy}\ H2n{Ug)} B K {Vii}
Wil = H( Rn(U(i))> Ra(U) Lo = 11 (1_ Rn(V(zd))'

s @ Viy>Ug)
Define
&) =11 (1—M) II (1— = EV())}> = (1U 5 (4.4)
i 1<j n\Y (4) i Vioy>Ugs n\ V(1) n\V(5)

We have, for j > 2 L, (U))WilUg)} = &a(§) Han{U(j },

: - Hz,n{Ugi) } KoV} ,
o-au-n=g IT (-Fy) T - Fgy)t oo

ni<y—l ’ i Vi >Ug) nae

L Ra(UGv)) = How{U-1y} 1 Ko AV U —1) < Vioy < U]

B,(j) = G-1 G=1J1 _ H (1 _ O] =1 O] () )

Put A = ZI[U(j—l) < V(l) < U(j)]. For h = 0, Rn(U(j_l)) — Hgyn{U(j_l)} =
1

Kn(U(j—l)) - HZ,n(U(j)_) = Rn(U(])) imphes Bn(]) = 0.
For h > 0, we can suppose V(’l)7 V(’Q)7 e ,V(’h) are the distinct ordered values of {V;;V; €
(Uj=1), Ujl}, so that Ug_qy < V(’l) < V(’Q) - < V(h) < U(jy. Consequently,

H (1 K V(U1 <V < U(j)]) _ ﬁ (1 Kn{Vz)})
Ra(Viy) (V)
_ H EnlViy =) = Han(Viy ™) _ Kn(Uyn) = Han(Un) _ Ba(Ui1) = H2{UG-n)}
RBn(Vip) Ra(Uj) Ra(U()

Here7 for V(h) < Ugjy we used Rn(V(’h)) = K,L(V(’h)) - Hgm(‘/(/h)—) = R, (Ug))-

So, B,(j) =0, for j = 2,3,--- ,n, which implies (4.2). The summation over j of (4.2)
and (4.4) gives (4.3).

Theorem 4.1. a,, = ag = [ LodWy a.s. asn — oc.

The proof is straightforward and omitted.
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If aw > ap, bw > bp, we have Wy = W, Ly = L. Hence a,, is a strong consistent
estimate for the left truncation probability o = P(W > T') and the number of population
my, can be estimated by m, = n/a,. Otherwise, m, will less estimate m,,, since ag =
a/(L(bw )W (ap—)) > a.

Theorem 4.2. For any nonnegative ¢(x), with probability 1, as n — oo

(i) br < b implies [ ¢dF, — [ ¢ dFy, (i) [¢dW, — [ ¢dWy,

(iii) be < bp wmplies [ ¢dG, — [$dGy, (iv) [¢dL, — [ ¢dLo.

Proof. We give the proof for (i). (ii) can be obtained by considering n; = 1 and (iii),
(iv) can be obtained by symmetry. For any a € (ap,,bp,) and M > 0, Lemma 4.1 implies
linH_l)ioI<1>ff¢an > [* ¢Ilp < M]dFy. Let a 1 by, and M 1 oo. We get librggff¢an >

J ¢ dFy. So, it suffices to prove limsup [ ¢ dF,, < [ ¢ dFy a.s., under the condition [ ¢ dFy <

n—oo

co. In this case, Va € (am,,bw,), [*, ddA = f;H ¢1d,F§0 < co. Hence, by Lemma 4.1
1

limsup/qban < qbdFO—l—limsup/ odF,.
—0o0 a

n—oo n—o0

Therefore, we only need to show lim sup f:o ¢dF, - 0as. asatbpy,.
n—oo

In fact, (4.1), Lemma 4.2 and (a2) imply that as n — oo,

= () dHy () an S
/a o(2)dF, (x) = / T T / o(2)dH . (x)

()

(675} o o5} ‘
— Lo(a)Go(le)/a P(x)dH, (r) < OtLo@t)Go(bF)/a ¢(x)dFy(x) — O0as. as a T by,.

Remark 4.1. The condition ar < bg (or ag < bg) requires nothing but we can get

IN

information from F' (or G). It seems that by < be (bg < br) in (i) ((iii)) requires something
more than necessity.

Corollary 4.1. For any nonnegative ¢(x), with probability 1, as n — oo

(i) for the right censored model if bp < b, [¢dF; — f_bZVO o dF a.s.,

(ii) for the left truncated model [ ¢ dF) — [1 — F(ar)]™" [° ¢ dF a.s.
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