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Abstract

For injective, bounded operator C on a Banach space X, the author defines the C-dissipative
operator, and then gives Lumer-Phillips characterizations of the generators of quasi-contractive

C-semigroups, where a C-semigroup T (·) is quasi-contractive if ∥T (t)x∥ ≤ ∥Cx∥ for all t ≥ 0
and x ∈ X. This kind of generators guarantee that the associate abstract Cauchy problem
u′(t, x) = Au(t, x) has a unique nonincreasing solution when the initial data is in C(D(A))
(here D(A) is the domain of A). Also, the generators of quasi-isometric C-semigroups are

characterized
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§1. Introduction

Recently the theory of C-semigroups has extensively devolopoed by many authors (see [2-

8, 14]), but a natural and important question asked by R. deLaubenfels in [3] (page 60, Open

question 6.10) remains open: Does there exist an analogue of the Lumer-Phillips theorem,

for C-semigroups? Can the numerical range be generalized in such a way as to play the

same role for C-semigroups that it does for c0-semigroups?

Our main purpose of this paper is to investigate above question. We first, in section

2, generalize the numerical range and define the C-dissipative operator. We then see, in

Section 3, that the generalized numerical range just plays the same role for C-semigroups

as the numerical range does for c0-semigroups. We obtain several analogues of the Lumer-

Phillips Theorem, which give some partial answers to the above question. These results

allow us to consider the nonincreasing solution of the abstract Cauchy problem

u′(t, x) = Au(t, x), u(0, x) = x. (ACP)

In Section 4, we introduce the C-conservative operator and disscuss the isometric solution

of (ACP), where “isometric” means that ∥u(t, x)∥ = ∥x∥ for all t ≥ 0.

Throughout this paper, all operators are linear on a complex Banach space X. For an

operator A, we write ρ(A), D(A), ImA for its resolvent set, domain and range respectively,

and [D(A)] for the Banach space with the graph norm ∥x∥[D(A)] = ∥x∥+∥Ax∥ for x ∈ D(A).

C will always be an injective, bounded operator.

Manuscript received September 19, 1995. Revised November 24, 1996.

∗Department of Mathematics, Southwest Normal University, Chongqing 630715, China.



350 CHIN. ANN. OF MATH. Vol.19 Ser.B

§2. C-Dissipative Operators

Let X∗ be the dual of X. For x ∈ X we define the C-duality set FC(x) ⊂ X∗ by

FC(x) ≡ {x∗ ∈ X∗ : ⟨x, x∗⟩ = ∥Cx∥, |⟨y, x∗⟩| ≤ ∥Cy∥ for all y ∈ X}. (2.1)

From the Hahn-Banach Theorem it follows that FC(x) is nonempty for all x ∈ X, and it is not

hard to show that FI(x) = F (x)/∥x∥, where F (x) = {x∗ ∈ X∗ : ⟨x, x∗⟩ = ∥x∥2 = ∥x∗∥2} is

the duality set (see [13]).

Definition 2.1. An operator A on X is C-dissipative if for all x ∈ D(A) there exists an

x∗ ∈ FC(x) such that Re⟨Ax, x∗⟩ ≤ 0.

Proposition 2.1. An operator A on X is C-dissipative if and only if

∥C(λ−A)x∥ ≥ λ∥Cx∥ for all x ∈ D(A) and λ > 0. (2.2)

Proof. It is analogous to the situation of strongly continuous semigroups (see [13]).

Proposition 2.2. If CA ⊂ AC, then A is C-dissipative if and only if for each x ∈
C(D(A)) there exists an x∗ ∈ F (x) such that Re⟨Ax, x∗⟩ ≤ 0.

Proof. Assume that A is C-dissipative. Let x ∈ C(D(A)) and let y ∈ D(A) with x = Cy.

Then there exists a y∗ ∈ FC(y) such that Re⟨Ay, y∗⟩ ≤ 0. Define f : ImC → C by

f(Cz) = ⟨z, y∗⟩ (z ∈ X).

Clearly f is well-defined (because C is injective) and linear on ImC. Since |f(Cz)| =

|⟨z, y∗⟩| ≤ ∥Cz∥, it follows that f is bounded on ImC with norm ≤ 1. Hence, by Hahn-

Banach Theorem, there exists an x∗
0 ∈ X∗ such that ∥x∗

0∥ ≤ 1 and ⟨Cz, x∗
0⟩ = f(Cz) = ⟨z, y∗⟩

for all z ∈ X. The second assertion implies that C∗x∗
0 = y∗. Let now x∗ = ∥x∥x∗

0, then

Re⟨Ax, x∗⟩ = Re⟨Ay,C∗x∗⟩ = ∥x∥Re⟨Ay, y∗⟩ ≤ 0. Since

⟨x, x∗⟩ = ⟨Cy, ∥x∥x∗
0⟩ = ∥x∥⟨y, C∗x∗

0⟩ = ∥x∥⟨y, y∗⟩ = ∥x∥∥Cy∥ = ∥x∥2,
∥x∗∥ ≤ ∥x∥∥x∗

0∥ ≤ ∥x∥,

it follows that x∗ ∈ F (x), which concludes the proof of the necessity.

Conversely, let x ∈ D(A) and let y = Cx ∈ C(D(A)). By hypothesis, there exists

a y∗ ∈ F (y) such that Re⟨Ay, y∗⟩ ≤ 0. Let x∗ = C∗y∗/∥y∗∥. Then Re⟨Ax, x∗⟩ =

Re⟨CAx, y∗/∥y∗∥⟩ = Re⟨Ay, y∗⟩/∥y∗∥ ≤ 0, and clearly x∗ ∈ FC(x). Thus A is C-dissipative.

We conclude this section with some properties of C-dissipative operators.

Proposition 2.3. (a) If A is C-dissipative, then λ−A is injective for all λ > 0.

(b) If A is C-dissipative and closable, then the closure A is also C-dissipative.

(c) If A is C-dissipative and densely defined, then A is closable.

Proof. (a) Suppose that x ∈ D(A) satisfies (λ − A)x = 0 for some λ > 0. Then

C(λ − A)x = 0. From the C-dissipativity of A it follows that λ∥Cx∥ ≤ ∥C(λ − A)x∥ = 0,

which implies that Cx = 0. Thus x = 0 by the injectivity of C.

(b) Let x ∈ D(A) and λ > 0. Then there exist xn ∈ D(A) → x and Ax = lim
n→∞

Axn. Thus

λ∥Cx∥ = lim
n→∞

λ∥Cxn∥ ≤ lim
n→∞

∥C(λ − A)xn∥ = ∥C(λ − A)xn∥. Therefore, by Proposition

2.1, A is C-dissipative.

(c) Assume that xn ∈ D(A), xn → 0 and Axn → y. For z ∈ D(A) and λ > 0, from

Proposition 2.1 it follows that λ∥C(xn + 1
λz)∥ ≤ ∥C(λ − A)(xn + 1

λz)∥. Letting n → ∞
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yields ∥Cz∥ ≤ ∥C(z − y + 1
λz)∥. Letting λ → ∞ yields ∥Cz∥ ≤ ∥C(z − y)∥. Note that A is

densely defined. Letting z → y yields ∥Cy∥ ≤ 0, which implies that y = 0.

§3. Lumer-Phillips Characterizations for C-Semigroups

In this section, we use the C-dissipative operators to characterize generators of quasi-

contractive C-semigroups. In order to state our results we need some preliminaries.

The strongly continuous family of bounded operators {T (t)}t≥0 on X is called a C-

semigroup if T (0) = C and T (t)T (s) = CT (t + s) for all t, s ≥ 0. The generator A of the

C-semigroup {T (t)}t≥0 is defined by

D(A) = {x : lim
t→0

1

t
(T (t)− Cx) exists and is in ImC},

Ax = C−1 lim
t→0

1

t
(T (t)− Cx).

We refer to the monograph[4] for the theory of C-semigroups.

Definition 3.1.[14] Suppose that S(·) is a C-semigroup, A is a closed operator. If

(1) S(t)A ⊂ AS(t) for t ≥ 0;

(2) for x ∈ X, we have
∫ t

0
S(r)x dr ∈ D(A) and S(t)x− Cx = A

∫ t

0
S(r)x dr,

then S(·) is said to be a C-semigroup for A.

Remark 3.1. There exists at most one C-semigroup for A. If S(·) is the C-semigroup

for A, then the extension C−1AC of A is the generator of the C-semigroup S(·).
Definition 3.2. By a (classical) solution of the Cauchy problem (ACP), we mean u ∈

C([0,∞), [D(A)]) ∩C1([0,∞), X) satisfying (ACP). By a mild solution of (ACP), we mean

u ∈ C([0,∞), X) satisfying∫ t

0

u(s) ds ∈ D(A) and u(t) = A

∫ t

0

u(s) ds+ x

for all t ≥ 0. We say a solution (or a mild solution) u(·, x) is nonincreasing if ∥u(t, x)∥ ≤ ∥x∥
for all t ≥ 0.

Definition 3.3. A C-semigroup T (·) on X is of quasi-contraction if ∥T (t)x∥ ≤ ∥Cx∥
for all t ≥ 0 and x ∈ X.

Remark 3.2. (1) A quasi-contractive I-semigroup is just a contractive c0-semigroup.

Conversely, if A generates a contractive c0-semigroup S(·), and C commutes with S(·),
then T (·) ≡ CS(·) is a quasi-contractive C-semigroup. This is a typical example of quasi-

contractive C-semigroup, more examples are given in the last section.

(2) It is well-known that if A (or an extension of A) generates a C-semigroup, then (ACP)

has a unique solution for all x ∈ C(D(A)) (for instance see [3, 4]). If the C-semigroup is of

quasi-contraction, it is not hard to see that the solution of (ACP) is nonincreasing.

We now state our results as follows. In Theorems 3.1-3.3, C is an injective, bounded

operator on X. As we point out in Section 1, A is an operator on X. We emphasize, in

Theorem 3.3, D(A) is not necessarily dense.

Theorem 3.1. Suppose that A is densely defined and closed, C has a dense range,

CA ⊂ AC. Then the following are equivalent:

(i) There exists a quasi-contractive C-semigroup T (·) for A.
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(ii) A is C-dissipative and

ImC ⊂
∩
n∈N

Im(λ−A)n for all λ > 0. (3.1)

(iii) A is C-dissipative and

ImC ⊂
∩
n∈N

Im(λ0 −A)n for some λ0 > 0. (3.2)

(iv) For all x ∈ ImC, (ACP) has a unique nonincreasing mild solution u(·, x).
Remark 3.3. If C = I, Theorem 3.1 reduces to the well-known Lumer-Phillips theorem.

Theorem 3.2. Suppose that A is densely defined and has a nonempty resolvent set,

CA ⊂ AC, then the following are equivalent:

(i) A generates a quasi-contractive C-semigroup S(·).
(ii) A is C-dissipative and Im(λ−A) = X for all λ > 0.

Theorem 3.3. If 0 < r ∈ ρ(A), n ∈ N ∪ {0} and A is (r − A)−n-dissipative. Then A

generates a quasi-contractive (r − A)−(n+1)-semigroup. In this case, (ACP) has a unique

nonincreasing solution for all x ∈ D(An+2).

To prove these theorems, we need some lemmas.

When A has no eigenvalues in (0,∞), the Hille-Yosida space Z0 for A is defined by

Z0 = {x ∈ X : for x, (ACP) has a bounded uniformlycontinuous mild solution u(·, x)},
∥x∥Z0 = sup

t≥0
∥u(t, x)∥ for x ∈ Z0.

The weak Hille-Yosida space Y for A is defined by

Y = {x ∈ X : x ∈ Im(s−A)n for all s > 0, n ∈ N and

∥x∥Y = sup{sn∥(s−A)−nx∥; s > 0, n+ 1 ∈ N} < ∞}.

Lemma 3.1.[4] (a) Z0 ⊂ Y and ∥x∥Z0 = ∥x∥Y for all x ∈ Z0.

(b) Z0 is the closure, in Y , of D(A|Y ).
Lemma 3.2.[14] If A is closed, CA ⊂ AC, then (ACP) has a unique mild solution

u(·, x) for all x ∈ ImC if and only if there exists a C-semigroup T (·) for A. In this case

T (t)x = u(t, Cx) for all t ≥ 0 and x ∈ X.

Lemma 3.3. If there exists a quasi-contractive C-semigroup T (·) for A, then A is C-

dissipative.

Proof. Since CA ⊂ AC, we can use Proposition 2.2. Let x ∈ C(D(A)) and x∗ ∈ F (x).

Let y ∈ D(A) with x = Cy. By hypothesis we have

|⟨T (t)y, x∗⟩| ≤ ∥T (t)y∥ · ∥x∗∥ ≤ ∥Cy∥∥x∗∥ = ∥x∥2

for all t > 0. Thus

Re⟨T (t)y − Cy, x∗⟩ = Re⟨T (t)y, x∗⟩ − Re⟨Cy, x∗⟩ = Re⟨T (t)y, x∗⟩ − ∥x∥2 ≤ 0.

Since the generator of T (·) is the extension C−1AC of A,

Re⟨CAy, x∗⟩ = lim
t→0

Re
⟨T (t)y − Cy

t
, x∗

⟩
≤ 0,

that is, Re ⟨Ax, x∗⟩ ≤ 0. Therefore, by Proposition 2.2, A is C-dissipative.

Proof of Theorem 3.1. (i) ⇔ (iv) follows from Lemma 3.2 and Remark 3.2 (2) of

Definition 3.3. (ii) =⇒ (iii) is obvious.
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(i) =⇒ (ii). From Lemma 3.3 it follows that A is C-dissipative. Hence, by Proposition

2.2, A has no eigenvalues in (0,∞). Since D(A) is dense in X, for x ∈ X, the mild solution

u(t, Cx) ≡ T (t)x is bounded uniformly continuous (see [4, Remark 5.9]), that is, Cx ∈ Z0,

the Hille-Yosida space. Thus, by Lemma 3.1, Cx ∈ Y and (3.1) holds at once.

(iii) =⇒ (ii). Let Λ = {λ ∈ (0,∞) : ImC ⊂
∩

n∈N Im(λ − A)n}. We have to prove

that Λ = (0,∞). By hypothesis, we may assume that 0 < r ∈ Λ. We shall show that

(r − r0, r + r0) ⊂ Λ for any r0 with 0 < r0 < r. To this end, for x ∈ X we define the series

R1(s) =
∞∑
k=0

(r − s)k(r −A)−(k+1)Cx, |s− r| < r0, (3.3)

and we claim that the series (3.3) converges uniformly on {s ∈ C : |s− r| < r0}. It suffices

to show that

∥(r −A)−kCx∥ ≤ 1

rk
∥Cx∥; k = 1, 2, · · · . (3.4)

Let Cx = (r − A)ky. Then C2x = C(r − A)ky = (r − A)kCy. It follows from Proposition

2.1 that

∥C2x∥ = ∥C(r −A)(r −A)k−1y∥ ≥ r∥C(r −A)k−1y∥ (3.5)

≥ r2∥C(r −A)k−2y∥ ≥ · · · ≥ rk∥Cy∥ = rk∥(r −A)−kC2x∥.

Since ImC is dense in X, there exists xn ∈ X, n = 1, 2, · · · such that Cxn → x as n → ∞.

By (3.5) we have

∥C2xn∥ ≥ rk∥(r −A)−kC2xn∥, k, n = 1, 2, · · · . (3.6)

Since A is closed, (r−A)−kC is bounded. Letting n → ∞ in (3.6) we obtain (3.4), and the

series (3.3) converges uniformly on {s ∈ C : |s− r| < r0}.
Note that each partial sum in (3.3) is in D(A) and the series

∞∑
k=0

A(r − s)k(r −A)−(k+1)Cx

=
∞∑
k=0

(r − (r −A))(r − s)k(r −A)−(k+1)Cx

=
∞∑
k=0

r(r − s)k(r −A)−(k+1)Cx−
∞∑
k=0

(r − s)k(r −A)−kCx = sR1(s)− Cx

converges. Thus, since A is closed, R1(s) ∈ D(A) with (s− A)R1(s) = Cx for |s− r| < r0.

This proves that ImC ⊂ Im(s−A) for |s− r| < r0.

Fix now s > 0 with |s− r| < r0. We claim that

R1(s) ∈ D((r −A)−m) ≡ Im(r −A)m, (3.7)

∥(r −A)−mR1(s)∥ ≤ M

rm
, m = 1, 2, · · · ,

where M > 0 is constant and independent of m. Indeed, from (3.4) it follows that the series

∞∑
k=0

(r −A)−1(r − s)k(r −A)−(k+1)Cx
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converges uniformly on |s− r| < r0. Thus, since (r −A)−1 is closed, R1(s) ∈ D((r −A)−1)

with

(r −A)−1R1(s) =
∞∑
k=0

(r −A)−1(r − s)k(r −A)−(k+1)Cx.

Let M ≡
∞∑
k=0

(r−s)k

rk+1 ∥Cx∥. Then by (3.4) we have

∥(r −A)−1R1(s)∥ ≤
∞∑
k=0

|r − s|k∥(r −A)−(k+2)Cx∥ ≤ M

r
.

This proves that (3.7) is valid for m = 1. Iterating this inequality yields (3.7) for all

m = 2, 3, · · · . Hence we can define

R2(t) =
∞∑
j=0

(r − t)j(r −A)−(j+1)R1(s), |t− r| < r0, (3.8)

and the series (3.8) converges uniformly in {t > 0 : |t − r| < r0}. Similar to the previous

argument, we have

R2(t) ∈ D(A) and (t−A)R2(t) = R1(s), |t− r| < r0. (3.9)

In particular, taking t = s in (3.9) we obtain

(s−A)R2(s) = R1(s) for |s− r| < r0. (3.10)

Thus Cx = (s − A)R1(s) = (s − A)2R2(s) ∈ Im(s − A)2 for |s − r| < r0. Repeating this

proceeding we obtain Cx ∈ Im(s − A)n for |s − r| < r0, n ∈ N. Since x ∈ X is arbitrary,

we have {s > 0 : |s− r| < r0} ⊂ Λ; and by the arbitrariness of r0 with 0 < r0 < r, we have

(0, 2r) ⊂ Λ. Thus 3
2r ∈ Λ, which implies that (0, 3r) ⊂ Λ; and 5

2r ∈ Λ, which implies that

(0, 5r) ⊂ Λ, · · · . Therefore (0,∞) ⊂ Λ, and (3.1) holds.

(ii) =⇒ (i). Similar to the proof of (3.4), we have

∥sn(s−A)−nCx∥ ≤ ∥Cx∥ for all s > 0, n ∈ N, x ∈ X,

that is, ImC ⊂ Y , the weak Hille-Yosida space, and ∥Cx∥Y ≤ ∥Cx∥ for all x ∈ X. Since

A is densely defined, for x ∈ X, there exists a sequence {xn} ⊂ D(A) such that xn → x

as n → ∞, and hence ∥Cxn − Cx∥Y ≤ ∥C(xn − x)∥ → 0, i.e. Cxn → Cx in the topology

of Y . This together with Cxn ∈ D(A|Y ) implies that Cx ∈ D(A|Y ) = Z0 by Lemma

3.1. Therefore ImC ⊂ Z0 and from Lemma 3.2 it follows that there exists a C-semigroup

T (·) for A with T (t)x = u(t, Cx) for all x ∈ X and t ≥ 0. Moreover, for t ≥ 0, we have

∥T (t)x∥ ≤ sup
s≥0

∥u(s, Cx)∥ = ∥Cx∥Z0
= ∥Cx∥Y ≤ ∥Cx∥, concluding the proof.

Proof of Theorem 3.2. (a) =⇒ (b). The C-dissipativity of A follows from Lemma 3.3,

and by [3, Theorem 5.2], (0,∞) ⊂ ρ(A).

(b) =⇒ (a). Since ρ(A) ̸= ∅, A is closed. For λ > 0, by Proposition 2.3, λ−A is injective.

Thus (0,∞) ⊂ ρ(A). We claim that

∥λk(λ−A)−kCx∥ ≤ ∥Cx∥ for λ > 0, k ∈ N and x ∈ X. (3.11)

Indeed, since CA ⊂ AC, it follows that (λ−A)−1C = C(λ−A)−1 for all λ > 0. Note that

(λ−A)−1x ∈ D(A). By Proposition 2.1, we have

λ∥(λ−A)−1Cx∥ = λC(λ−A)−1x∥ ≤ ∥C(λ−A)(λ−A)−1x∥ = ∥Cx∥.
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This proves (3.11) for k = 1. Iterating above inequality yields (3.11) for all k = 2, 3, · · · .
Note that A is densely defined. Similar to the proof of (ii) =⇒ (i) in Theorem 3.1, from

(3.11) it follows that there exists a C-semigroup S(·) for A such that ∥S(t)x∥ ≤ ∥Cx∥ for

all x ∈ X and t ≥ 0. Moreover, since ρ(A) is nonempty, it follows from [4, Proposition 3.9]

that A is exactly the generator of the C-semigroup S(·).
Proof of Theorem 3.3. We first prove that (0,∞) ⊂ ρ(A). Let

Λ = {λ ∈ (0,∞) : Im(λ−A) = X}.

Since ρ(A) is open, Λ is an open subset of (0,∞). We have only to show that Λ is closed in

(0,∞). To this end, let λk ∈ Λ, λk → λ0, λ0 > 0. For any x ∈ X, there exists a sequence

{yk} ⊂ D(A) such that x = (λk − A)yk, k = 1, 2, · · · . Since A is (r − A)−n-dissipative, we

have

∥(r −A)−nyk∥ ≤ 1

λk
∥(r −A)−n(λk −A)yk∥ =

1

λk
∥(r −A)−nx∥ ≤ M (k ∈ N)

and for k1, k2 ∈ N,

λk1∥(r −A)−nyk1 − (r −A)−nyk2∥ ≤ ∥(λk1 −A)(r −A)−n(yk1 − yk2)∥
= |λk1

− λk2
|∥(r −A)−nyk2

∥.

Thus {(r−A)−nyk}∞k=1 is a Cauchy sequence. Writing (r−A)−nyk → z as k → ∞, we have

A(r −A)−nyk = λk(r −A)−nyk − (r −A)−nx → λ0z − (r −A)−nx (as k → ∞).

Thus, since ρ(A) ̸= ∅, A is closed, we have z ∈ D(A) and Az = λ0z − (r − A)−nx, which

implies that x = (r −A)n(λ0 −A)z = (λ0 −A)(r − A)nz ∈ Im(λ0 −A). Hence λ0 ∈ Λ and

Λ is closed in (0,∞). Therefore Λ = (0,∞). Since A is (r − A)−n-dissipative, it follows

that ∥λk(λ − A)−k(r − A)−nx∥ ≤ ∥(r − A)−nx∥ for λ > 0, k ∈ N and x ∈ X. Hence

Im(r −A)−n ⊂ Y , and for y ∈ X we have

(r −A)−(n+1)y = (r −A)−n(r −A)−1y ∈ D(A) ∩ Y,

A(r −A)−(n+1)y = (r −A)−nA(r −A)−1y ∈ Y.

This implies thatD(An+1) = Im(r−A)n+1 ⊂ D(A|Y ) ⊂ Z0. Thus by Lemma 3.2 there exists

an (r−A)−(n+1)-semigroup T (·) for A. Note that ((r−A)−(n+1))−1A(r−A)−(n+1) = A, A

is exactly the generator of T (·). Finally, by Lemma 3.1, we have

∥T (t)x∥ = ∥u(t, (r −A)−(n+1)x)∥ ≤ ∥(r −A)−(n+1)x∥Z0

= ∥(r −A)−(n+1)x∥Y ≤ ∥(r −A)−(n+1)x∥

for all t > 0 and x ∈ X. Therefore the (r −A)−(n+1)-semigroup is quasi-contractive.

§4. Quasi-Isometric C-Semigroups and C-Conservative Operators

If an operator A generates an isometric c0-semigroup, then for x ∈ D(A), (ACP) has

a unique isometric solution (that is, ∥u(t, x)∥ = ∥x∥). In the case of C-semigroups, to

guarantee that (ACP) has also an isometric solution (with initial data in C(D(A))), one

must have

∥T (t)x∥ = ∥Cx∥ for x ∈ X, t ≥ 0. (4.1)

In this section, we characterize the generators of C-semigroups satisfying (4.1).
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Definition 4.1. A C-semigroup T (·) is said to be quasi-isometric if T (·) satisfies (4.1).

Definition 4.2. An operator A is said to be C-conservative if for every x ∈ D(A) there

exists an x∗ ∈ FC(x) such that Re⟨Ax, x∗⟩ = 0.

Similar to the proof of Proposition 2.2, we have the following characterization of C-

conservative operators. The proof is omitted.

Proposition 4.1. If CA ⊂ AC, then A is C-conservative if and only if for each x ∈
C(D(A)) there exists an x∗ ∈ F (x) such that Re⟨Ax, x∗⟩ = 0.

Theorem 4.1. Assume that A is a densely defined, closed operator, C has a dense range,

CA ⊂ AC. Then the following are equivalent:

(a) There exists a quasi-isometric C-semigroup T (·) for A.

(b) A is C-conservative and

ImC ⊂
∩
n∈N

Im(λ−A)n for some λ > 0. (4.2)

(c) For all x ∈ ImC, (ACP) has a unique mild solution u(·, x) such that ∥u(t, x)∥ = ∥x∥
for all t ≥ 0.

Proof. (a) ⇔ (c) follows from Lemma 3.3.

(a) =⇒ (b). (4.2) follows from Theorem 3.1. We show only that A is C-conservative. Let

z ∈ D(A), t > 0 and z∗t ∈ F (T (t)y). Then the scalar function ϕ(s) ≡ Re⟨T (s)z, z∗t ⟩ (s ≥ 0)

is continuously differentiable and has a relative maximum at s = t. This deduces

Re⟨T (t)Az, z∗t ⟩ = 0, for z ∈ D(A), t > 0 and z∗t ∈ F (T (t)z). (4.3)

Let now x ∈ C(D(A)) and let y ∈ D(A) with x = Cy. Let {tn} be a sequence of

positive number tending to zero and x∗
n ∈ F (T (tn)y), n = 1, 2, · · · . Since {x∗

n} is bounded

(∥x∗
n∥ = ∥T (tn)y∥ = ∥Cy∥), by passing, if necessary, to a subsequence, we can assume that

x∗
n → x∗ weakly. We claim that x∗ ∈ F (x) and Re⟨Ax, x∗⟩ = 0. Indeed, Re⟨Ax, x∗⟩ =

Re⟨CAy, x∗⟩ = lim
n→∞

⟨T (tn)Ay, x∗
n⟩ = 0 in view of (4.3), and since ⟨x, x∗⟩ = ⟨Cy, x∗⟩ =

lim
n→∞

⟨T (tn)y, x∗
n⟩ = lim

n→∞
∥T (tn)y∥2 = ∥Cy∥2 = ∥x∥2 and ∥x∗∥ ≤ lim

n→∞
∥x∗

n∥ ≤ ∥Cy∥ = ∥x∥,
x∗ ∈ F (x) holds at once. Therefore, by Proposition 4.1, A is C-conservative.

(b) =⇒ (a). If A is C-conservative, it is also C-dissipative. Hence, by Theorem 3.1, there

exists a C-semigroup T (·) for A such that ∥T (t)x∥ ≤ ∥Cx∥ for all x ∈ X and t ≥ 0.

Suppose that u ∈ C(D(A2)) and u ̸= 0. We shall show that

Λ ≡ Λ(u) ≡ {t ≥ 0 : ∥T (t)u∥ = ∥Cu∥} = (0,∞). (4.4)

Note that u ∈ D(A2). If t, h ≥ 0, we calculate that

T (t+ h)u = T (t)u+ hT (t)Au+ hρ(t, h), (4.5)

where ρ(t, h) = 1
h

∫ h

0
(h− s)T (s+ t)A2u ds. Since ∥T (s+ t)A2u∥ ≤ ∥CA2u∥, it follows that

ρ(t, h) → 0 as h → 0 uniformly in t ≥ 0. Note that T (t)u ∈ C(D(A)). By Proposition 4.1,

there exists an x∗
t ∈ F (T (t)u) such that Re⟨AT (t)u, x∗

t ⟩ = 0. Thus, in view of (4.5), we have

∥T (t)u∥∥T (t+ h)u∥ ≥ |⟨x∗
t , T (t+ h)u⟩| ≥ Re⟨T (t+ h)u, x∗

t ⟩ (4.6)

= ∥T (t)u∥2 + hRe⟨AT (t)u, x∗
t ⟩+ hRe⟨ρ(t, h), x∗

t ⟩
≥ ∥T (t)u∥2 − h∥Cu∥∥ρ(t, h)∥.
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Suppose that t0 ≡ sup{t : t ∈ Λ} < ∞. Then there exists a sequence {tn} ⊂ Λ

such that tn → t0 and ∥T (t0)u∥ = lim
n→∞

∥T (tn)u∥ = ∥Cu∥, which implies that t0 ∈ Λ

and ∥T (t0)u∥ ̸= 0. Choose α > 0 so small that ∥T (t)u∥ is bounded away from zero in

t0 ≤ t ≤ t0 + α. For any such t we devide (4.6) by ∥T (t)u∥; the result is

∥T (t+ h)u∥ ≥ ∥T (t)u∥ − hη(t, h), (4.7)

where η is nonnegative and η(t, h) → 0 as h → 0 uniformly in t0 ≤ t ≤ t0 + α. For any

ϵ > 0, let δ > 0 such that |η(t, h)| ≤ ϵ for 0 ≤ h ≤ δ and t0 ≤ t ≤ t0 +α. Let t0 < t1 < · · · <
tm = t0 + α be a partition of the interval [t0, t0 + α] such that tj − tj−1 ≤ δ (1 ≤ j ≤ m).

In view of (4.7) we calculate as follows:

0 ≤ ∥T (t0)u∥ − ∥T (t0 + α)u∥ =
m∑
j=1

(∥T (tj−1)u∥ − ∥T (tj)u∥)

≤
m∑
j=1

(tj − tj−1)η(tj , tj − tj−1) ≤
m∑
j=1

(tj − tj−1)ϵ = αϵ.

Since ϵ is arbitrary, it follows that ∥T (t0 + α)u∥ = ∥T (t0)u∥ = ∥Cu∥, which contradicts the

fact that t0 = sup{t : t ∈ Λ}. Thus sup{t : t ∈ Λ} = ∞.

Assume now s ≥ 0. Then there exists an s0 ≥ s such that s0 ∈ Λ. Let y ∈ D(A2) such

that u = Cy. We have

∥Cu∥ = ∥T (s0)u∥ = ∥T (s0)Cy∥ = ∥T (s0 − s)T (s)y∥ ≤ ∥CT (s)y∥ = ∥T (s)u∥ ≤ ∥Cu∥,

which implies that s ∈ Λ. Therefore Λ(u) = [0,∞) for u ∈ C(D(A2)).

We finally claim that C(D(A2)) is dense in X. For each z ∈ D(A), we have∫ s

0

T (r)z dr ∈ D(A2) and Cz = lim
s→0

∫ s

0

T (r)z dr.

Thus C(D(A)) ⊂ D(A2). Note that both D(A) and ImC are dense in X, C(D(A)) and

hence D(A2) are also dense in X, which implies that C(D(A2)) is dense in X. By use of this

fact, a standard approximation argument shows that Λ(u) = [0,∞) is valid for all u ∈ X,

which completes the proof.

§5. Examples

We present, in this section, some examples of quasi-contractive (or quasi-isometric) C-

semigroups.

Example 5.1. If A satisfies the Hille-Yosida condition, that is, (0,∞) ⊂ ρ(A) and

∥s(s − A)−1∥ ≤ 1 for all s > 0, then by Theorem 3.3 (for the case n = 0) A generates a

quasi-contractive (r − A)−1-semigroup, where r > 0. We mention that A is not necessarily

densely defined (for instance, see [10]), then A does not necessarily generate a c0-semigroup.

In particular, if A has no eigenvalues in (0,∞), Y is the weak Hille-Yosida space for

A, then the part A|Y , of A on Y , satisfies the Hille-Yosida condition (see [4]). Thus A|Y
generates a quasi-contractive (r −A|Y )−1-semigroup on Y (r > 0).

We say a semigroup T (·) of unbounded operators (see [11]) is contractive (resp. isometric)

if ∥T (t)x∥ ≤ ∥x∥ (resp. ∥T (t)x∥ = ∥x∥) for all x ∈ D and t ≥ 0.
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Proposition 5.1. If A generates a contractive (resp. isometric) semigroup T (·) of

unbounded closed operator, and there exists an injective, bounded operator C such that

ImC ⊂ D and CT (t)C = T (t)C2 for t ≥ 0, then T (·)C is a quasi-contractive (resp. quasi-

isometric) C-semigroup generated by an extension of A.

Proof. It is immediate.

The following example is due to R. deLaubenfels[3]; here, we point out that the (1−A)−1-

semigroup S(·) generated by A is quasi-isometric.

Example 5.2. Let X = C0(−∞, 0]. Define

T (t)f(s) =

{
f(s+ t), s+ t ≤ 0,

0, s+ t > 0,

for f ∈ X and t ≥ 0. {T (t)}t≥0 is an isometric semigroup of unbounded closed operator on

D ≡ {f ∈ C0(−∞, 0] : f(0) = 0}. (T (·) is not a C0-semigroup, because, for f ̸∈ D, T (t)f

is not continuous. Its generator is

D(A) = {f ∈ C0(−∞, 0] ∩ C1
0 (−∞, 0] : f(0) = 0},

Af =
d

dx
f for f ∈ D(A).

It is clear that (0,∞) ⊂ ρ(A). Thus, by Proposition 5.1, an extension of A generates a

quasi-isometric (1−A)−1-semigroup S(t) ≡ T (t)(1−A)−1 defined by

S(t)f(s) =

{
es+t

∫ 0

s+t
e−rf(r) dr, s+ t ≤ 0,

0, s+ t > 0,

for f ∈ X. Since ρ(A) ̸= ∅, A is exactly the generator.
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