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Abstract

For the model with both left truncation and right censoring, suppose all the distributions
are continuous. It is proved that the sampled cumulative hazard function Λn and the product-
limit estimate Fn are strong consistent. For any nonnegative measurable ϕ, the almost sure
convergences of

∫
ϕ dΛn and

∫
ϕ dFn to the true values

∫
ϕ dΛ and

∫
ϕ dF respectively are

obtained. The strong consistency of the estimator for the truncation probability is proved.
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§1. Introduction

Suppose that {Xn}, {Yn} and {Tn} are three i.i.d. random sequences and independent

one another. Let F , G and L be their right continuous distribution functions respectively. In

many applications, only the right censored data of the form (Xi∧Yi, δi) with δi = I[Xi ≤ Yi]

are available. Here and in what follows we use I[A] for the indicator of an event A and use

∧, ∨ for the minimum and maximum respectively. Write Zi = Xi ∧ Yi. The K-M (cf. [5])

estimator of F , based on (Zi, δi), 1 = 1, 2, · · · , n, is defined by

F ∗
n(s) = 1−

∏
t≤s

(
1−

#{i : Zi = t, δi = 1}
#{i : Zi ≥ t}

)
, (1.1)

where an empty product is interpreted as one. It is clear that we can not estimate F (x) for

x > bG from the right censored data. Here and in what follows for any distribution function

S, aS ≡ inf{y : S(y) > 0} and bS ≡ sup{y : S(y) < 1}.
Another model of incomplete observation is the left truncated model, which assumes the

presence of truncation variable Ti, so that (Xi, Ti) can be observed only when Xi ≥ Ti.

In this case, the data consist of n i.i.d. observation (X0
i , T

0
i ), i = 1, 2, · · · , n and the

nonparametric MLE is defined by

F 0
n(x) = 1−

∏
s≤x

(
1−

#{i : X0
i = s}

#{i : T 0
i ≤ s ≤ X0

i }

)
(1.2)
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(see [10]). Based on (X0
i , Y

0
i ), i = 1, 2, · · · , n, for continuous F we can estimate F0(x) ≡

P (X ≤ x|X ≥ aL) only (see [10]).

Mixed models with both left truncation and right censoring (LTRC) often arise in bio-

statistical applications such as epidemiology and individual follow-up study (cf. [9]). The

LTRC model assumes that (Zi, δi, Ti) ≡ (Xi ∧ Yi, δi, Ti) is observable only if Zi ≥ Ti. Thus,

the observation consists of the i.i.d. data

(Ui, ηi, Vi), with Ui ≥ Vi, ηi = 0 or 1, i = 1, 2, · · · , n. (1.3)

Based on (1.3) the product-limit (P-L) estimator of F is defined by

Fn(x) = 1−
∏
s≤x

(
1−

#{i : Ui = s, ηi = 1}
#{i : Vi ≤ s ≤ Ui}

)
. (1.4)

Note that Fn reduces to the K-M estimator (1.1) for right censored data if L ≡ 1, and

reduces to the product-limit estimator (1.2) for left truncated data if G ≡ 0. It is clear

that in the LTRC model, for continuous F , only F0 = P (X ≤ x|X ≥ aL), x ≤ bG can be

estimated.

For continuous F , G and L, the strong uniform consistency of F ∗
n and F 0

n are known

(see e.g., [1, 8]). For the LTRC model and continuous F , let W denote the distribution

function of Z. In the case of aW > aL, which insures the denominator in the expression of

Fn bounded from zero (with probability 1) in a neighborhood of aF and hence makes the

study of Fn relatively easy, the uniform consistency was also proved (e.g., Theorem 2 of [3]).

For the case of aW = aL, the strong uniform consistency of Fn kept unknown.

In this paper, for the LTRC model and continuous F , G and L we prove the strong

uniform consistency of Fn (and the P-L estimates of G and L). In fact we will prove that

for any nonnegative measurable ϕ(x),∫
ϕ(x) dFn(x) →

∫
ϕ(x) dF0(x) a.s. (1.5)

For the right ensored model, (1.5) was proved in [8] in 1993.

A natural estimate for the truncation probability α = P (Z ≥ T ) is αn =
∫
Ln(s) dWn(s),

where Ln and Wn are P-L estimates of L and W . For left truncated model and continuous

F and L, the weakly consistency of αn to α was proved in [10]. In this paper, for the LTRC

model we will provide a simple expression for αn. As a corollary of the strong consistency

of Ln and Wn, the strong consistency of αn follows.

§2. Preliminaries

For the LTRC model we can image the i.i.d. data (1.3) coming from a large population

(Xi, Yi, Ti), i = 1, 2, · · · ,mn with mn = inf{m :
m∑
j=1

I[Zj ≥ Tj ] = n}. For any right-

continuous non-decreasing function S, if infs S(s) < sups S(s), define

aS = inf{y : S(y) > inf
s
S(s)} and bS = sup{y : S(y) < sup

s
S(s)},

S̄(x) = 1 − S(x), S−(x) = S(x−) = lim
s↑x

S(s) and S{x} = S(x) − S−(x). To avoid the case

of mathematical trivial, we assume aL < bW , where W (x) = P (Zi ≤ x) = 1 − F̄ (x)Ḡ(x).
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It is clear that aW = aF ∧ aG and bW = bF ∧ bG. From the law of large numbers and the

equality

n−1
n∑

i=1

I[Ui ≤ u, ηi = δ, Vi ≤ v] =
mn

n

1

mn

mn∑
i=1

I[Zi ≤ u, δi = δ, Ti ≤ v, Ti ≤ Zi], (2.1)

we get, for u, v ∈ (−∞,∞) and δ = 0 or 1,

P (Ui ≤ u, ηi = δ, Vi ≤ v) = α−1P (Zi ≤ u, δi = δ, Ti ≤ v, Ti ≤ Zi), (2.2)

where α = P (Z ≥ T ) =
∫
LdW > 0. In describing the distributional properties we use

(X,Y, T ) to refer to any (Xi, Yi, Ti), (Z, δ) to (Zi, δi) and (U, η, V ) to (Ui, ηi, Vi). The

following equations can be obtained directly from (2.2):

(a1) H0(u) ≡ P (U ≤ u, η = 0) = α−1P (Y ≤ u, Y < X, Y ≥ T ) = α−1
∫ u

−∞(1− F )LdG,

(a2) H1(u) ≡ P (U ≤ u, η = 1) = α−1P (X ≤ u,X ≤ Y,X ≥ T ) = α−1
∫ u

−∞(1−G−)LdF,

(a3) H2(u) ≡ H0(u) +H1(u) = P (U ≤ u) = α−1
∫ u

−∞ LdW,

(a4) K(u) ≡ P (V ≤ u) = α−1P (T ≤ u,Z ≥ T ) = α−1
∫ u

−∞(1−W−) dL,

(a5) R(u) ≡ P (V ≤ u ≤ U) = α−1P (T ≤ u ≤ Z) = α−1L(u)(1−W−(u)).

Whenever it makes sense, define G0(u) = P (Y ≤ u|Y ≥ aH0) for u ≤ bH0 and G0(u) =

G(bH0) for u > bH0 ; F0(u) = P (X ≤ u|X ≥ aH1) for u ≤ bH1 and F0(u) = F (bH1) for

u > bH1 ; and W0(u) = P (Z ≤ u|Z ≥ aH2). It is obtained that

1−G0(u−) = (1−G(u−))/P (Y ≥ aH0) for u ∈ [aH0 , bH0 ],

1− F0(u−) = (1− F (u−))/P (X ≥ aH1) for u ∈ [aH1 , bH1 ] and

1−W0(u−) = (1−W (u−))/P (Z ≥ aH2) for u ∈ [aH2 ,∞).

Write Λj(u) =
∫ u

−∞ dHj/R. It is obtained that for continuous F ,

dΛ0(u) = dG(u)/(1−G−(u)) = dG0(u)/(1−G0(u−)), for u ∈ [aH0 , bH0 ],

dΛ1(u) = dF (u)/(1− F−(u)) = dF0(u)/(1− F0(u−)), for u ∈ [aH1 , bH1 ],

dΛ2(u) = dW (u)/(1−W−(u)) = dW0(u)/(1−W0(u−)), for u ∈ [aH2 , bH2 ].

So, Λ0, Λ1, Λ2 are the cumulative hazard functions of G0, F0 and W0 respectively.

Lemma 2.1. Let F , G and L be continuous.

(i) If aG < bF , then G0(u) =

{
P (Y ≤ u|Y ≥ aL), for u ≤ bW ,

P (Y ≤ bW |Y ≥ aL), for u > bW .

(ii) If aF < bG, then F0(u) =

{
P (X ≤ u|X ≥ aL), for u ≤ bW ,

P (X ≤ bW |X ≥ aL), for u > bW .
(iii) W0(u) = P (Z ≤ u|Z ≥ aL).

Proof. From (a1) it is seen that aH0 ≥ aG ∨ aL and bH0 ≤ bF ∧ bG = bW .

If aH0 = aG > aL, then P (aL ≤ Y ≤ aH0) = 0. If aH0 > aG ∨ aL, then aL > aG (note

that aL ≤ aG implies aH0 = aG). Hence, H0(aH0−) = 0, H0(aH0 + ε) > 0 (∀ ε > 0) and (a1)

imply P (aL ≤ Y ≤ aH0) = 0; that is, P (Y ≤ u|Y ≥ aL)=P (Y ≤ u|Y ≥ aH0), ∀u.
If bH0 < bW , then bF < bG (note that bF ≥ bG implies bH0 = bW ). Hence, (a1) implies

P (bH0 ≤ Y ≤ bW ) = 0. It follows that for u ∈ (bH0 , bW ], we have P (Y ≤ u|Y ≥ aH0) =

P (Y ≤ bH0 |Y ≥ aH0).

(ii) and (iii) can be proved similarly.
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According to [10], for the model of left truncation, only W0 and L0(u) ≡ P (T ≤ u|T ≤
bW ) can be estimated. Hence, for the LTRC model only G0, F0, W0 and L0 can be estimated.

Fortunately, we have the following

Corollary 2.2. Let F , G and L be continuous.

(i) aG ≥ aL, bG ≤ bF imply G0 = G. (ii) aF ≥ aL, bF ≤ bG imply F0 = F .

(iii) aW ≥ aL implies W0 = W . (iv) bL ≤ bW implies L0 = L.

§3. The Strong Law for Fn, Gn and Ln

It is known that a cumulative hazard function ΛS(x) of S determines the distribution

S(x) through the algorithm (see [4])

S(x) = 1−
∏
s≤x

(1− ΛS{s}) exp

∑
s≤x

ΛS{s} − ΛS(x)

 . (3.1)

So, for continuous F0 andW0 we have F0(x) = 1−exp(−Λ1(x)),W0(x) = 1−exp(−Λ2(x)).

Now, based on (1.3), let us introduce the following sub-empiricaled functions.

H0,n(u) = n−1
n∑

i=1

I[Ui ≤ u, ηi = 0], H1,n(u) = n−1
n∑

i=1

I[Ui ≤ u, ηi = 1],

H2,n(u) = H0,n(u) +H1,n(u), Kn(u) = n−1
n∑

i=1

I[Vi ≤ u],

Rn(u) = n−1
n∑

i=1

I[Vi ≤ u ≤ Ui] = Kn(u)−H2,n(u−);

and the following empiricaled cumulative hazard functions:

Λj,n(u) =

∫ u

−∞

dHj,n

Rn
, j = 0, 1, 2. (3.2)

Here and in what follows we use
∫ b

a
for

∫
(a,b]

.

According to (3.1), the estimators of F0 and W0 should be

Fn(x) = 1−
∏
s≤x

(
1− H1,n{s}

Rn(s)

)
and Wn(x) = 1−

∏
s≤x

(
1− H2,n{s}

Rn(s)

)
(3.3)

respectively, which coincide the estimators defined by (1.4) and (1.2) and ensure that the

corresponding cumulative hazard function to Λj,n, j = 1, 2. By symmetry, the estimates of

G0 and L0 are defined by

Gn(x) = 1−
∏
s≤x

(
1− H0,n{s}

Rn(s)

)
and Ln(x) =

∏
s>x

(
1− Kn{s}

Rn(s)

)
(3.4)

respectively.

In what follows, if without further statement, F , G and L are supposed to be continuous.

Let U1:n ≤ U2:n, · · · ,≤ Un:n be the ordered values of the Ui’s and (η1:n, V1:n), (η2:n, V2:n),

· · · , (ηn:n, Vn:n) be the concomitants corresponding to the Ui’s (that is, (ηj:n, Vj:n) = (ηi, Vi)

if and only if Uj:n = Ui). Define Fn = σ{(Uj:n, ηj:n, Vj:n), (Uk, ηk, Vk); 1 ≤ j ≤ n, k > n}.
Then ∀n ≥ 1, Fn+1 ⊂ Fn and Λ1,n, Λ2,n ∈ Fn. It is clear that for any n ≥ 1, k =
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1, 2, · · · , n+ 1, P (Un+1 = Uk:n+1|Fn+1) = 1/(n+ 1) and Un+1 = Uk:n+1 implies
Uj:n+1 = Uj:n,

ηj:n+1 = ηj:n,

Vj:n+1 = Vj:n,

for j ≤ k − 1 and


Uj:n+1 = Uj−1:n,

ηj:n+1 = ηj−1:n,

Vj:n+1 = Vj−1:n,

for j ≥ k + 1. (3.5)

For any (measurable) ϕ(x) ≥ 0, define Wi,n =
∫
ϕdΛi,n, i = 1, 2. We have the following

result.

Lemma 3.1. Let ϕ(x) ≥ 0 and i = 1 or 2. Suppose aF < bG for i = 1. Then

(Wi,n,Fn;n ≥ 1) is a nonnegative reverse supermartingale; that is, ∀n ≥ 1, Wi,n ∈ Fn and

E(Wi,n|Fn+1) ≤ Wi,n+1.

Proof. Λ1,n(x) is a step function and has jumps only at each Uj:n, j = 1, · · · , n. So,

W1,n =
n∑

j=1

ϕ(Uj:n)Λ1,n{Uj:n} ∈ Fn and

W1,n =
n+1∑
j=1

ϕ(Uj:n+1)Λ1,n{Uj:n+1}, with ϕ(Uj,n+1) ∈ Fn+1. (3.6)

Therefore, it suffices to show

E(Λ1,n{Uj:n+1}|Fn+1) ≤ Λ1,n+1{Uj:n+1} a.s. (3.7)

Write Ak = I[Un+1 = Uk:n+1]. It follows that Λ1,n{Uk:n+1}Ak = 0 a.s. and

E(Λ1,n{Uj:n+1}|Fn+1)

=
1

n+ 1

∑
k ̸=j

(
ηj:n+1

(n+ 1)Rn+1(Uj:n+1)− I[Vk:n+1 ≤ Uj:n+1 ≤ Uk:n+1]

)
a.s.

Let Bm = {(n + 1)Rn+1(Uj:n+1) = m}, m = 1, 2, · · · , n + 1. For m > 1, on Bm we have∑
k ̸=j

I[Vk:n+1 ≤ Uj:n+1 ≤ Uk:n+1] = m− 1 and it follows that

E(Λ1,n{Uj:n+1}|Fn+1) =
ηj:n+1

m
= Λ1,n+1{Uj:n+1} a.s.

On B1,
∑
k ̸=j

I[Vk:n+1 ≤ Uj:n+1 ≤ Uk:n+1] = 0, which implies

E(Λ1,n{Uj:n+1}|Fn+1) =
n

n+ 1
ηj:n+1 = Λn+1{Uj:n+1} −

ηj:n+1

n+ 1
.

This proves (3.7) and hence the lemma for i = 1. The proof for i = 2 is similar.

By Hewitt-Savage Zero-One Law (see [2]), F∞ =
∩
n≥1

Fn is trivial. Hence, the following

is a direct corollary of Proposition 5-3-11 of [6].

Corollary 3.1. Let i = 1 or 2 and ϕ(x) ≥ 0. Suppose aF < bG for i = 1.

(i) ξi = lim
n→∞

EWi,n exists (possibly infinite). (ii) Wi,n → ξi a.s.

(iii) If ξi < ∞, then {Wi,n} is uniformly integrable and E|Wi,n − ξi| → 0.

Theorem 3.1. Let i = 1 or 2 and ϕ(x) ≥ 0. Suppose aF < bG for i = 1. We have

lim
n→∞

Wi,n =

∫
ϕ(x)dΛi(x) a.s.

Proof. We only give the proof for i = 1. The proof for i = 2 is similar. Let ζn(u) =

(n + 1)/(nRn(u) + 1) ∈ Fn. We have EW1,n =
∫
ϕEζn−1(u) dH1. So, by Corollary 3.1, it

suffices to prove Eζn(u) ↗ R(u)−1. By the same method used in the proof of Lemma 3.1, we

have E(ζn(u)|Fn+1) ≤ ζn+1(u). Hence, Eζn(u) ↗ R(u)−1 follows from Rn(u) → R(u) a.s.



346 CHIN. ANN. OF MATH. Vol.19 Ser.B

For ϕ(x) = I[−∞, x] it is obtained that ∀x

Λi,n(x) → Λi(x) a.s. as n → ∞. (3.8)

The fact that Λi(x) is continuous and Λi,n is monotone implies that for any x < bHi

sup
s≤x

|Λi,n(s)− Λi(s)| → 0 a.s. as n → ∞.

Now, using (3.1) we get the following theorem.

Theorem 3.2. Define F̃n(x) = 1− exp(−Λ1,n(x)) and W̃n(x) = 1− exp(−Λ2,n(x)).

(i) If aF < bG, then sup
x

|F̃n(x)− F0(x)| → 0 a.s. as n → ∞.

(ii) sup
x

|W̃n(x)−W0(x)| → 0 a.s. as n → ∞.

Theorem 3.3. With probability 1, as n → ∞
(i) aF < bG implies sup

x
|Fn(x)−F0(x)| → 0, (ii) aG < bF implies sup

x
|Gn(x)−G0(x)| → 0,

(iii) sup
x

|Wn(x)−W0(x)| → 0, sup
x

|Ln(x)− L0(x)| → 0.

Proof. The proof is only for Fn. The proof for Wn can be completed by considering the

case ηi ≡ 1. The proof for Gn and Ln can be finished by symmetry (consider X̃i = Yi, Ỹi =

Xi and Z̃i = −Ti, T̃i = −Zi respectively).

Set φn = (log n/n)1/2 and dn = inf{x;L(x) ≥ φn}. We get L(dn) = φn → 0 and

dn → aL, as n → ∞. Note aL ≤ aH1 , we have Λ1(dn) → 0, as n → ∞. ∀a ∈ (aH1 , bH1),

using (3.1) and
∏

aj −
∏

bj ≤
∑

|aj − bj | for aj , bj ∈ [0, 1], we obtain

F0(dn) = 1− exp(−Λ1(dn)) → 0, and Fn(dn) ≤ Λ1,n(dn) → 0.

The product form of the estimate F̄n(x) = 1− Fn(x) can be spliced as follows. Let

Mn(x) =
∏

dn<Ui≤x

(
1− Hn{Ui}

Rn(Ui)

)
, M̃n(x) = exp (−Λ1(x) + Λ1(dn)) .

Then F̄n(x) = (1− Fn(dn))Mn(x), F̄0(x) = (1− F0(dn))M̃n(x).

Hence, |Fn(x)− F0(x)| ≤ Fn(dn) + F0(dn) + |Mn(x)− M̃n(x)|. It suffices to prove

sup
x

|Mn(x)− M̃n(x)| → 0 a.s. (3.9)

Note, ∀a ∈ (aH1 , bH1) by (a5), inf
dn<x≤a

R(x) ≥ α−1F̄ (a)Ḡ(a)L(dn). Applying Theorem 2.1.4B

of [7], we have

lim sup
n→∞

sup
dn<x≤a

∣∣∣∣Rn(x)

R(x)
− 1

∣∣∣∣ ≤ lim sup
n→∞

α

F̄ (a)Ḡ(a)φn
|Rn(x)−R(x)| = 0 a.s.

So, ∀x ∈ (aH1 , bH1), with probability 1 for large n,

inf
dn<s≤x

(nRn(s)) = n inf
dn<s≤x

(
Rn(s)

R(s)
·R(s)

)
≥ n

2
inf

dn<s≤x
R(s) ≥ M0

√
n log n,

where M0 is a positive constant. Hence, by Taylor’s formula

Mn(x) = exp

(
−Λ1,n(x) + Λ1(dn) +O(

1

log n
)

)
→ 1− F0(x). a.s. (3.10)

Since Mn(x) is monotone in x and F0 is continuous, the convergence in (3.10) must be

uniform in x. Now (3.9) is proved by combining with the fact that

sup
x

|M̃n(x)− F̄0(x)| = sup
x

| exp (−Λ1(x) + Λ1(dn))− exp (−Λ1(x)) | → 0 a.s.
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§4. The Strong Law for
∫
ϕdFn,

∫
ϕdGn and

∫
ϕdLn

Lemma 4.1. Suppose ϕ(x) ≥ 0. Then

(i) aF < bG and
∫
ϕdΛ1 < ∞ imply

∫
ϕdFn →

∫
ϕdF0 a.s.

(ii)
∫
ϕdΛ2 < ∞ implies

∫
ϕdWn →

∫
ϕdW0 a.s.

Proof. We give the proof for (i). By the definition of Fn, we have

Fn{x} = F̄n(x−)H1,n{x}/Rn(x) = F̄n(x−)Λ1,n{x}. (4.1)

Now the result follows from Theorems 3.1 and 3.3.

To get a more general result, we need the following lemma.

Lemma 4.2. For maybe non-continuous F , G and L,

Ln(Uj)Wn{Uj} = αnH2,n{Uj}, j = 1, 2, · · · , n, (4.2)

αn =

∫
Ln dWn = Ln(Uj)(1−Wn(Uj−))/Rn(Uj), j = 1, 2, · · · , n. (4.3)

Proof. Let U(1) < U(2) < · · · < U(p) be the distinct ordered values of U1, U2, · · · , Un and

V(1) < V(2) < · · · < V(q) the distinct ordered values of V1, V2, · · · , Vn. Then, for each fixed j

Wn{U(j)} =
∏
i: i<j

(
1−

H2,n{U(i)}
Rn(U(i))

)
H2,n{U(j)}
Rn(U(j))

, Ln(U(j)) =
∏

i:V(i)>U(j)

(
1−

Kn{V(i)}
Rn(V(i))

)
.

Define

ξn(j) =
∏
i: i<j

(
1−

H2,n{U(i)}
Rn(U(i))

) ∏
i:V(i)>U(j)

(
1−

Kn{V(i)}
Rn(V(i))

)
1

Rn(U(j))
. (4.4)

We have, for j ≥ 2 Ln(U(j))Wn{U(j)} = ξn(j)H2,n{U(j)},

ξn(j)− ξn(j − 1) =
{ ∏

i: i<j−1

(
1−

H2,n{U(i)}
Rn(U(i))

)
·

∏
i:V(i)>U(j)

(
1−

Kn{V(i)}
Rn(V(i))

)}
·Bn(j),

Bn(j) =
Rn(U(j−1))−H2,n{U(j−1)}

Rn(U(j−1))Rn(U(j))
− 1

Rn(U(j−1))

∏
l

(
1−

Kn{V(l)}I[U(j−1) < V(l) ≤ U(j)]

Rn(V(l))

)
.

Put h =
∑
l

I[U(j−1) < V(l) ≤ U(j)]. For h = 0, Rn(U(j−1)) − H2,n{U(j−1)} =

Kn(U(j−1))−H2,n(U(j)−) = Rn(U(j)) implies Bn(j) = 0.

For h > 0, we can suppose V ′
(1), V

′
(2), · · · , V

′
(h) are the distinct ordered values of {Vj ;Vj ∈

(U(j−1), U(j)]}, so that U(j−1) < V ′
(1) < V ′

(2) < · · · < V ′
(h) ≤ U(j). Consequently,∏

l

(
1−

Kn{V(l)}I[U(j−1) < V(l) ≤ U(j)]

Rn(V(l))

)
=

h∏
l=1

(
1−

Kn{V ′
(l)}

Rn(V ′
(l))

)
=

h∏
l=1

Kn(V
′
(l)−)−H2,n(V

′
(l)−)

Rn(V ′
(l))

=
Kn(U(j−1))−H2,n(U(j−1))

Rn(U(j))
=

Rn(U(j−1))−H2,n{U(j−1)}
Rn(U(j))

.

Here, for V ′
(h) < U(j) we used Rn(V

′
(h)) = Kn(V

′
(h))−H2,n(V

′
(h)−) = Rn(U(j)).

So, Bn(j) = 0, for j = 2, 3, · · · , n, which implies (4.2). The summation over j of (4.2)

and (4.4) gives (4.3).

Theorem 4.1. αn → α0 =
∫
L0 dW0 a.s. as n → ∞.

The proof is straightforward and omitted.
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If aW ≥ aL, bW ≥ bL, we have W0 = W, L0 = L. Hence αn is a strong consistent

estimate for the left truncation probability α = P (W ≥ T ) and the number of population

mn can be estimated by m̂n = n/αn. Otherwise, m̂n will less estimate mn, since α0 =

α/(L(bW )W̄ (aL−)) > α.

Theorem 4.2. For any nonnegative ϕ(x), with probability 1, as n → ∞
(i) bF < bG implies

∫
ϕdFn →

∫
ϕdF0, (ii)

∫
ϕdWn →

∫
ϕdW0,

(iii) bG < bF implies
∫
ϕdGn →

∫
ϕdG0, (iv)

∫
ϕdLn →

∫
ϕdL0.

Proof. We give the proof for (i). (ii) can be obtained by considering ηi ≡ 1 and (iii),

(iv) can be obtained by symmetry. For any a ∈ (aH1 , bH1) and M > 0, Lemma 4.1 implies

lim inf
n→∞

∫
ϕdFn ≥

∫ a

−∞ ϕI[ϕ ≤ M ] dF0. Let a ↑ bH1 and M ↑ ∞. We get lim inf
n→∞

∫
ϕdFn ≥∫

ϕdF0. So, it suffices to prove lim sup
n→∞

∫
ϕdFn ≤

∫
ϕdF0 a.s., under the condition

∫
ϕdF0 <

∞. In this case, ∀a ∈ (aH1 , bH1),
∫ a

−∞ ϕdΛ1 =
∫ a

aH1
ϕ dF0

1−F0
< ∞. Hence, by Lemma 4.1

lim sup
n→∞

∫
ϕdFn ≤

∫ a

−∞
ϕdF0 + lim sup

n→∞

∫ ∞

a

ϕdFn.

Therefore, we only need to show lim sup
n→∞

∫∞
a

ϕdFn → 0 a.s. as a ↑ bH1 .

In fact, (4.1), Lemma 4.2 and (a2) imply that as n → ∞,∫ ∞

a

ϕ(x)dFn(x) = αn

∫ ∞

a

ϕ(x) dH1,n(x)

Ln(x)Ḡn(x−)
≤ αn

Ln(a)Ḡn(bH1)

∫ ∞

a

ϕ(x)dH1,n(x)

→ α0

L0(a)Ḡ0(bH1)

∫ ∞

a

ϕ(x)dH1(x) ≤
α0

αL0(a)Ḡ0(bF )

∫ ∞

a

ϕ(x)dF0(x) → 0 a.s. as a ↑ bH1 .

Remark 4.1. The condition aF < bG (or aG < bF ) requires nothing but we can get

information from F (or G). It seems that bF < bG (bG < bF ) in (i) ((iii)) requires something

more than necessity.

Corollary 4.1. For any nonnegative ϕ(x), with probability 1, as n → ∞
(i) for the right censored model if bF < bG,

∫
ϕdF ∗

n →
∫ bW
−∞ ϕdF a.s.,

(ii) for the left truncated model
∫
ϕdF 0

n → [1− F (aL)]
−1

∫∞
aL

ϕdF a.s.
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