THE STRONG LAW FOR THE P-L ESTIMATE IN THE LEFT TRUNCATED AND RIGHT CENSORED MODEL (I)**

HE SHUYUAN*

Abstract

For the model with both left truncation and right censoring, suppose all the distributions are continuous. It is proved that the sampled cumulative hazard function Λ_n and the productlimit estimate F_n are strong consistent. For any nonnegative measurable ϕ , the almost sure convergences of $\int \phi \, d\Lambda_n$ and $\int \phi \, dF_n$ to the true values $\int \phi \, d\Lambda$ and $\int \phi \, dF$ respectively are obtained. The strong consistency of the estimator for the truncation probability is proved.

Keywords Left truncation and right censoring, Product-limit estimate, Strong law of large numbers, Reversed supermartingale
1991 MR Subject Classification 62G05, 60F15

Chinese Library Classification 0211.4

§1. Introduction

Suppose that $\{X_n\}$, $\{Y_n\}$ and $\{T_n\}$ are three i.i.d. random sequences and independent one another. Let F, G and L be their right continuous distribution functions respectively. In many applications, only the right censored data of the form $(X_i \wedge Y_i, \delta_i)$ with $\delta_i = I[X_i \leq Y_i]$ are available. Here and in what follows we use I[A] for the indicator of an event A and use \wedge, \vee for the minimum and maximum respectively. Write $Z_i = X_i \wedge Y_i$. The K-M (cf. [5]) estimator of F, based on (Z_i, δ_i) , $1 = 1, 2, \dots, n$, is defined by

$$F_n^*(s) = 1 - \prod_{t \le s} \left(1 - \frac{\#\{i : Z_i = t, \delta_i = 1\}}{\#\{i : Z_i \ge t\}} \right),$$
(1.1)

where an empty product is interpreted as one. It is clear that we can not estimate F(x) for $x > b_G$ from the right censored data. Here and in what follows for any distribution function $S, a_S \equiv \inf\{y : S(y) > 0\}$ and $b_S \equiv \sup\{y : S(y) < 1\}$.

Another model of incomplete observation is the left truncated model, which assumes the presence of truncation variable T_i , so that (X_i, T_i) can be observed only when $X_i \ge T_i$. In this case, the data consist of n i.i.d. observation (X_i^0, T_i^0) , $i = 1, 2, \dots, n$ and the nonparametric MLE is defined by

$$F_n^0(x) = 1 - \prod_{s \le x} \left(1 - \frac{\#\{i : X_i^0 = s\}}{\#\{i : T_i^0 \le s \le X_i^0\}} \right)$$
(1.2)

Manuscript received September 29, 1995. Revised November 21, 1996.

^{*}Department of Probability and Statistics, Peking University, Beijing 100871, China.

^{**}Project supported by the National Natural Science Foundation of China.

(see [10]). Based on (X_i^0, Y_i^0) , $i = 1, 2, \dots, n$, for continuous F we can estimate $F_0(x) \equiv P(X \leq x | X \geq a_L)$ only (see [10]).

Mixed models with both left truncation and right censoring (LTRC) often arise in biostatistical applications such as epidemiology and individual follow-up study (cf. [9]). The LTRC model assumes that $(Z_i, \delta_i, T_i) \equiv (X_i \wedge Y_i, \delta_i, T_i)$ is observable only if $Z_i \geq T_i$. Thus, the observation consists of the i.i.d. data

$$(U_i, \eta_i, V_i)$$
, with $U_i \ge V_i$, $\eta_i = 0$ or 1, $i = 1, 2, \cdots, n$. (1.3)

Based on (1.3) the product-limit (P-L) estimator of F is defined by

$$F_n(x) = 1 - \prod_{s \le x} \left(1 - \frac{\#\{i : U_i = s, \eta_i = 1\}}{\#\{i : V_i \le s \le U_i\}} \right).$$
(1.4)

Note that F_n reduces to the K-M estimator (1.1) for right censored data if $L \equiv 1$, and reduces to the product-limit estimator (1.2) for left truncated data if $G \equiv 0$. It is clear that in the LTRC model, for continuous F, only $F_0 = P(X \le x | X \ge a_L), x \le b_G$ can be estimated.

For continuous F, G and L, the strong uniform consistency of F_n^* and F_n^0 are known (see e.g., [1, 8]). For the LTRC model and continuous F, let W denote the distribution function of Z. In the case of $a_W > a_L$, which insures the denominator in the expression of F_n bounded from zero (with probability 1) in a neighborhood of a_F and hence makes the study of F_n relatively easy, the uniform consistency was also proved (e.g., Theorem 2 of [3]). For the case of $a_W = a_L$, the strong uniform consistency of F_n kept unknown.

In this paper, for the LTRC model and continuous F, G and L we prove the strong uniform consistency of F_n (and the P-L estimates of G and L). In fact we will prove that for any nonnegative measurable $\phi(x)$,

$$\int \phi(x) \, dF_n(x) \to \int \phi(x) \, dF_0(x) \quad a.s. \tag{1.5}$$

For the right ensored model, (1.5) was proved in [8] in 1993.

A natural estimate for the truncation probability $\alpha = P(Z \ge T)$ is $\alpha_n = \int L_n(s) dW_n(s)$, where L_n and W_n are P-L estimates of L and W. For left truncated model and continuous F and L, the weakly consistency of α_n to α was proved in [10]. In this paper, for the LTRC model we will provide a simple expression for α_n . As a corollary of the strong consistency of L_n and W_n , the strong consistency of α_n follows.

§2. Preliminaries

For the LTRC model we can image the i.i.d. data (1.3) coming from a large population $(X_i, Y_i, T_i), i = 1, 2, \dots, m_n$ with $m_n = \inf\{m : \sum_{j=1}^m I[Z_j \ge T_j] = n\}$. For any right-continuous non-decreasing function S, if $\inf_s S(s) < \sup_s S(s)$, define

 $a_S = \inf\{y : S(y) > \inf_s S(s)\}$ and $b_S = \sup\{y : S(y) < \sup_s S(s)\},$

 $\bar{S}(x) = 1 - S(x), \ S_{-}(x) = S(x-) = \lim_{s \uparrow x} S(s) \text{ and } S\{x\} = S(x) - S_{-}(x).$ To avoid the case of mathematical trivial, we assume $a_L < b_W$, where $W(x) = P(Z_i \le x) = 1 - \bar{F}(x)\bar{G}(x).$

It is clear that $a_W = a_F \wedge a_G$ and $b_W = b_F \wedge b_G$. From the law of large numbers and the equality

$$n^{-1}\sum_{i=1}^{n} I[U_i \le u, \eta_i = \delta, V_i \le v] = \frac{m_n}{n} \frac{1}{m_n} \sum_{i=1}^{m_n} I[Z_i \le u, \delta_i = \delta, T_i \le v, T_i \le Z_i], \quad (2.1)$$

we get, for $u, v \in (-\infty, \infty)$ and $\delta = 0$ or 1,

$$P(U_i \le u, \eta_i = \delta, V_i \le v) = \alpha^{-1} P(Z_i \le u, \delta_i = \delta, T_i \le v, T_i \le Z_i),$$

$$(2.2)$$

where $\alpha = P(Z \ge T) = \int L dW > 0$. In describing the distributional properties we use (X, Y, T) to refer to any (X_i, Y_i, T_i) , (Z, δ) to (Z_i, δ_i) and (U, η, V) to (U_i, η_i, V_i) . The following equations can be obtained directly from (2.2):

(a1)
$$H_0(u) \equiv P(U \le u, \eta = 0) = \alpha^{-1} P(Y \le u, Y < X, Y \ge T) = \alpha^{-1} \int_{-\infty}^u (1 - F) L \, dG_Y$$

(a2)
$$H_1(u) \equiv P(U \le u, \eta = 1) = \alpha^{-1} P(X \le u, X \le Y, X \ge T) = \alpha^{-1} \int_{-\infty}^u (1 - G_-) L \, dF,$$

(a3) $H_2(u) \equiv H_0(u) + H_1(u) = P(U \le u) = \alpha^{-1} \int_{-\infty}^u L \, dW,$

(a4)
$$K(u) \equiv P(V \le u) = \alpha^{-1} P(T \le u, Z \ge T) = \alpha^{-1} \int_{-\infty}^{u} (1 - W_{-}) dL$$

(a5) $R(u) \equiv P(V \le u \le U) = \alpha^{-1} P(T \le u \le Z) = \alpha^{-1} L(u)(1 - W_{-}(u)).$

Whenever it makes sense, define $G_0(u) = P(Y \le u | Y \ge a_{H_0})$ for $u \le b_{H_0}$ and $G_0(u) = G(b_{H_0})$ for $u > b_{H_0}$; $F_0(u) = P(X \le u | X \ge a_{H_1})$ for $u \le b_{H_1}$ and $F_0(u) = F(b_{H_1})$ for $u > b_{H_1}$; and $W_0(u) = P(Z \le u | Z \ge a_{H_2})$. It is obtained that

$$1 - G_0(u-) = (1 - G(u-))/P(Y \ge a_{H_0}) \text{ for } u \in [a_{H_0}, b_{H_0}],$$

$$1 - F_0(u-) = (1 - F(u-))/P(X \ge a_{H_1}) \text{ for } u \in [a_{H_1}, b_{H_1}] \text{ and}$$

$$1 - W_0(u-) = (1 - W(u-))/P(Z \ge a_{H_2}) \text{ for } u \in [a_{H_2}, \infty).$$

Write $\Lambda_j(u) = \int_{-\infty}^u dH_j/R$. It is obtained that for continuous F,

$$d\Lambda_0(u) = dG(u)/(1 - G_-(u)) = dG_0(u)/(1 - G_0(u-)), \text{ for } u \in [a_{H_0}, b_{H_0}],$$

$$d\Lambda_1(u) = dF(u)/(1 - F_-(u)) = dF_0(u)/(1 - F_0(u-)), \text{ for } u \in [a_{H_1}, b_{H_1}],$$

$$d\Lambda_2(u) = dW(u)/(1 - W_-(u)) = dW_0(u)/(1 - W_0(u-)), \text{ for } u \in [a_{H_2}, b_{H_2}].$$

So, Λ_0 , Λ_1 , Λ_2 are the cumulative hazard functions of G_0 , F_0 and W_0 respectively. Lemma 2.1. Let F, G and L be continuous.

(i) If
$$a_G < b_F$$
, then $G_0(u) = \begin{cases} P(Y \le u | Y \ge a_L), & \text{for } u \le b_W, \\ P(Y \le b_W | Y \ge a_L), & \text{for } u > b_W. \end{cases}$
(ii) If $a_F < b_G$, then $F_0(u) = \begin{cases} P(X \le u | X \ge a_L), & \text{for } u \le b_W, \\ P(X \le b_W | X \ge a_L), & \text{for } u \le b_W. \end{cases}$
(iii) $W_0(u) = P(Z \le u | Z \ge a_L). & \text{for } u > b_W. \end{cases}$

Proof. From (a1) it is seen that $a_{H_0} \ge a_G \lor a_L$ and $b_{H_0} \le b_F \land b_G = b_W$.

If $a_{H_0} = a_G > a_L$, then $P(a_L \leq Y \leq a_{H_0}) = 0$. If $a_{H_0} > a_G \lor a_L$, then $a_L > a_G$ (note that $a_L \leq a_G$ implies $a_{H_0} = a_G$). Hence, $H_0(a_{H_0} -) = 0$, $H_0(a_{H_0} + \varepsilon) > 0$ ($\forall \varepsilon > 0$) and (a1) imply $P(a_L \leq Y \leq a_{H_0}) = 0$; that is, $P(Y \leq u | Y \geq a_L) = P(Y \leq u | Y \geq a_{H_0})$, $\forall u$.

If $b_{H_0} < b_W$, then $b_F < b_G$ (note that $b_F \ge b_G$ implies $b_{H_0} = b_W$). Hence, (a1) implies $P(b_{H_0} \le Y \le b_W) = 0$. It follows that for $u \in (b_{H_0}, b_W]$, we have $P(Y \le u | Y \ge a_{H_0}) = P(Y \le b_{H_0} | Y \ge a_{H_0})$.

(ii) and (iii) can be proved similarly.

According to [10], for the model of left truncation, only W_0 and $L_0(u) \equiv P(T \leq u | T \leq b_W)$ can be estimated. Hence, for the LTRC model only G_0 , F_0 , W_0 and L_0 can be estimated. Fortunately, we have the following

Corollary 2.2. Let F, G and L be continuous.

(i) $a_G \ge a_L$, $b_G \le b_F$ imply $G_0 = G$. (ii) $a_F \ge a_L$, $b_F \le b_G$ imply $F_0 = F$. (iii) $a_W \ge a_L$ implies $W_0 = W$. (iv) $b_L \le b_W$ implies $L_0 = L$.

§3. The Strong Law for F_n , G_n and L_n

It is known that a cumulative hazard function $\Lambda_S(x)$ of S determines the distribution S(x) through the algorithm (see [4])

$$S(x) = 1 - \prod_{s \le x} \left(1 - \Lambda_S\{s\}\right) \exp\left(\sum_{s \le x} \Lambda_S\{s\} - \Lambda_S(x)\right).$$
(3.1)

So, for continuous F_0 and W_0 we have $F_0(x) = 1 - \exp(-\Lambda_1(x)), W_0(x) = 1 - \exp(-\Lambda_2(x))$. Now, based on (1.3), let us introduce the following sub-empiricaled functions.

$$H_{0,n}(u) = n^{-1} \sum_{i=1}^{n} I[U_i \le u, \eta_i = 0], \quad H_{1,n}(u) = n^{-1} \sum_{i=1}^{n} I[U_i \le u, \eta_i = 1],$$

$$H_{2,n}(u) = H_{0,n}(u) + H_{1,n}(u), \quad K_n(u) = n^{-1} \sum_{i=1}^{n} I[V_i \le u],$$

$$R_n(u) = n^{-1} \sum_{i=1}^{n} I[V_i \le u \le U_i] = K_n(u) - H_{2,n}(u-);$$

and the following empiricaled cumulative hazard functions:

$$\Lambda_{j,n}(u) = \int_{-\infty}^{u} \frac{dH_{j,n}}{R_n}, \quad j = 0, 1, 2.$$
(3.2)

Here and in what follows we use \int_a^b for $\int_{(a,b]}$.

According to (3.1), the estimators of F_0 and W_0 should be

$$F_n(x) = 1 - \prod_{s \le x} \left(1 - \frac{H_{1,n}\{s\}}{R_n(s)} \right) \text{ and } W_n(x) = 1 - \prod_{s \le x} \left(1 - \frac{H_{2,n}\{s\}}{R_n(s)} \right)$$
(3.3)

respectively, which coincide the estimators defined by (1.4) and (1.2) and ensure that the corresponding cumulative hazard function to $\Lambda_{j,n}$, j = 1, 2. By symmetry, the estimates of G_0 and L_0 are defined by

$$G_n(x) = 1 - \prod_{s \le x} \left(1 - \frac{H_{0,n}\{s\}}{R_n(s)} \right) \text{ and } L_n(x) = \prod_{s > x} \left(1 - \frac{K_n\{s\}}{R_n(s)} \right)$$
(3.4)

respectively.

In what follows, if without further statement, F, G and L are supposed to be continuous.

Let $U_{1:n} \leq U_{2:n}, \dots, \leq U_{n:n}$ be the ordered values of the U_i 's and $(\eta_{1:n}, V_{1:n}), (\eta_{2:n}, V_{2:n}), \dots, (\eta_{n:n}, V_{n:n})$ be the concomitants corresponding to the U_i 's (that is, $(\eta_{j:n}, V_{j:n}) = (\eta_i, V_i)$ if and only if $U_{j:n} = U_i$). Define $\mathcal{F}_n = \sigma\{(U_{j:n}, \eta_{j:n}, V_{j:n}), (U_k, \eta_k, V_k); 1 \leq j \leq n, k > n\}$. Then $\forall n \geq 1, \mathcal{F}_{n+1} \subset \mathcal{F}_n$ and $\Lambda_{1,n}, \Lambda_{2,n} \in \mathcal{F}_n$. It is clear that for any $n \geq 1, k = 0$ $1, 2, \cdots, n+1, P(U_{n+1} = U_{k:n+1} | \mathcal{F}_{n+1}) = 1/(n+1) \text{ and } U_{n+1} = U_{k:n+1} \text{ implies}$ $\begin{cases} U_{j:n+1} = U_{j:n}, & \\ \eta_{j:n+1} = \eta_{j:n}, & \text{for } j \le k-1 \text{ and } \\ V_{j:n+1} = V_{j:n}, & \\ V_{j:n+1} = V_{j:n}, & \\ \end{array} \begin{cases} U_{j:n+1} = \eta_{j-1:n}, & \text{for } j \ge k+1. \\ V_{j:n+1} = V_{j-1:n}, & \\ \end{array} \end{cases}$ (3.5)

For any (measurable) $\phi(x) \ge 0$, define $W_{i,n} = \int \phi \, d\Lambda_{i,n}$, i = 1, 2. We have the following result.

Lemma 3.1. Let $\phi(x) \geq 0$ and i = 1 or 2. Suppose $a_F < b_G$ for i = 1. Then $(W_{i,n}, \mathcal{F}_n; n \geq 1)$ is a nonnegative reverse supermartingale; that is, $\forall n \geq 1$, $W_{i,n} \in \mathcal{F}_n$ and $E(W_{i,n}|\mathcal{F}_{n+1}) \leq W_{i,n+1}$.

Proof. $\Lambda_{1,n}(x)$ is a step function and has jumps only at each $U_{j:n}$, $j = 1, \dots, n$. So, $W_{1,n} = \sum_{i=1}^{n} \phi(U_{j:n}) \Lambda_{1,n}\{U_{j:n}\} \in \mathcal{F}_n$ and

$$W_{1,n} = \sum_{j=1}^{n+1} \phi(U_{j:n+1}) \Lambda_{1,n} \{ U_{j:n+1} \}, \text{ with } \phi(U_{j,n+1}) \in \mathcal{F}_{n+1}.$$
(3.6)

Therefore, it suffices to show

$$E(\Lambda_{1,n}\{U_{j:n+1}\}|\mathcal{F}_{n+1}) \le \Lambda_{1,n+1}\{U_{j:n+1}\} \text{ a.s.}$$
(3.7)

Write $A_k = I[U_{n+1} = U_{k:n+1}]$. It follows that $\Lambda_{1,n}\{U_{k:n+1}\}A_k = 0$ a.s. and

$$E(\Lambda_{1,n}\{U_{j:n+1}\}|\mathcal{F}_{n+1}) = \frac{1}{n+1} \sum_{k \neq j} \left(\frac{\eta_{j:n+1}}{(n+1)R_{n+1}(U_{j:n+1}) - I[V_{k:n+1} \le U_{j:n+1} \le U_{k:n+1}]} \right) \text{ a.s}$$

Let $B_m = \{(n+1)R_{n+1}(U_{j:n+1}) = m\}, m = 1, 2, \dots, n+1$. For m > 1, on B_m we have $\sum_{k \neq j} I[V_{k:n+1} \le U_{j:n+1} \le U_{k:n+1}] = m-1$ and it follows that

$$E(\Lambda_{1,n}\{U_{j:n+1}\}|\mathcal{F}_{n+1}) = \frac{\eta_{j:n+1}}{m} = \Lambda_{1,n+1}\{U_{j:n+1}\} \text{ a.s.}$$

$$\sum I[V_{k:n+1} \le U_{j:n+1} \le U_{k:n+1}] = 0, \text{ which implies}$$

On B_1 , $\sum_{k \neq j} I[V_{k:n+1} \le U_{j:n+1} \le U_{k:n+1}] = 0$, which implies

$$E(\Lambda_{1,n}\{U_{j:n+1}\}|\mathcal{F}_{n+1}) = \frac{n}{n+1}\eta_{j:n+1} = \Lambda_{n+1}\{U_{j:n+1}\} - \frac{\eta_{j:n+1}}{n+1}.$$

This proves (3.7) and hence the lemma for i = 1. The proof for i = 2 is similar.

By Hewitt-Savage Zero-One Law (see [2]), $\mathcal{F}_{\infty} = \bigcap_{n \ge 1} \mathcal{F}_n$ is trivial. Hence, the following is a direct corollowy of Proposition 5.2.11 of [6]

is a direct corollary of Proposition 5-3-11 of [6].

Corollary 3.1. Let i = 1 or 2 and $\phi(x) \ge 0$. Suppose $a_F < b_G$ for i = 1. (i) $\xi_i = \lim_{n \to \infty} EW_{i,n}$ exists (possibly infinite). (ii) $W_{i,n} \to \xi_i$ a.s. (iii) If $\xi_i < \infty$, then $\{W_{i,n}\}$ is uniformly integrable and $E|W_{i,n} - \xi_i| \to 0$. **Theorem 3.1.** Let i = 1 or 2 and $\phi(x) \ge 0$. Suppose $a_F < b_G$ for i = 1. We have

$$\lim_{n \to \infty} W_{i,n} = \int \phi(x) d\Lambda_i(x) \ a.s.$$

Proof. We only give the proof for i = 1. The proof for i = 2 is similar. Let $\zeta_n(u) = (n+1)/(nR_n(u)+1) \in \mathcal{F}_n$. We have $EW_{1,n} = \int \phi E\zeta_{n-1}(u) \, dH_1$. So, by Corollary 3.1, it suffices to prove $E\zeta_n(u) \nearrow R(u)^{-1}$. By the same method used in the proof of Lemma 3.1, we have $E(\zeta_n(u)|\mathcal{F}_{n+1}) \leq \zeta_{n+1}(u)$. Hence, $E\zeta_n(u) \nearrow R(u)^{-1}$ follows from $R_n(u) \to R(u)$ a.s.

345

For $\phi(x) = I[-\infty, x]$ it is obtained that $\forall x$

$$\Lambda_{i,n}(x) \to \Lambda_i(x) \text{ a.s. as } n \to \infty.$$
 (3.8)

The fact that $\Lambda_i(x)$ is continuous and $\Lambda_{i,n}$ is monotone implies that for any $x < b_{H_i}$

$$\sup_{s \le x} |\Lambda_{i,n}(s) - \Lambda_i(s)| \to 0 \quad \text{a.s. as} \ n \to \infty.$$

Now, using (3.1) we get the following theorem.

Theorem 3.2. Define $\widetilde{F}_n(x) = 1 - \exp(-\Lambda_{1,n}(x))$ and $\widetilde{W}_n(x) = 1 - \exp(-\Lambda_{2,n}(x))$. (i) If $a_F < b_G$, then $\sup_{x} |\widetilde{F}_n(x) - F_0(x)| \to 0$ a.s. as $n \to \infty$.

(ii) $\sup_{x} |\widetilde{W}_n(x) - W_0(x)| \to 0 \ a.s. \ as \ n \to \infty.$

Theorem 3.3. With probability 1, as $n \to \infty$

- (i) $a_F < b_G \text{ implies } \sup |F_n(x) F_0(x)| \to 0$, (ii) $a_G < b_F \text{ implies } \sup |G_n(x) G_0(x)| \to 0$,

(iii) $\sup_{x} |W_n(x) - W_0^x(x)| \to 0$, $\sup_{x} |L_n(x) - L_0(x)| \to 0$. **Proof.** The proof is only for F_n . The proof for W_n can be completed by considering the case $\eta_i \equiv 1$. The proof for G_n and L_n can be finished by symmetry (consider $X_i = Y_i, Y_i = Y_i$) X_i and $Z_i = -T_i$, $T_i = -Z_i$ respectively).

Set $\varphi_n = (\log n/n)^{1/2}$ and $d_n = \inf\{x; L(x) \ge \varphi_n\}$. We get $L(d_n) = \varphi_n \to 0$ and $d_n \to a_L$, as $n \to \infty$. Note $a_L \leq a_{H_1}$, we have $\Lambda_1(d_n) \to 0$, as $n \to \infty$. $\forall a \in (a_{H_1}, b_{H_1})$, using (3.1) and $\prod a_j - \prod b_j \leq \sum |a_j - b_j|$ for $a_j, b_j \in [0, 1]$, we obtain

$$F_0(d_n) = 1 - \exp(-\Lambda_1(d_n)) \to 0$$
, and $F_n(d_n) \le \Lambda_{1,n}(d_n) \to 0$.

The product form of the estimate $\bar{F}_n(x) = 1 - F_n(x)$ can be spliced as follows. Let

$$M_n(x) = \prod_{d_n < U_i \le x} \left(1 - \frac{H_n\{U_i\}}{R_n(U_i)} \right), \ \widetilde{M}_n(x) = \exp\left(-\Lambda_1(x) + \Lambda_1(d_n)\right).$$

Then $\overline{F}_n(x) = (1 - F_n(d_n))M_n(x), \ \overline{F}_0(x) = (1 - F_0(d_n))M_n(x).$

Hence, $|F_n(x) - F_0(x)| \le F_n(d_n) + F_0(d_n) + |M_n(x) - M_n(x)|$. It suffices to prove

$$\sup_{x} |M_n(x) - \widetilde{M}_n(x)| \to 0 \text{ a.s.}$$
(3.9)

Note, $\forall a \in (a_{H_1}, b_{H_1})$ by (a5), $\inf_{d_n < x \le a} R(x) \ge \alpha^{-1} \bar{F}(a) \bar{G}(a) L(d_n)$. Applying Theorem 2.1.4B of [7], we have

$$\limsup_{n \to \infty} \sup_{d_n < x \le a} \left| \frac{R_n(x)}{R(x)} - 1 \right| \le \limsup_{n \to \infty} \frac{\alpha}{\bar{F}(a)\bar{G}(a)\varphi_n} |R_n(x) - R(x)| = 0 \text{ a.s.}$$

So, $\forall x \in (a_{H_1}, b_{H_1})$, with probability 1 for large n,

$$\inf_{d_n < s \le x} (nR_n(s)) = n \inf_{d_n < s \le x} \left(\frac{R_n(s)}{R(s)} \cdot R(s) \right) \ge \frac{n}{2} \inf_{d_n < s \le x} R(s) \ge M_0 \sqrt{n \log n},$$

where M_0 is a positive constant. Hence, by Taylor's formula

$$M_n(x) = \exp\left(-\Lambda_{1,n}(x) + \Lambda_1(d_n) + O(\frac{1}{\log n})\right) \to 1 - F_0(x). \text{ a.s.}$$
(3.10)

Since $M_n(x)$ is monotone in x and F_0 is continuous, the convergence in (3.10) must be uniform in x. Now (3.9) is proved by combining with the fact that

$$\sup_{x} |\widetilde{M}_{n}(x) - \overline{F}_{0}(x)| = \sup_{x} |\exp\left(-\Lambda_{1}(x) + \Lambda_{1}(d_{n})\right) - \exp\left(-\Lambda_{1}(x)\right)| \to 0 \text{ a.s.}$$

§4. The Strong Law for $\int \phi dF_n$, $\int \phi dG_n$ and $\int \phi dL_n$

Lemma 4.1. Suppose $\phi(x) \ge 0$. Then

(i) $a_F < b_G$ and $\int \phi \, d\Lambda_1 < \infty$ imply $\int \phi \, dF_n \to \int \phi \, dF_0$ a.s.

(ii) $\int \phi \, d\Lambda_2 < \infty$ implies $\int \phi \, dW_n \to \int \phi \, dW_0$ a.s.

Proof. We give the proof for (i). By the definition of F_n , we have

$$F_n\{x\} = \bar{F}_n(x-)H_{1,n}\{x\}/R_n(x) = \bar{F}_n(x-)\Lambda_{1,n}\{x\}.$$
(4.1)

Now the result follows from Theorems 3.1 and 3.3.

To get a more general result, we need the following lemma.

Lemma 4.2. For maybe non-continuous F, G and L,

$$L_n(U_j)W_n\{U_j\} = \alpha_n H_{2,n}\{U_j\}, \ j = 1, 2, \cdots, n,$$
(4.2)

$$\alpha_n = \int L_n \, dW_n = L_n(U_j)(1 - W_n(U_j -))/R_n(U_j), \ j = 1, 2, \cdots, n.$$
(4.3)

Proof. Let $U_{(1)} < U_{(2)} < \cdots < U_{(p)}$ be the distinct ordered values of U_1, U_2, \cdots, U_n and $V_{(1)} < V_{(2)} < \cdots < V_{(q)}$ the distinct ordered values of V_1, V_2, \cdots, V_n . Then, for each fixed j

$$W_n\{U_{(j)}\} = \prod_{i:\,i< j} \left(1 - \frac{H_{2,n}\{U_{(i)}\}}{R_n(U_{(i)})}\right) \frac{H_{2,n}\{U_{(j)}\}}{R_n(U_{(j)})}, \quad L_n(U_{(j)}) = \prod_{i:\,V_{(i)}>U_{(j)}} \left(1 - \frac{K_n\{V_{(i)}\}}{R_n(V_{(i)})}\right).$$

Define

$$\xi_n(j) = \prod_{i: \, i < j} \left(1 - \frac{H_{2,n}\{U_{(i)}\}}{R_n(U_{(i)})} \right) \prod_{i: \, V_{(i)} > U_{(j)}} \left(1 - \frac{K_n\{V_{(i)}\}}{R_n(V_{(i)})} \right) \frac{1}{R_n(U_{(j)})}.$$
(4.4)

We have, for $j \ge 2 L_n(U_{(j)})W_n\{U_{(j)}\} = \xi_n(j)H_{2,n}\{U_{(j)}\},\$

$$\begin{aligned} \xi_n(j) - \xi_n(j-1) &= \left\{ \prod_{i: \ i < j-1} \left(1 - \frac{H_{2,n}\{U_{(i)}\}}{R_n(U_{(i)})} \right) \cdot \prod_{i: \ V_{(i)} > U_{(j)}} \left(1 - \frac{K_n\{V_{(i)}\}}{R_n(V_{(i)})} \right) \right\} \cdot B_n(j), \\ B_n(j) &= \frac{R_n(U_{(j-1)}) - H_{2,n}\{U_{(j-1)}\}}{R_n(U_{(j-1)})R_n(U_{(j)})} - \frac{1}{R_n(U_{(j-1)})} \prod_l \left(1 - \frac{K_n\{V_{(l)}\}I[U_{(j-1)} < V_{(l)} \le U_{(j)}]}{R_n(V_{(l)})} \right) \end{aligned}$$

Put $h = \sum_{l} I[U_{(j-1)} < V_{(l)} \le U_{(j)}]$. For h = 0, $R_n(U_{(j-1)}) - H_{2,n}\{U_{(j-1)}\} = K_n(U_{(j-1)}) - H_{2,n}(U_{(j)}) = R_n(U_{(j)})$ implies $B_n(j) = 0$.

For h > 0, we can suppose $V'_{(1)}, V'_{(2)}, \dots, V'_{(h)}$ are the distinct ordered values of $\{V_j; V_j \in (U_{(j-1)}, U_{(j)}]\}$, so that $U_{(j-1)} < V'_{(1)} < V'_{(2)} < \dots < V'_{(h)} \le U_{(j)}$. Consequently,

$$\prod_{l} \left(1 - \frac{K_n \{ V_{(l)} \} I[U_{(j-1)} < V_{(l)} \le U_{(j)}]}{R_n(V_{(l)})} \right) = \prod_{l=1}^h \left(1 - \frac{K_n \{ V_{(l)}' \}}{R_n(V_{(l)}')} \right)$$
$$= \prod_{l=1}^h \frac{K_n(V_{(l)}' -) - H_{2,n}(V_{(l)}' -)}{R_n(V_{(l)}')} = \frac{K_n(U_{(j-1)}) - H_{2,n}(U_{(j-1)})}{R_n(U_{(j)})} = \frac{R_n(U_{(j-1)}) - H_{2,n}\{U_{(j-1)}\}}{R_n(U_{(j)})}.$$

Here, for $V'_{(h)} < U_{(j)}$ we used $R_n(V'_{(h)}) = K_n(V'_{(h)}) - H_{2,n}(V'_{(h)}) - R_n(U_{(j)})$.

So, $B_n(j) = 0$, for $j = 2, 3, \dots, n$, which implies (4.2). The summation over j of (4.2) and (4.4) gives (4.3).

Theorem 4.1. $\alpha_n \to \alpha_0 = \int L_0 dW_0$ a.s. as $n \to \infty$. The proof is straightforward and omitted.

If $a_W \ge a_L$, $b_W \ge b_L$, we have $W_0 = W$, $L_0 = L$. Hence α_n is a strong consistent estimate for the left truncation probability $\alpha = P(W \ge T)$ and the number of population m_n can be estimated by $\hat{m}_n = n/\alpha_n$. Otherwise, \hat{m}_n will less estimate m_n , since $\alpha_0 = m_n$ $\alpha/(L(b_W)\bar{W}(a_L-)) > \alpha.$

Theorem 4.2. For any nonnegative $\phi(x)$, with probability 1, as $n \to \infty$

- (i) $b_F < b_G$ implies $\int \phi \, dF_n \to \int \phi \, dF_0$, (ii) $\int \phi \, dW_n \to \int \phi \, dW_0$,
- (iii) $b_G < b_F$ implies $\int \phi \, dG_n \to \int \phi \, dG_0$, (iv) $\int \phi \, dL_n \to \int \phi \, dL_0$.

Proof. We give the proof for (i). (ii) can be obtained by considering $\eta_i \equiv 1$ and (iii), (iv) can be obtained by symmetry. For any $a \in (a_{H_1}, b_{H_1})$ and M > 0, Lemma 4.1 implies $\liminf_{n\to\infty} \int \phi \, dF_n \geq \int_{-\infty}^a \phi I[\phi \leq M] \, dF_0. \text{ Let } a \uparrow b_{H_1} \text{ and } M \uparrow \infty. \text{ We get } \liminf_{n\to\infty} \int \phi \, dF_n \geq 0$ $\int \phi \, dF_0$. So, it suffices to prove $\limsup \int \phi \, dF_n \leq \int \phi \, dF_0$ a.s., under the condition $\int \phi \, dF_0 < 0$

 ∞ . In this case, $\forall a \in (a_{H_1}, b_{H_1}), \int_{-\infty}^{n \to \infty} \phi \, d\Lambda_1 = \int_{a_{H_1}}^{a} \phi \frac{dF_0}{1 - F_0} < \infty$. Hence, by Lemma 4.1

$$\limsup_{n \to \infty} \int \phi \, dF_n \le \int_{-\infty}^a \phi \, dF_0 + \limsup_{n \to \infty} \int_a^\infty \phi \, dF_n.$$

Therefore, we only need to show $\limsup \int_a^\infty \phi \, dF_n \to 0$ a.s. as $a \uparrow b_{H_1}$.

In fact, (4.1), Lemma 4.2 and (a2) imply that as $n \to \infty$,

$$\int_{a}^{\infty} \phi(x) dF_{n}(x) = \alpha_{n} \int_{a}^{\infty} \frac{\phi(x) dH_{1,n}(x)}{L_{n}(x)\bar{G}_{n}(x-)} \leq \frac{\alpha_{n}}{L_{n}(a)\bar{G}_{n}(b_{H_{1}})} \int_{a}^{\infty} \phi(x) dH_{1,n}(x)$$

$$\to \frac{\alpha_{0}}{L_{0}(a)\bar{G}_{0}(b_{H_{1}})} \int_{a}^{\infty} \phi(x) dH_{1}(x) \leq \frac{\alpha_{0}}{\alpha L_{0}(a)\bar{G}_{0}(b_{F})} \int_{a}^{\infty} \phi(x) dF_{0}(x) \to 0 \text{ a.s. as } a \uparrow b_{H_{1}}.$$

Remark 4.1. The condition $a_F < b_G$ (or $a_G < b_F$) requires nothing but we can get information from F (or G). It seems that $b_F < b_G (b_G < b_F)$ in (i) ((iii)) requires something more than necessity.

Corollary 4.1. For any nonnegative $\phi(x)$, with probability 1, as $n \to \infty$

- (i) for the right censored model if $b_F < b_G$, $\int \phi \, dF_n^* \to \int_{-\infty}^{b_W} \phi \, dF \ a.s.$, (ii) for the left truncated model $\int \phi \, dF_n^0 \to [1 F(a_L)]^{-1} \int_{a_L}^{\infty} \phi \, dF \ a.s.$

Ackowledgement. The author thanks the referee for his helpful suggestion.

References

- [1] Chen, K., Chao, M. & Lo, S., On strong uniform consistency of the Lynden-Bell estimator for truncated data, Ann. Statist., 23 (1995), 440-449.
- [2] Freedman, D., Markov chains, Springer-Verlag, New York, Heidelberg, Berlin 1983, 39-40.
- [3] Gu, M. G. & Lai, T. L., Functional laws of the iterated logarithm for the product-limit estimator of a distribution function under random censorship or truncation. Ann. Statist., 18 (1990), 160–189.
- [4] Jacod, J., Multivariate point processes: predictable projection, Radon-Nikodym derivatives, representation of martingales, Z. Wahrsch. verw. Gebiete., 31 (1975), 235-253.
- [5] Kaplan, E. L. & Meier, P., Nonparametric estimation from incomplete observations, J. Amer. Statist. Assoc., 53 (1958), 457-481.
- [6] Neveu, J., Discrete-Parameter martingales, North-Holland, Amsterdam 1975.
- [7] Serfling, R. J., Approximation theorems of mathematical statistics, Wiley, New York 1980.
- [8] Stute, W. & Wang, J. L., The strong law under random censorship, Ann. Statist., 21 (1993), 1591–1607.
- [9] UzunoGullari, Ü. & Wang, J. L., A comparison of hazard rate estimators for left truncated and right censored data, Biometrika, 79 (1992), 297-310.
- [10] Woodroofe, M., Estimating a distribution function with truncated data, Ann. Statist., 13 (1985), 163 - 177.