THE ABSTRACT CAUCHY PROBLEM AND A GENERALIZATION OF THE LUMER-PHILLIPS THEOREM

LI YANGRONG*

Abstract

For injective, bounded operator C on a Banach space X, the author defines the C-dissipative operator, and then gives Lumer-Phillips characterizations of the generators of quasi-contractive C-semigroups, where a C-semigroup $T(\cdot)$ is quasi-contractive if $||T(t)x|| \leq ||Cx||$ for all $t \geq 0$ and $x \in X$. This kind of generators guarantee that the associate abstract Cauchy problem u'(t,x) = Au(t,x) has a unique nonincreasing solution when the initial data is in C(D(A)) (here D(A) is the domain of A). Also, the generators of quasi-isometric C-semigroups are characterized

Keywords Semigroups of operators, *C*-semigroups, Dissipative operators, Abstract Cauchy problems

1991 MR Subject Classification 47D03, 47D06 **Chinese Library Classification** 0177.2

§1. Introduction

Recently the theory of C-semigroups has extensively devoloped by many authors (see [2-8, 14]), but a natural and important question asked by R. deLaubenfels in [3] (page 60, Open question 6.10) remains open: Does there exist an analogue of the Lumer-Phillips theorem, for C-semigroups? Can the numerical range be generalized in such a way as to play the same role for C-semigroups that it does for c_0 -semigroups?

Our main purpose of this paper is to investigate above question. We first, in section 2, generalize the numerical range and define the *C*-dissipative operator. We then see, in Section 3, that the generalized numerical range just plays the same role for *C*-semigroups as the numerical range does for c_0 -semigroups. We obtain several analogues of the Lumer-Phillips Theorem, which give some partial answers to the above question. These results allow us to consider the nonincreasing solution of the abstract Cauchy problem

$$u'(t,x) = Au(t,x), \quad u(0,x) = x.$$
 (ACP)

In Section 4, we introduce the C-conservative operator and disscuss the isometric solution of (ACP), where "isometric" means that ||u(t, x)|| = ||x|| for all $t \ge 0$.

Throughout this paper, all operators are linear on a complex Banach space X. For an operator A, we write $\rho(A)$, D(A), ImA for its resolvent set, domain and range respectively, and [D(A)] for the Banach space with the graph norm $||x||_{[D(A)]} = ||x|| + ||Ax||$ for $x \in D(A)$. C will always be an injective, bounded operator.

Manuscript received September 19, 1995. Revised November 24, 1996.

^{*}Department of Mathematics, Southwest Normal University, Chongqing 630715, China.

\S **2.** *C*-Dissipative Operators

Let X^* be the dual of X. For $x \in X$ we define the C-duality set $F_C(x) \subset X^*$ by

$$F_C(x) \equiv \{x^* \in X^* : \langle x, x^* \rangle = \|Cx\|, \ |\langle y, x^* \rangle| \le \|Cy\| \text{ for all } y \in X\}.$$
(2.1)

From the Hahn-Banach Theorem it follows that $F_C(x)$ is nonempty for all $x \in X$, and it is not hard to show that $F_I(x) = F(x)/||x||$, where $F(x) = \{x^* \in X^* : \langle x, x^* \rangle = ||x||^2 = ||x^*||^2\}$ is the duality set (see [13]).

Definition 2.1. An operator A on X is C-dissipative if for all $x \in D(A)$ there exists an $x^* \in F_C(x)$ such that $\operatorname{Re}\langle Ax, x^* \rangle \leq 0$.

Proposition 2.1. An operator A on X is C-dissipative if and only if

$$||C(\lambda - A)x|| \ge \lambda ||Cx|| \quad for \ all \quad x \in D(A) \quad and \quad \lambda > 0.$$

$$(2.2)$$

Proof. It is analogous to the situation of strongly continuous semigroups (see [13]).

Proposition 2.2. If $CA \subset AC$, then A is C-dissipative if and only if for each $x \in C(D(A))$ there exists an $x^* \in F(x)$ such that $\operatorname{Re}\langle Ax, x^* \rangle \leq 0$.

Proof. Assume that A is C-dissipative. Let $x \in C(D(A))$ and let $y \in D(A)$ with x = Cy. Then there exists a $y^* \in F_C(y)$ such that $\operatorname{Re}\langle Ay, y^* \rangle \leq 0$. Define $f : \operatorname{Im} C \to \mathbb{C}$ by

$$f(Cz) = \langle z, y^* \rangle \quad (z \in X).$$

Clearly f is well-defined (because C is injective) and linear on ImC. Since $|f(Cz)| = |\langle z, y^* \rangle| \leq ||Cz||$, it follows that f is bounded on ImC with norm ≤ 1 . Hence, by Hahn-Banach Theorem, there exists an $x_0^* \in X^*$ such that $||x_0^*|| \leq 1$ and $\langle Cz, x_0^* \rangle = f(Cz) = \langle z, y^* \rangle$ for all $z \in X$. The second assertion implies that $C^*x_0^* = y^*$. Let now $x^* = ||x||x_0^*$, then $\operatorname{Re}\langle Ax, x^* \rangle = \operatorname{Re}\langle Ay, C^*x^* \rangle = ||x||\operatorname{Re}\langle Ay, y^* \rangle \leq 0$. Since

$$\begin{aligned} \langle x, x^* \rangle &= \langle Cy, \|x\|x_0^* \rangle = \|x\| \langle y, C^* x_0^* \rangle = \|x\| \langle y, y^* \rangle = \|x\| \|Cy\| = \|x\|^2, \\ \|x^*\| &\le \|x\| \|x_0^*\| \le \|x\|, \end{aligned}$$

it follows that $x^* \in F(x)$, which concludes the proof of the necessity.

Conversely, let $x \in D(A)$ and let $y = Cx \in C(D(A))$. By hypothesis, there exists a $y^* \in F(y)$ such that $\operatorname{Re}\langle Ay, y^* \rangle \leq 0$. Let $x^* = C^*y^*/||y^*||$. Then $\operatorname{Re}\langle Ax, x^* \rangle = \operatorname{Re}\langle CAx, y^*/||y^*|| \rangle = \operatorname{Re}\langle Ay, y^* \rangle/||y^*|| \leq 0$, and clearly $x^* \in F_C(x)$. Thus A is C-dissipative. We conclude this section with some properties of C-dissipative operators.

Proposition 2.3. (a) If A is C-dissipative, then $\lambda - A$ is injective for all $\lambda > 0$.

(b) If A is C-dissipative and closable, then the closure \overline{A} is also C-dissipative.

(c) If A is C-dissipative and densely defined, then A is closable.

Proof. (a) Suppose that $x \in D(A)$ satisfies $(\lambda - A)x = 0$ for some $\lambda > 0$. Then $C(\lambda - A)x = 0$. From the *C*-dissipativity of *A* it follows that $\lambda ||Cx|| \le ||C(\lambda - A)x|| = 0$, which implies that Cx = 0. Thus x = 0 by the injectivity of *C*.

(b) Let $x \in D(\overline{A})$ and $\lambda > 0$. Then there exist $x_n \in D(A) \to x$ and $\overline{A}x = \lim_{n \to \infty} Ax_n$. Thus $\lambda \|Cx\| = \lim_{n \to \infty} \lambda \|Cx_n\| \le \lim_{n \to \infty} \|C(\lambda - A)x_n\| = \|C(\lambda - \overline{A})x_n\|$. Therefore, by Proposition 2.1, \overline{A} is C-dissipative.

(c) Assume that $x_n \in D(A)$, $x_n \to 0$ and $Ax_n \to y$. For $z \in D(A)$ and $\lambda > 0$, from Proposition 2.1 it follows that $\lambda \|C(x_n + \frac{1}{\lambda}z)\| \le \|C(\lambda - A)(x_n + \frac{1}{\lambda}z)\|$. Letting $n \to \infty$

yields $||Cz|| \leq ||C(z-y+\frac{1}{\lambda}z)||$. Letting $\lambda \to \infty$ yields $||Cz|| \leq ||C(z-y)||$. Note that A is densely defined. Letting $z \to y$ yields $||Cy|| \leq 0$, which implies that y = 0.

§3. Lumer-Phillips Characterizations for *C*-Semigroups

In this section, we use the C-dissipative operators to characterize generators of quasicontractive C-semigroups. In order to state our results we need some preliminaries.

The strongly continuous family of bounded operators $\{T(t)\}_{t\geq 0}$ on X is called a C-semigroup if T(0) = C and T(t)T(s) = CT(t+s) for all $t, s \geq 0$. The generator A of the C-semigroup $\{T(t)\}_{t\geq 0}$ is defined by

$$D(A) = \{x: \lim_{t \to 0} \frac{1}{t} (T(t) - Cx) \text{ exists and is in } \operatorname{Im} C\},\$$
$$Ax = C^{-1} \lim_{t \to 0} \frac{1}{t} (T(t) - Cx).$$

We refer to the monograph^[4] for the theory of C-semigroups.

Definition 3.1.^[14] Suppose that $S(\cdot)$ is a C-semigroup, A is a closed operator. If (1) $S(t)A \subset AS(t)$ for $t \ge 0$;

(2) for $x \in X$, we have $\int_0^t S(r)x \, dr \in D(A)$ and $S(t)x - Cx = A \int_0^t S(r)x \, dr$, then $S(\cdot)$ is said to be a C-semigroup for A.

Remark 3.1. There exists at most one *C*-semigroup for *A*. If $S(\cdot)$ is the *C*-semigroup for *A*, then the extension $C^{-1}AC$ of *A* is the generator of the *C*-semigroup $S(\cdot)$.

Definition 3.2. By a (classical) solution of the Cauchy problem (ACP), we mean $u \in C([0,\infty), [D(A)]) \cap C^1([0,\infty), X)$ satisfying (ACP). By a mild solution of (ACP), we mean $u \in C([0,\infty), X)$ satisfying

$$\int_{0}^{t} u(s) \, ds \in D(A) \quad and \quad u(t) = A \int_{0}^{t} u(s) \, ds + x$$

for all $t \ge 0$. We say a solution (or a mild solution) $u(\cdot, x)$ is nonincreasing if $||u(t, x)|| \le ||x||$ for all $t \ge 0$.

Definition 3.3. A C-semigroup $T(\cdot)$ on X is of quasi-contraction if $||T(t)x|| \le ||Cx||$ for all $t \ge 0$ and $x \in X$.

Remark 3.2. (1) A quasi-contractive *I*-semigroup is just a contractive c_0 -semigroup. Conversely, if *A* generates a contractive c_0 -semigroup $S(\cdot)$, and *C* commutes with $S(\cdot)$, then $T(\cdot) \equiv CS(\cdot)$ is a quasi-contractive *C*-semigroup. This is a typical example of quasi-contractive *C*-semigroup, more examples are given in the last section.

(2) It is well-known that if A (or an extension of A) generates a C-semigroup, then (ACP) has a unique solution for all $x \in C(D(A))$ (for instance see [3, 4]). If the C-semigroup is of quasi-contraction, it is not hard to see that the solution of (ACP) is nonincreasing.

We now state our results as follows. In Theorems 3.1-3.3, C is an injective, bounded operator on X. As we point out in Section 1, A is an operator on X. We emphasize, in Theorem 3.3, D(A) is not necessarily dense.

Theorem 3.1. Suppose that A is densely defined and closed, C has a dense range, $CA \subset AC$. Then the following are equivalent:

(i) There exists a quasi-contractive C-semigroup $T(\cdot)$ for A.

(ii) A is C-dissipative and

$$\operatorname{Im} C \subset \bigcap_{n \in \mathbb{N}} \operatorname{Im} (\lambda - A)^n \quad for \ all \quad \lambda > 0.$$
(3.1)

(iii) A is C-dissipative and

$$\operatorname{Im} C \subset \bigcap_{n \in \mathbb{N}} \operatorname{Im} (\lambda_0 - A)^n \quad for \ some \quad \lambda_0 > 0.$$
(3.2)

(iv) For all $x \in \text{Im}C$, (ACP) has a unique nonincreasing mild solution $u(\cdot, x)$.

Remark 3.3. If C = I, Theorem 3.1 reduces to the well-known Lumer-Phillips theorem. **Theorem 3.2.** Suppose that A is densely defined and has a nonempty resolvent set, $CA \subset AC$, then the following are equivalent:

(i) A generates a quasi-contractive C-semigroup $S(\cdot)$.

(ii) A is C-dissipative and $\text{Im}(\lambda - A) = X$ for all $\lambda > 0$.

Theorem 3.3. If $0 < r \in \rho(A)$, $n \in \mathbb{N} \cup \{0\}$ and A is $(r - A)^{-n}$ -dissipative. Then A generates a quasi-contractive $(r - A)^{-(n+1)}$ -semigroup. In this case, (ACP) has a unique nonincreasing solution for all $x \in D(A^{n+2})$.

To prove these theorems, we need some lemmas.

When A has no eigenvalues in $(0, \infty)$, the Hille-Yosida space Z_0 for A is defined by

 $Z_0 = \{x \in X : \text{ for } x, (\text{ACP}) \text{ has a bounded uniformly continuous mild solution } u(\cdot, x)\}, \\ \|x\|_{Z_0} = \sup_{t \ge 0} \|u(t, x)\| \text{ for } x \in Z_0.$

The weak Hille-Yosida space Y for A is defined by

$$Y = \{ x \in X : x \in \operatorname{Im}(s - A)^n \text{ for all } s > 0, n \in \mathbb{N} \text{ and} \\ \|x\|_Y = \sup\{s^n \| (s - A)^{-n} x \|; s > 0, n + 1 \in \mathbb{N} \} < \infty \}.$$

Lemma 3.1.^[4] (a) $Z_0 \subset Y$ and $||x||_{Z_0} = ||x||_Y$ for all $x \in Z_0$.

(b) Z_0 is the closure, in Y, of $D(A|_Y)$.

Lemma 3.2.^[14] If A is closed, $CA \subset AC$, then (ACP) has a unique mild solution $u(\cdot, x)$ for all $x \in \text{Im}C$ if and only if there exists a C-semigroup $T(\cdot)$ for A. In this case T(t)x = u(t, Cx) for all $t \ge 0$ and $x \in X$.

Lemma 3.3. If there exists a quasi-contractive C-semigroup $T(\cdot)$ for A, then A is Cdissipative.

Proof. Since $CA \subset AC$, we can use Proposition 2.2. Let $x \in C(D(A))$ and $x^* \in F(x)$. Let $y \in D(A)$ with x = Cy. By hypothesis we have

$$|\langle T(t)y,x^*\rangle| \leq \|T(t)y\|\cdot\|x^*\| \leq \|Cy\|\|x^*\| = \|x\|^2$$

for all t > 0. Thus

$$\operatorname{Re}\langle T(t)y - Cy, x^* \rangle = \operatorname{Re}\langle T(t)y, x^* \rangle - \operatorname{Re}\langle Cy, x^* \rangle = \operatorname{Re}\langle T(t)y, x^* \rangle - \|x\|^2 \le 0.$$

Since the generator of $T(\cdot)$ is the extension $C^{-1}AC$ of A,

$$\operatorname{Re}\langle CAy, x^* \rangle = \lim_{t \to 0} \operatorname{Re}\left\langle \frac{T(t)y - Cy}{t}, x^* \right\rangle \le 0,$$

that is, Re $\langle Ax, x^* \rangle \leq 0$. Therefore, by Proposition 2.2, A is C-dissipative.

Proof of Theorem 3.1. (i) \Leftrightarrow (iv) follows from Lemma 3.2 and Remark 3.2 (2) of Definition 3.3. (ii) \Longrightarrow (iii) is obvious.

(i) \implies (ii). From Lemma 3.3 it follows that A is C-dissipative. Hence, by Proposition 2.2, A has no eigenvalues in $(0, \infty)$. Since D(A) is dense in X, for $x \in X$, the mild solution $u(t, Cx) \equiv T(t)x$ is bounded uniformly continuous (see [4, Remark 5.9]), that is, $Cx \in Z_0$, the Hille-Yosida space. Thus, by Lemma 3.1, $Cx \in Y$ and (3.1) holds at once.

(iii) \Longrightarrow (ii). Let $\Lambda = \{\lambda \in (0, \infty) : \operatorname{Im} C \subset \bigcap_{n \in N} \operatorname{Im} (\lambda - A)^n\}$. We have to prove that $\Lambda = (0, \infty)$. By hypothesis, we may assume that $0 < r \in \Lambda$. We shall show that $(r - r_0, r + r_0) \subset \Lambda$ for any r_0 with $0 < r_0 < r$. To this end, for $x \in X$ we define the series

$$R_1(s) = \sum_{k=0}^{\infty} (r-s)^k (r-A)^{-(k+1)} Cx, \quad |s-r| < r_0,$$
(3.3)

and we claim that the series (3.3) converges uniformly on $\{s \in \mathbb{C} : |s - r| < r_0\}$. It suffices to show that

$$||(r-A)^{-k}Cx|| \le \frac{1}{r^k} ||Cx||; \quad k = 1, 2, \cdots.$$
 (3.4)

Let $Cx = (r - A)^k y$. Then $C^2 x = C(r - A)^k y = (r - A)^k Cy$. It follows from Proposition 2.1 that

$$||C^{2}x|| = ||C(r-A)(r-A)^{k-1}y|| \ge r||C(r-A)^{k-1}y||$$

$$\ge r^{2}||C(r-A)^{k-2}y|| \ge \dots \ge r^{k}||Cy|| = r^{k}||(r-A)^{-k}C^{2}x||.$$
(3.5)

Since ImC is dense in X, there exists $x_n \in X$, $n = 1, 2, \cdots$ such that $Cx_n \to x$ as $n \to \infty$. By (3.5) we have

$$||C^{2}x_{n}|| \ge r^{k}||(r-A)^{-k}C^{2}x_{n}||, \quad k, n = 1, 2, \cdots.$$
(3.6)

Since A is closed, $(r - A)^{-k}C$ is bounded. Letting $n \to \infty$ in (3.6) we obtain (3.4), and the series (3.3) converges uniformly on $\{s \in \mathbb{C} : |s - r| < r_0\}$.

Note that each partial sum in (3.3) is in D(A) and the series

$$\sum_{k=0}^{\infty} A(r-s)^{k} (r-A)^{-(k+1)} Cx$$

= $\sum_{k=0}^{\infty} (r-(r-A))(r-s)^{k} (r-A)^{-(k+1)} Cx$
= $\sum_{k=0}^{\infty} r(r-s)^{k} (r-A)^{-(k+1)} Cx - \sum_{k=0}^{\infty} (r-s)^{k} (r-A)^{-k} Cx = sR_{1}(s) - Cx$

converges. Thus, since A is closed, $R_1(s) \in D(A)$ with $(s - A)R_1(s) = Cx$ for $|s - r| < r_0$. This proves that $\text{Im}C \subset \text{Im}(s - A)$ for $|s - r| < r_0$.

Fix now s > 0 with $|s - r| < r_0$. We claim that

$$R_1(s) \in D((r-A)^{-m}) \equiv \operatorname{Im}(r-A)^m,$$

$$\|(r-A)^{-m}R_1(s)\| \le \frac{M}{r^m}, \ m = 1, 2, \cdots,$$
(3.7)

where M > 0 is constant and independent of m. Indeed, from (3.4) it follows that the series

$$\sum_{k=0}^{\infty} (r-A)^{-1} (r-s)^k (r-A)^{-(k+1)} Cx$$

converges uniformly on $|s - r| < r_0$. Thus, since $(r - A)^{-1}$ is closed, $R_1(s) \in D((r - A)^{-1})$ with

$$(r-A)^{-1}R_1(s) = \sum_{k=0}^{\infty} (r-A)^{-1} (r-s)^k (r-A)^{-(k+1)} Cx.$$

Let $M \equiv \sum_{k=0}^{\infty} \frac{(r-s)^k}{r^{k+1}} ||Cx||$. Then by (3.4) we have

$$||(r-A)^{-1}R_1(s)|| \le \sum_{k=0}^{\infty} |r-s|^k ||(r-A)^{-(k+2)}Cx|| \le \frac{M}{r}.$$

This proves that (3.7) is valid for m = 1. Iterating this inequality yields (3.7) for all $m = 2, 3, \cdots$. Hence we can define

$$R_2(t) = \sum_{j=0}^{\infty} (r-t)^j (r-A)^{-(j+1)} R_1(s), \quad |t-r| < r_0,$$
(3.8)

and the series (3.8) converges uniformly in $\{t > 0 : |t - r| < r_0\}$. Similar to the previous argument, we have

$$R_2(t) \in D(A)$$
 and $(t-A)R_2(t) = R_1(s), |t-r| < r_0.$ (3.9)

In particular, taking t = s in (3.9) we obtain

$$(s-A)R_2(s) = R_1(s)$$
 for $|s-r| < r_0$. (3.10)

Thus $Cx = (s - A)R_1(s) = (s - A)^2R_2(s) \in \text{Im}(s - A)^2$ for $|s - r| < r_0$. Repeating this proceeding we obtain $Cx \in \text{Im}(s - A)^n$ for $|s - r| < r_0$, $n \in \mathbb{N}$. Since $x \in X$ is arbitrary, we have $\{s > 0 : |s - r| < r_0\} \subset \Lambda$; and by the arbitrariness of r_0 with $0 < r_0 < r$, we have $(0, 2r) \subset \Lambda$. Thus $\frac{3}{2}r \in \Lambda$, which implies that $(0, 3r) \subset \Lambda$; and $\frac{5}{2}r \in \Lambda$, which implies that $(0, 5r) \subset \Lambda, \cdots$. Therefore $(0, \infty) \subset \Lambda$, and (3.1) holds.

(ii) \implies (i). Similar to the proof of (3.4), we have

$$||s^n(s-A)^{-n}Cx|| \le ||Cx||$$
 for all $s > 0, n \in \mathbb{N}, x \in X,$

that is, $\operatorname{Im} C \subset Y$, the weak Hille-Yosida space, and $||Cx||_Y \leq ||Cx||$ for all $x \in X$. Since A is densely defined, for $x \in X$, there exists a sequence $\{x_n\} \subset D(A)$ such that $x_n \to x$ as $n \to \infty$, and hence $||Cx_n - Cx||_Y \leq ||C(x_n - x)|| \to 0$, i.e. $Cx_n \to Cx$ in the topology of Y. This together with $Cx_n \in D(A|_Y)$ implies that $Cx \in \overline{D(A|_Y)} = Z_0$ by Lemma 3.1. Therefore $\operatorname{Im} C \subset Z_0$ and from Lemma 3.2 it follows that there exists a C-semigroup $T(\cdot)$ for A with T(t)x = u(t, Cx) for all $x \in X$ and $t \geq 0$. Moreover, for $t \geq 0$, we have $||T(t)x|| \leq \sup_{x \to 0} ||u(s, Cx)|| = ||Cx||_{Z_0} = ||Cx||_Y \leq ||Cx||$, concluding the proof.

Proof of Theorem 3.2. (a) \Longrightarrow (b). The *C*-dissipativity of *A* follows from Lemma 3.3, and by [3, Theorem 5.2], $(0, \infty) \subset \rho(A)$.

(b) \Longrightarrow (a). Since $\rho(A) \neq \emptyset$, A is closed. For $\lambda > 0$, by Proposition 2.3, $\lambda - A$ is injective. Thus $(0, \infty) \subset \rho(A)$. We claim that

$$\|\lambda^k (\lambda - A)^{-k} Cx\| \le \|Cx\| \text{ for } \lambda > 0, \ k \in \mathbb{N} \text{ and } x \in X.$$

$$(3.11)$$

Indeed, since $CA \subset AC$, it follows that $(\lambda - A)^{-1}C = C(\lambda - A)^{-1}$ for all $\lambda > 0$. Note that $(\lambda - A)^{-1}x \in D(A)$. By Proposition 2.1, we have

 $\lambda \| (\lambda - A)^{-1} C x \| = \lambda C (\lambda - A)^{-1} x \| \le \| C (\lambda - A) (\lambda - A)^{-1} x \| = \| C x \|.$

This proves (3.11) for k = 1. Iterating above inequality yields (3.11) for all $k = 2, 3, \cdots$.

Note that A is densely defined. Similar to the proof of (ii) \implies (i) in Theorem 3.1, from (3.11) it follows that there exists a C-semigroup $S(\cdot)$ for A such that $||S(t)x|| \leq ||Cx||$ for all $x \in X$ and $t \geq 0$. Moreover, since $\rho(A)$ is nonempty, it follows from [4, Proposition 3.9] that A is exactly the generator of the C-semigroup $S(\cdot)$.

Proof of Theorem 3.3. We first prove that $(0, \infty) \subset \rho(A)$. Let

$$\Lambda = \{\lambda \in (0,\infty) : \operatorname{Im}(\lambda - A) = X\}.$$

Since $\rho(A)$ is open, Λ is an open subset of $(0, \infty)$. We have only to show that Λ is closed in $(0, \infty)$. To this end, let $\lambda_k \in \Lambda$, $\lambda_k \to \lambda_0$, $\lambda_0 > 0$. For any $x \in X$, there exists a sequence $\{y_k\} \subset D(A)$ such that $x = (\lambda_k - A)y_k$, $k = 1, 2, \cdots$. Since A is $(r - A)^{-n}$ -dissipative, we have

$$\|(r-A)^{-n}y_k\| \le \frac{1}{\lambda_k} \|(r-A)^{-n}(\lambda_k - A)y_k\| = \frac{1}{\lambda_k} \|(r-A)^{-n}x\| \le M \quad (k \in \mathbb{N})$$

and for $k_1, k_2 \in \mathbb{N}$,

$$\begin{aligned} \lambda_{k_1} \| (r-A)^{-n} y_{k_1} - (r-A)^{-n} y_{k_2} \| &\leq \| (\lambda_{k_1} - A)(r-A)^{-n} (y_{k_1} - y_{k_2}) \| \\ &= |\lambda_{k_1} - \lambda_{k_2}| \| (r-A)^{-n} y_{k_2} \|. \end{aligned}$$

Thus $\{(r-A)^{-n}y_k\}_{k=1}^{\infty}$ is a Cauchy sequence. Writing $(r-A)^{-n}y_k \to z$ as $k \to \infty$, we have

$$A(r-A)^{-n}y_k = \lambda_k (r-A)^{-n}y_k - (r-A)^{-n}x \to \lambda_0 z - (r-A)^{-n}x \quad (as \ k \to \infty).$$

Thus, since $\rho(A) \neq \emptyset$, A is closed, we have $z \in D(A)$ and $Az = \lambda_0 z - (r - A)^{-n} x$, which implies that $x = (r - A)^n (\lambda_0 - A) z = (\lambda_0 - A)(r - A)^n z \in \text{Im}(\lambda_0 - A)$. Hence $\lambda_0 \in \Lambda$ and Λ is closed in $(0, \infty)$. Therefore $\Lambda = (0, \infty)$. Since A is $(r - A)^{-n}$ -dissipative, it follows that $\|\lambda^k(\lambda - A)^{-k}(r - A)^{-n}x\| \leq \|(r - A)^{-n}x\|$ for $\lambda > 0$, $k \in \mathbb{N}$ and $x \in X$. Hence $Im(r - A)^{-n} \subset Y$, and for $y \in X$ we have

$$(r-A)^{-(n+1)}y = (r-A)^{-n}(r-A)^{-1}y \in D(A) \cap Y,$$

 $A(r-A)^{-(n+1)}y = (r-A)^{-n}A(r-A)^{-1}y \in Y.$

This implies that $D(A^{n+1}) = \text{Im}(r-A)^{n+1} \subset D(A|_Y) \subset Z_0$. Thus by Lemma 3.2 there exists an $(r-A)^{-(n+1)}$ -semigroup $T(\cdot)$ for A. Note that $((r-A)^{-(n+1)})^{-1}A(r-A)^{-(n+1)} = A$, Ais exactly the generator of $T(\cdot)$. Finally, by Lemma 3.1, we have

$$||T(t)x|| = ||u(t, (r-A)^{-(n+1)}x)|| \le ||(r-A)^{-(n+1)}x||_{Z_0}$$
$$= ||(r-A)^{-(n+1)}x||_Y \le ||(r-A)^{-(n+1)}x||$$

for all t > 0 and $x \in X$. Therefore the $(r - A)^{-(n+1)}$ -semigroup is quasi-contractive.

§4. Quasi-Isometric C-Semigroups and C-Conservative Operators

If an operator A generates an isometric c_0 -semigroup, then for $x \in D(A)$, (ACP) has a unique isometric solution (that is, ||u(t,x)|| = ||x||). In the case of C-semigroups, to guarantee that (ACP) has also an isometric solution (with initial data in C(D(A))), one must have

$$|T(t)x|| = ||Cx|| \quad \text{for } x \in X, \ t \ge 0.$$
(4.1)

In this section, we characterize the generators of C-semigroups satisfying (4.1).

Definition 4.1. A C-semigroup $T(\cdot)$ is said to be quasi-isometric if $T(\cdot)$ satisfies (4.1).

Definition 4.2. An operator A is said to be C-conservative if for every $x \in D(A)$ there exists an $x^* \in F_C(x)$ such that $\operatorname{Re}\langle Ax, x^* \rangle = 0$.

Similar to the proof of Proposition 2.2, we have the following characterization of Cconservative operators. The proof is omitted.

Proposition 4.1. If $CA \subset AC$, then A is C-conservative if and only if for each $x \in C(D(A))$ there exists an $x^* \in F(x)$ such that $\operatorname{Re}\langle Ax, x^* \rangle = 0$.

Theorem 4.1. Assume that A is a densely defined, closed operator, C has a dense range, $CA \subset AC$. Then the following are equivalent:

(a) There exists a quasi-isometric C-semigroup $T(\cdot)$ for A.

(b) A is C-conservative and

$$\operatorname{Im} C \subset \bigcap_{n \in N} \operatorname{Im} (\lambda - A)^n \quad \text{for some} \quad \lambda > 0.$$

$$(4.2)$$

(c) For all $x \in \text{Im}C$, (ACP) has a unique mild solution $u(\cdot, x)$ such that ||u(t, x)|| = ||x||for all $t \ge 0$.

Proof. (a) \Leftrightarrow (c) follows from Lemma 3.3.

(a) \implies (b). (4.2) follows from Theorem 3.1. We show only that A is C-conservative. Let $z \in D(A), t > 0$ and $z_t^* \in F(T(t)y)$. Then the scalar function $\phi(s) \equiv \operatorname{Re}\langle T(s)z, z_t^* \rangle$ $(s \ge 0)$ is continuously differentiable and has a relative maximum at s = t. This deduces

$$\operatorname{Re}\langle T(t)Az, z_t^* \rangle = 0, \text{ for } z \in D(A), t > 0 \text{ and } z_t^* \in F(T(t)z).$$

$$(4.3)$$

Let now $x \in C(D(A))$ and let $y \in D(A)$ with x = Cy. Let $\{t_n\}$ be a sequence of positive number tending to zero and $x_n^* \in F(T(t_n)y)$, $n = 1, 2, \cdots$. Since $\{x_n^*\}$ is bounded $(||x_n^*|| = ||T(t_n)y|| = ||Cy||)$, by passing, if necessary, to a subsequence, we can assume that $x_n^* \to x^*$ weakly. We claim that $x^* \in F(x)$ and $\operatorname{Re}\langle Ax, x^*\rangle = 0$. Indeed, $\operatorname{Re}\langle Ax, x^*\rangle = \operatorname{Re}\langle CAy, x^*\rangle = \lim_{n \to \infty} \langle T(t_n)Ay, x_n^*\rangle = 0$ in view of (4.3), and since $\langle x, x^*\rangle = \langle Cy, x^*\rangle = \lim_{n \to \infty} \langle T(t_n)y, x_n^*\rangle = \lim_{n \to \infty} ||T(t_n)y||^2 = ||Cy||^2 = ||x||^2$ and $||x^*|| \leq \lim_{n \to \infty} ||x_n^*|| \leq ||Cy|| = ||x||$, $x^* \in F(x)$ holds at once. Therefore, by Proposition 4.1, A is C-conservative.

(b) \Longrightarrow (a). If A is C-conservative, it is also C-dissipative. Hence, by Theorem 3.1, there exists a C-semigroup $T(\cdot)$ for A such that $||T(t)x|| \le ||Cx||$ for all $x \in X$ and $t \ge 0$.

Suppose that $u \in C(D(A^2))$ and $u \neq 0$. We shall show that

$$\Lambda \equiv \Lambda(u) \equiv \{t \ge 0 : \|T(t)u\| = \|Cu\|\} = (0, \infty).$$
(4.4)

Note that $u \in D(A^2)$. If $t, h \ge 0$, we calculate that

$$T(t+h)u = T(t)u + hT(t)Au + h\rho(t,h),$$
(4.5)

where $\rho(t,h) = \frac{1}{h} \int_0^h (h-s)T(s+t)A^2u \, ds$. Since $||T(s+t)A^2u|| \le ||CA^2u||$, it follows that $\rho(t,h) \to 0$ as $h \to 0$ uniformly in $t \ge 0$. Note that $T(t)u \in C(D(A))$. By Proposition 4.1, there exists an $x_t^* \in F(T(t)u)$ such that $\operatorname{Re}\langle AT(t)u, x_t^* \rangle = 0$. Thus, in view of (4.5), we have

$$||T(t)u|| ||T(t+h)u|| \ge |\langle x_t^*, T(t+h)u\rangle| \ge \operatorname{Re}\langle T(t+h)u, x_t^*\rangle$$

$$= ||T(t)u||^2 + h\operatorname{Re}\langle AT(t)u, x_t^*\rangle + h\operatorname{Re}\langle \rho(t,h), x_t^*\rangle$$

$$\ge ||T(t)u||^2 - h||Cu|| ||\rho(t,h)||.$$

$$(4.6)$$

Suppose that $t_0 \equiv \sup\{t : t \in \Lambda\} < \infty$. Then there exists a sequence $\{t_n\} \subset \Lambda$ such that $t_n \to t_0$ and $||T(t_0)u|| = \lim_{n \to \infty} ||T(t_n)u|| = ||Cu||$, which implies that $t_0 \in \Lambda$ and $||T(t_0)u|| \neq 0$. Choose $\alpha > 0$ so small that ||T(t)u|| is bounded away from zero in $t_0 \leq t \leq t_0 + \alpha$. For any such t we devide (4.6) by ||T(t)u||; the result is

$$||T(t+h)u|| \ge ||T(t)u|| - h\eta(t,h), \tag{4.7}$$

where η is nonnegative and $\eta(t,h) \to 0$ as $h \to 0$ uniformly in $t_0 \leq t \leq t_0 + \alpha$. For any $\epsilon > 0$, let $\delta > 0$ such that $|\eta(t,h)| \leq \epsilon$ for $0 \leq h \leq \delta$ and $t_0 \leq t \leq t_0 + \alpha$. Let $t_0 < t_1 < \cdots < t_m = t_0 + \alpha$ be a partition of the interval $[t_0, t_0 + \alpha]$ such that $t_j - t_{j-1} \leq \delta$ $(1 \leq j \leq m)$. In view of (4.7) we calculate as follows:

$$0 \le \|T(t_0)u\| - \|T(t_0 + \alpha)u\| = \sum_{j=1}^m (\|T(t_{j-1})u\| - \|T(t_j)u\|)$$
$$\le \sum_{j=1}^m (t_j - t_{j-1})\eta(t_j, t_j - t_{j-1}) \le \sum_{j=1}^m (t_j - t_{j-1})\epsilon = \alpha\epsilon.$$

Since ϵ is arbitrary, it follows that $||T(t_0 + \alpha)u|| = ||T(t_0)u|| = ||Cu||$, which contradicts the fact that $t_0 = \sup\{t : t \in \Lambda\}$. Thus $\sup\{t : t \in \Lambda\} = \infty$.

Assume now $s \ge 0$. Then there exists an $s_0 \ge s$ such that $s_0 \in \Lambda$. Let $y \in D(A^2)$ such that u = Cy. We have

$$||Cu|| = ||T(s_0)u|| = ||T(s_0)Cy|| = ||T(s_0 - s)T(s)y|| \le ||CT(s)y|| = ||T(s)u|| \le ||Cu||,$$

which implies that $s \in \Lambda$. Therefore $\Lambda(u) = [0, \infty)$ for $u \in C(D(A^2))$.

We finally claim that $C(D(A^2))$ is dense in X. For each $z \in D(A)$, we have

$$\int_0^s T(r)z \, dr \in D(A^2) \text{ and } Cz = \lim_{s \to 0} \int_0^s T(r)z \, dr.$$

Thus $C(D(A)) \subset \overline{D(A^2)}$. Note that both D(A) and ImC are dense in X, C(D(A)) and hence $D(A^2)$ are also dense in X, which implies that $C(D(A^2))$ is dense in X. By use of this fact, a standard approximation argument shows that $\Lambda(u) = [0, \infty)$ is valid for all $u \in X$, which completes the proof.

§5. Examples

We present, in this section, some examples of quasi-contractive (or quasi-isometric) C-semigroups.

Example 5.1. If A satisfies the Hille-Yosida condition, that is, $(0, \infty) \subset \rho(A)$ and $||s(s-A)^{-1}|| \leq 1$ for all s > 0, then by Theorem 3.3 (for the case n = 0) A generates a quasi-contractive $(r-A)^{-1}$ -semigroup, where r > 0. We mention that A is not necessarily densely defined (for instance, see [10]), then A does not necessarily generate a c_0 -semigroup.

In particular, if A has no eigenvalues in $(0, \infty)$, Y is the weak Hille-Yosida space for A, then the part $A|_Y$, of A on Y, satisfies the Hille-Yosida condition (see [4]). Thus $A|_Y$ generates a quasi-contractive $(r - A|_Y)^{-1}$ -semigroup on Y (r > 0).

We say a semigroup $T(\cdot)$ of unbounded operators (see [11]) is contractive (resp. isometric) if $||T(t)x|| \le ||x||$ (resp. ||T(t)x|| = ||x||) for all $x \in D$ and $t \ge 0$.

Proposition 5.1. If A generates a contractive (resp. isometric) semigroup $T(\cdot)$ of unbounded closed operator, and there exists an injective, bounded operator C such that $\operatorname{Im} C \subset D$ and $CT(t)C = T(t)C^2$ for $t \geq 0$, then $T(\cdot)C$ is a quasi-contractive (resp. quasiisometric) C-semigroup generated by an extension of A.

Proof. It is immediate.

The following example is due to R. deLaubenfels^[3]; here, we point out that the $(1-A)^{-1}$ -semigroup $S(\cdot)$ generated by A is quasi-isometric.

Example 5.2. Let $X = C_0(-\infty, 0]$. Define

$$T(t)f(s) = \begin{cases} f(s+t), & s+t \le 0, \\ 0, & s+t > 0, \end{cases}$$

for $f \in X$ and $t \ge 0$. $\{T(t)\}_{t\ge 0}$ is an isometric semigroup of unbounded closed operator on $D \equiv \{f \in C_0(-\infty, 0] : f(0) = 0\}$. $(T(\cdot)$ is not a C_0 -semigroup, because, for $f \notin D$, T(t)f is not continuous. Its generator is

$$D(A) = \{ f \in C_0(-\infty, 0] \cap C_0^1(-\infty, 0] : f(0) = 0 \},$$

$$Af = \frac{d}{dx} f \text{ for } f \in D(A).$$

It is clear that $(0,\infty) \subset \rho(A)$. Thus, by Proposition 5.1, an extension of A generates a quasi-isometric $(1-A)^{-1}$ -semigroup $S(t) \equiv T(t)(1-A)^{-1}$ defined by

$$S(t)f(s) = \begin{cases} e^{s+t} \int_{s+t}^{0} e^{-r} f(r) dr, & s+t \le 0, \\ 0, & s+t > 0, \end{cases}$$

for $f \in X$. Since $\rho(A) \neq \emptyset$, A is exactly the generator.

References

- Arendt, W., Vector valued Laplace transforms and Cauchy problems, Isreal J. Math., 59 (1987), 327–352.
- [2] Davies, E. B. & Pang, M. M., The Cauchy problem and a generalization of the Hille-Yosida theorem, Proc. London Math. Soc., 55 (1987), 181–208.
- [3] DeLaubenfels, R., C-semigroups and the Cauchy problem, J. Func. Anal., 111 (1993), 44–61.
- [4] DeLaubenfels, R., Existence families, functional calculus and evolution equations, Lecture Notes in Math. Soc., 1570, 1994.
- [5] DeLaubenfels, R., Existence and uniqueness families for the abstract Cauchy problem, Semigroup Forum, 44 (1991), 310–338.
- [6] DeLaubenfels, R., Integrated semigroups, C-semigroups and the abstract Cauchy problem, Semigroup Forum, 41 (1990), 83–95.
- [7] DeLaubenfels, R. C-semigroups and strongly continuous semigroups, Isreal J. Math., 81 (1993), 227–255.
- [8] DeLaubenfels, R. & S.Kantorovitz, Laplace and Laplace-Stieltjies spaces, J. Func. Anal., 116 (1993), 1–61.
- [9] Fattorini, H. O., The Cauchy problem, Addison Wesley, Reading Mass, 1983.
- [10] Goldstein, J. A., Semigroups of operators and applications, Oxford, New York, 1985.
- [11] Hughes, R. J., Semigroup of unbounded linear operators in Banach spaces, Trans. Amer. Math. Soc., 230 (1977), 113–145.
- [12] Kantorovitz, S., The Hille-Yosida space of an arbitrary operator, J. Math.Anal. and Appl., 136 (1988), 107–111.
- [13] Pazy, A., Semigroups of linear operators and applications to partial differential equations, Springer, New York, 1983.
- [14] Sun, G. Integrated C-semigroups, local C-semigroups, C-existence families and Cauchy problem, Ph. D. dissertation, Nanjing University, 1993.
- [15] Yosida, K., Functional analysis, Springer, Berlin, 1978.