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Abstract

Let M™ be a complete space-like submanifold with parallel mean curvature vector in an

indefinite space form NjtP(c). A sharp estimate for the upper bound of the norm of the

second fundamental form of M™ is obtained. A generalization of this result to complete space-
like hypersurfaces with constant mean curvature in a Lorentz manifold is given. Moreover,
harmonic Gauss maps of M™ in Nj'TP(¢) in a generalized sense are considered.
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¢1. Introduction

Let N]’;*p be an (n+p)-dimensional connected pseudo-Riemannian manifold of index p. If
NI’}“’ is complete and has constant sectional curvature ¢, then it is called the indefinite space
form, denoted by NJ*P(c). The indefinite space forms NI"1(c) of index 1 are called the
Lorentz space forms, which contain the de Sitter space S?H (¢), where ¢ > 0, the Minkowski
space R7™! and the anti-de Sitter space H"**(c), where ¢ < 0.

Generalizing Cheng-Yau’s result!* Ishiharal®! and Nishikawal''] have shown the Bernstein-
type property for maximal space-like submanifolds in N;}“’ (¢) with ¢ > 0 and for maximal
space-like hypersurfaces in a locally symmetric N{H'l, respectively. An entire space-like hy-
persurface with constant mean curvature in R’f"’l is investigated respectively by Goddard!™,
Treibergs('” and Choi-Treigergs®!. For a complete space-like hypersurface M in S?H(c)
with constant mean curvature H, it is seen by Akutagawal!l and Ramanathan!'* that M is
totally umbilical if either H? < ¢ for n = 2 or n2H? < 4(n — 1)c for n > 3. This statement
has been generalized by Q. Chengl® to complete space-like submanifolds in Ng*p (c) with
parallel mean curvature vector.

A pseudo-hyperbolic space form H}'*?(c) of constant negative curvature ¢(< 0) and of

index p can be realized as a hyperquadric in a pseudo-Euclidean (n + p + 1)-space Rgif +
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of index p + 1 given by
n+p+1

3 ak= %} (1.1)

n n 1 _
H}*P(c) = {x € RyTT ‘<CE,LE> = Z%Q —
=1 a=n+1
Let H*(cy), cx < 0, be the component of HE(c;) through (0,--- ,0, \/%Ck) Suppose that

p+1
(k1, -+ .k py1) are positive integers satisfying > k; = n. Let x; be the point of H" (7<)
i=1 ‘
forc<0Oand 1 <i¢<p+1. Then, = (1, - ,Zpt1) is a point in RZH’H with (z,z) =
The following product manifold!®!
Hkl"'kp+l(0) = Hkl (E) X oo X H}%Jrl (ﬂ) (]_2)
k1 kp-‘rl
is a maximal space-like submanifold of dimension n in H}'*?(c). It is proved in [8] that the

Q=

square S of the norm of the second fundamental form of a complete maximal space-like sub-
manifold M™ in H}'*?(c) satisfies 0 < S < —pnc. Moreover, the submanifolds Hy, ...k, (¢)
described as in (1.2) are the only complete connected maximal space-like submanifolds in
H}*P(c) with S = —pnc.

A hyperbolic cylinder in NJ"**(c) is defined as a product manifold H'(c1) x M™ !(cy)
where M"~!(cy) is a sphere S" !(c3), a Euclidean space R"™!, or a hyperbolic space
H"Y(cg), according to ¢ > 0, ¢ = 0 or ¢ < 0 (see [10]). Here it is satisfied that é + é =1
when ¢ # 0. Clearly, such hyperbolic cylinders are space-like hypersurfaces in N{LH(C)
and have constant mean curvature H = +(y/c—¢; £ (n — 1)y/c —c3)/n for ¢ # 0 and
H = ++/—ci/n for ¢ = 0. It is easy to check that the square of the norm of the second
fundamental form of a hyperbolic cylinder in Nj"™!(c) is equal to

{(n?H? + (n—2) | H| /n2H2 — 4(n — 1)c}. (1.3)

n
Sy =—nct+ —r—
LA e

In [10] it is shown that S < Sy 1 where S stands for the square of the norm of the second
fundamental form of a complete space-like hypersurface M™ in N"**(¢) with constant mean
curvature H. Moreover, hyperbolic cylinders are the only complete space-like hypersurfaces
with constant mean curvature in Nj"**(c) satisfying S = Sg ;.

In this paper, we shall firstly extend the above results to higher codimension. We will
put

Sup=pSu1— (p— 1)nH?, (1.4)

where the constant Sy 1 is defined by (1.3). Then, we shall prove the following

Theorem 1.1. Let M™ be an n-dimensional complete space-like submanifold in NJ*P(c)
with parallel mean curvature vector by, | b |>= H?. If one of the following cases occurs:

(1) e<O,

(2) ¢>0,n=2 and H? > c,

(3) ¢>0,n>3 and n?H? > 4(n — 1)c,
then the square S of the norm of the second fundamental form of M™ satisfies S < Sg,p,
where the constant Spp is defined by (1.4). Moreover, the equality holds everywhere if and
only if either

(1) H=0 and M" = Hy,...k,,,(c) given by (1.2); or

(2) H#0, p=1 and M" is a hyperbolic cylinder in N7 (c).
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By this theorem and the Gauss equation of M™ in N;‘”’ (¢), we have immediately the
following

Corollary 1.1. If M™ is a complete space-like n-submanifold in N;”“’(c) with parallel
mean curvature vector by, | b |>= H?, then the scalar curvature p of M™ satisfies

n(n—1)(c— H?*) < p<n(n—1)c—n*H*+ Sy, (1.5)
where the first equality in (1.5) holds if and only if M™ is totally umbilical in Ng“‘p(c).
The proof of Theorem 1.1 will be completed in §3. In §4 we shall give a generalization of
Theorem 1.1 to space-like hypersurfaces with constant mean curvature in a locally symmetric
Lorentz manifold, so that the results of [1, 10, 14] are involved. Finally, in §5, we shall study
harmonic Gauss maps of space-like submanifolds in N}'*?(c) in a generalized sense. This is
similar to the Riemannian casel®) and extends Theorem 1.2 of [3].

§2. Basic Formulas and Lemmas

Let M™ be an n-dimensional connected space-like submanifold isometrically immersed in
an (n + p)-dimensional pseudo-Riemannian manifold NZ’J“’ of index p. We choose a local
field of pseudo-Riemannian orthonormal frames e, -, €,4p in N;“Lp such that, restricted
to M™, the vectors ey, - - ,e, are tangent to M"™. We shall make use of the following
convention on the ranges of indices unless otherwise stated:

n+l1<a,pB,---<n+p.

For each a, we denote by A, : T, M™ — T, M™ the Weingarten endomorphism with respect
to the normal e, at x € M™. The square S of the norm of the second fundamental form
and the mean curvature vector h for M™ are defined respectively by

S = Ztr(Ai), h= %Z(trAa)ea. (2.1)

@
If b = 0 identically, then M™ ia said to be maximal in N;,“rp. Instead of the maximal
condition, a more general assumption is to require the submanifold to have parallel mean
curvature vector, namely V- = 0. This implies that the quantity

H? =|h =Y (%trAaf (2.2)

is constant on M", where H is called the mean curvature of M™. In the case that H # 0,
we can choose a local field of pseudo-Riemannian orthonormal frames in such a way that
én+1 = h/H. With this choice, we introduce linear maps B, : T, M™ — T, M™ given by

Bn+1 :An+1 —HI, Bﬁ :Aﬂ (ﬂ >n+1), (23)
where I denotes the identity. It is easy to check that each map B,, is traceless and that
o= tr(B2) =S —nH" (2.4)
Clearly, o is nonnegative and o vanishes identically if and only if M™ is totally umbilical in
N;*P. Note that the following quantity
oy = tr(B2, ;) = tr(A2 ;) — nH? (2.5)
is independent of the choice of the frame field and is a function globally defined on M™.
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Now assume that the ambient space is N;‘*‘p(c). Let A be the Laplacian on M™. By
using (2.1)—(2.5), a straightforward computation gives the following (see [2, 15])
Lemma 2.1. Let M™ be a space-like n-submanifold in N;}“’(c) with parallel mean cur-

vature vector . Then we have
1 .
5&05 =| VB41 |* +oy(oy + ne — nH?) — nH(trB3 )

+ Y (t(Bosi ) (2.6)
B>n+1

1
500 = > | VB, |* +n(c — H*)o —nH Y tr(Bnj1BY)

+ Y (tr(BaBg))? = > tr([Bas Bs))?, (2.7)

a,B a,f>n+1
where [By, Bg]l = BoBg — BgB,.
In order to estimate the right hand sides of above formulas, we need the following algebraic
lemma due to Santos.
Lemma 2.2.1" Let A, B : R" — R™ be symmetric linear maps such that [A,B] =0 and
trA =trB = 0. Then

n—2 n—2
e (A (BH)YV?<trA’B< —=
n(n—l)( I s ~y/n(n—1)
where the equality holds on the right (resp. left) hand side if and only if (n — 1) of the

eigenvalues A; of A and the corresponding eigenvalues u; of B satisfy

2\1/2 n1/2 yo
|>\i|:w Aidj 20, i:ﬂ (Tesp.—(trB)>.

(trA?)(trB?)'/2,

n(n—1) nin—1) n(n—1)
We now want to establish the following analytic lemma used below.

Lemma 2.3. Let M be a complete Riemannian manifold with Ricci curvature bounded
from below and f be a nonnegative C%-function on M. If f satisfies

Af > aof'™ 4+ finite terms as {a;f"}, (2.8)

where ag and r are positive real numbers, r;’s are nonnegative real numbers less than 141,
and a;’s are arbitrary real numbers, then sup,, f = fo < +00 and fy satisfies

0> aofot" + finite terms as {a;fg'}.
Proof. Consider the function F' on M defined by
F=(f+1)""72 29)

which is bounded on M and, in fact, 0 < F' < 1. Since the Ricci curvature of M is bounded
from below, we can apply the generalized maximal principle (see, e.g., [5]) to the function
F bounded from below. Namely, for any given number € > 0, there exists a point x € M
such that

| VF(z) |< €, AF(z) > —e, F(z)<infF +e¢. (2.10)
Consequently, by (2.9) and (2.10), it is easy to see that
P22 (A f(x) < 22 + r)e? + 2rF (x)e. (2.11)
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Thus, for any convergent sequence {&,, > 0} such that &,, — 0 (m — 00), there exists a point
sequence {x,, } so that the sequence { F(x,,)} satisfies (2.10) and converges to Fy = inf F by
taking a subsequence, if necessary. It implies that f(z,,) — fo = supf according to (2.9).
Since F' is bounded on M, (2.11) implies that for any positive number € (< ag) there is a
sufficiently large number m such that

F2O50/7 (2 VA f (@) < €. (2.12)
This inequality and (2.8) yield
(@) a0 — (1 + fFH(z,,)) "] + finite terms as {a;f" (xm)} <0,

which implies that the sequence {f(z,)} is bounded because € < ag and r; < 1 + r. Thus,
fo < 400 and Fy # 0. Consequently, it follows from (2.12) that

lim Af(zy,) <0.

m— o0
This and (2.8) complete the proof of the lemma.

Lemma 2.4. Let M™ be an n-dimensional space-like submanifold in N;}er(c) with con-
stant mean curvature H. Then the Ricci curvature of M™ satisfies Ric(M™) > (n — 1)c —
n?H?/4, and the equality holds everywhere if and only if either n = 2 and M™ is totally
umbilical or n > 3 and M™ is totally geodesic.

Proof. It follows directly from the Gauss equation of M™ in NJ*P(c).

Remark. When H = 0, this lemma is due to Ishihara (see. [8, Proposition 2.1]).

§3. Proof of Theorem 1.1

If H=0or p =1, then we have nothing to prove, because these cases reduce to the
results of [8] and [10]. In sequence, we shall consider the only case that H # 0 and p > 2.

Firstly, under the hypothesis as in Theorem 1.1, the numbers Sg,; and Sy, are well-
defined by (1.3) and (1.4). Moreover, it is easy to see that

n

Mn_nﬁn_m|ﬂ|+VMH2_qn_U42

SH,1 —’I’LI{2 =

1
= —(Sg,p — nH?). (3.1)
p
Next, applying Lemma 2.2 with A = B to the estimate of tr(B2_,), we have from (2.6)

n(n — 2)

vn(n—1)

Since M™ is space-like, by Lemma 2.4 we can apply Lemma 2.3 to the nonnegative function
oy. It follows from (3.2) that

1
iAUh > oy (0;, - | H | O’é/Z +nc — nH2> . (3.2)

n(n —2)
n(n —1)

By considering the second factor of the left hand side of (3.3) as the quadratic function in

(supah){(supab)— | H | (supah)1/2+nc—nH2} <0. (3.3)
(sup opy)'/2, we can easily see that
oy <supoy < Sy — nH? (3.4)

according to (3.1).
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In order to estimate the right hand side of (2.7), we note the following facts:
1
=Y t1([Ba,Bg])> >0, Y (trB3)* > EUZ. (3.5)
a,f3 «@
Since M™ has parallel mean curvature vector b, we have [B,, 11, Bs] = 0 when e,,41 = h/H.

Thus, we can apply Lemma 2.2 to estimate tr(B,1B2). By this and (3.5), it follows from
(2.7) that

1 1 n(n — 2) 1/2 2
—Noc >0 -0———|H|o.'"+nc—nH" 5. 3.6
. {p Ao, (36)
On the other hand, by (3.1) and (3.4), the following relationship
-2 1
=2 g ot/* —ne+nH? < Sy, —nH? = =(Sy,, — nH?) (3.7)
nin—1) P

can be derived by a simple calculation. Combining (3.6) with (3.7) yields
%Aa > %U(U+TLH2 — SHp)- (3.8)
Applying Lemma 2.3 to the nonnegative function o, we obtain immediately
o<supo < Sy, — nHz7

namely, S < Sy, by (2.4). This completes the proof of the first part of Theorem 1.1.

Assume now that S = Sy, on M"™ everywhere. Then, Ao = 0 and this implies that
all estimetes used to obtain (3.2) and (3.8) are equalities. Thus, from these equalities and
Lemma 2.2 we have

| VB, |>=0,
2\ _ n—2 2 2 \1/2
tr(Bn"rlBa) =x (trBa)(tan+l) ’ (39)
n(n—1)

trB2 = trB2,, = oy = Sp1 — nH?,

tr([Ba, Bs])? = 0. (3.10)
Let (B,) denote the matrices which define the maps B, ’s. By the equality part of Lemma
2.2, (3.9) implies that there exists an orthonormal frame e;,--- e, of TM™ such that, in
this frame, (B, ) has the following form:
1

(3.11)

—(n—1)
This shows that the first normal space of M™ in NI’,‘“’ (¢), namely

T (z) = span{ Z(AQ(X),Y>60” X,Y e T;,;M"}

has constant dimension in M™. It is easy to see that dim7i-(z) < 2 for all z € M™. The
formula (3.10) implies that the normal connection of M™ is flat, i.e., R* = 0. Since Vh =0
in M", the first normal bundle 7i" is a parallel normal subbundle (see [6, 15]). Let T5- be
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the orthogonal complement of Tj- in the normal bundle of M™, which is also a parallel
normal subbundle. By the definition of T{-, M™ is totally geodesic with respect to the
normal subbundle T5-. So, it is possible to reduce the codimension of M™ to two (see [18,
Theorem 1]). Thus, we can regard M™ as a space-like submanifold in Nj*2(c) < N]*P(c)
with S = Sgp.
We now will prove that M™ has a parallel umbilic direction in N3 2(c). In fact, if we
choose a new pseudo-Riemannian orthonormal frame {e], €l ,,} of T-M" given by
1

I

e e

e A2 42
n+1 n+2

then e], 1, €], 5 are parallel in T+M™ and e, 12 is an umbilic direction. Hence, there exists a
totally umbilical hypersurface Ni*t1 (&) in N3 ™2(c) such that M™ lies in N]""*(¢) as a space-
like hypersurface and M™ is not totally umbilical in N7*"*() because S = S ,p- Namely,

Dnsoenst + (=D N pienga), k=1,2, (3.12)

we have the following composition:
M™ — N{HHE) < N3H2(c) < NI (c).

Let hy, k = 1,2, be the mean curvature of M™ in N3 *2(c) with respect to the normal
€4 By (3.11) and (3.12), it is easy to see that

1
hi=h3= §H2. (3.13)
By the Gauss equation of NJ"™!(¢) in N2 (c), we then have
1
é:c—hgzc—§H2. (3.14)

Since M™ is not totally umbilical in N7"™!(&), then, by [1] or [14], it would be satisfied that
hi>¢é for n=2,
n?h? > 4(n —1)é for n>3. (3.15)
By (3.13) and (3.14), it follows from (3.15) that

1

5(n —2)2H? > 4(n — 1)c. (3.16)
On the other hand, let S’ and Sj, 1 denote respectively the square of the norm of the

second fundamental form of M in N7""!(¢) and the constant defined as in (1.2) where H

is replaced by hy. By [10], we would have
S < Sp, 1. (3.17)

n?H? —

Let S” denote the square of the norm of the second fundamental form of M™ in N5*2(c) with
respect to the normal €], ,. Since €], ,, is an umbilic direction, we have S” = nh3 = nhi.
Thus, by (3.13) and (3.1), we have

S'=5-58"=8u,— %nH2 =p(Sy1 —nH?) + %nHQ.
This together with (3.17) yields
2(Sgr1 —nH?) < p(Sgq —nH?) < S, 1 —nhi.
By the formulas (3.1) and (3.13), the inequality above can be reduced to
(n—2)| H|+2y/n2H2 —4(n —1)c < /n2H? + 4(n — 1)(H? — 2¢),
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namely,

(n—2) | H|\/n?2H2 —4(n—1)c < 2(n —1)c — (n? — 2n + 2)H%. (3.18)

By combining (3.18) with (3.16), we obtain a contradiction when H # 0 and n # 2. If n = 2,
then (3.18) becomes ¢ > H?, i.e., é > h? according to (3.13) and (3.14). This contradicts
(3.15);.

Hence, to sum up, there is no any complete space-like submanifold M™ in Ng‘”’ (¢) with
nonzero parallel mean curvature vector such that p > 2 and S = Sy, everywhere. This
proves Theorem 1.1 completely.

Remark. A submanifold is said to be pseudo-umbilical if its mean curvature vector is an
umbilic direction everywhere. From the proof of the first part of Theorem 1.1 we have the
following: Let M™ be a complete space-like n-submanifold in Ng‘“’ (¢) with parallel mean
curvature vector b, | h |2= H?. If M™ is pseudo-umbilical, then M™ is a maximal space-like
submanifold in a totally umbilical hypersurface N;_Jrlp ¢ of NJ*P(c) with ¢/ = ¢— H?, so
that either M™ is totally umbilical in N;”rp(c) for ¢ > H?, or the square S of the norm of
the second fundamental form of M™ in NJ'?(c) satisfies S < n(p + 1)H? — npc for ¢ < H?.

t4. A Generalization to Lorentz Manifolds

In this section we prove the following

Theorem 4.1. Let Nln+1 be a locally symmetric Lorentz manifold whose sectional curva-

ture K is pinched by co < Ky < ¢1 for some two real numbers c¢; and co. Let M™ be a com-

plete space-like hypersurface in N'"W with constant mean curvature H. Put ¢ = (5¢3—3c¢1)/2

and o0 = S —nH? where S stands for the square of the norm of the second fundamental form
of M™. Then, we have the following estimates for o:

2n(n —1)(e; — co)H?

7= 4(n — 1)e — n?H?

for n?*H? < 4(n—1)¢; (4.1)

n—2 2
o< (\/& + 2\/c/7n> for n?H? =4(n —1)c, (4.2)

where
a=(n-— 2)2£ +2(n = 1)(e1 — 2)e;
4dn
1 2

o< 1 (a + \/a2 +2n | H|v2(c1 — cz)) for n*H? > 4(n —1)c, (4.3)

where

o=l " {(n=2) | H | +v/n2H2 = 4(n— 1)c}.
2\n—1

Proof. We choose a local field of Lorentzian orthonormal frames e, - ,e,,€n41 in

Nanr1 such that, restricted to M™", the vector e,4; is time-like so that e,; is normal to
M™. Furthermore, the tangent vectors eq,--- , e, can be chosen in such a way that

A(el):Alez (1§17]a§n)5
where A is the Weingarten endomorphism of M™. Denote by K(e; A e,) the sectional
curvature of N{H'1 with respect to the nondegenerate 2-plane spanned by vectors e; and
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€, in TNanrl for 1 < a < n+ 1. Without loss of generality, we may assume that the
mean curvature H = (> \;)/n is nonnegative. Let A be the Laplacian on M™. By the

computation as in [11], it is not hard to see that
1
505 = VA & —i—nHZ MK (e; A engr) — SZK(ei A €ent1)
+ > (N = A\)2EK (ei Aej) — nH(trA®) 4 S2, (4.4)

where S = trA42.
Since the sectional curvature of N1”Jrl is pinched, we have the following estimates:

nHZ)\iK(ei A\ €n+1) — SZK(@Z‘ AN 6n+1)

n
:772 K(e; Aepyr) —fSZK e;Nent1) + 52)\?[((61'/\6”4_1)
> —ncl(S —nH?) — g(cl —¢2)S, (4.5)
Z()\l — )\j)2K<ei AN ej) > 27102(5 — nHQ). (46)
]

Substituting (4.5) and (4.6) into (4.4) yields
%AS > n(2es — 1)(S — nH?) — g(cl — )8 — nH (trA®) + S2. (4.7)
By introducing the linear map B = A — HI and putting f? = trB? = o, we have from (4.7)
%AfQ > A4 n(c— H?)f? —nH(trB?) — %(01 — co)n?H?, (4.8)

where ¢ = (5¢2 — 3¢1)/2. Since the map B is traceless, we can apply Lemma 2.2 to estimate
trB? in (4.8) and obtain

n(n —2) 5 , 1 -
me +n(c—H)f —5(01—62)711-[. (4.9)

Since the sectional curvature of NJ"*! is bounded, the Ricci curvature of M™ is bounded

SAP -

from below according to the Gauss equation of M™. Thus, applying Lemma 2.3 to the
function f?, we have from (4.9)

0> fi- Mfo Fnle— )3~ Ler — eon® H?
fo< H) + oy (= et HL
— 5(01 — co)n?H?, (4.10)

where fo = supy f < +o0.
We now consider three cases separately.
Case (i) n2H? < 4(n — 1)c. In such a case we have from the second part of (4.10)
1
0> m{él(n —1De—n?H?}fE — (c1 — co)nH?,
from which (4.1) follows directly.
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Case (ii) n?H? = 4(n — 1)c. It follows from the second part of (4.10) that

2
n—2 n 1
i (fo o 1H) < gle1 —cn’H”. (4.11)

If fo > 252, /-2 H = (n—2)+/c/n, then (4.11) impies that
12— (n—2)\Ve/nfo — /2(n —1)(c1 — e2)e <0,

from which (4.2) follows. If fo < (n — 2)+/¢/n, then (4.2) holds naturally.
Case (iii) n2H? > 4(n — 1)c. In such a case the first part of (4.10) can be reduced as
n

02 8o~ + -y

where a is given as in (4.3). If fo < a, then (4.3) is trivial. If fo > a, then it follows from
(4.12) that

(n2H? — 4(n — 1)c} — %(cl CenH?, (412)

(c1 — co)n*H?.

| =

f3(fo—a)® <
This impies that

9 n
—afo— —=+vc1—coH <0,
fo —afo \/5\/1 o H <

from which (4.3) follows immediately.

Remark. If N7'*! is a Lorentz space form, i.e., ¢; = ¢y, then (4.1) with (4.2) implies
the result of [1] or [14], and (4.3) with (4.2) implies Theorem 1 of [10]. On the other hand,
for complete maximal space-like hypersurfaces M™ in N, it is easy to see from (4.1) and
(4.2) that M™ is totally geodesic if 5¢ca — 3¢y > 0. This has been shown in [11].

5. Harmonic Gauss Maps

In this section, we assume that N;'*?(c) is simply connected and p > 1. Denote by O, (m)
the pseudo-orthogonal group which is the set of all matrices A € GL(m, R) that preserve
the pseudo-Euclidean inner product of R} (see [12]).

The bundle F(N;*?(c)) of the pseudo-orthonormal frames on N;*?(c) can be identified
with the group G(n + p) which is one of the following:

(1) Op(n+p+1) for ¢ > 0;

(ii) Op(n + p) for ¢ = 0;

(iii) Opy1(n +p+1) for ¢ < 0.

Let 64/p: be the Maurer-Cartan forms of G(n + p), where from now on we agree with the
following ranges of indeces:
0<A,B, - -<n+p, 1<AB, --<n+p,

1§27]7§n7 n+1§aaﬁ7§n+p
Then 64/ g/ satisfy the structure equations:
dGA’B’ = ZEC/&A/CH /\ 00’B’7 GA/B/ + 0B1A/ = 0, (51)
C/
where ¢;, =1, e, = —1 and
1 for ¢>0,
€0 = 0 for ¢=0,

-1 for ¢< 0.
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On putting
1
v/ €oC

the pseudo-Riemannian metric of NZ’,““’ (c) is given by

ds% = ZsAﬁi
A

04 = Ooa for ¢#0, (5.2)

and (5.1) becomes

9o =7 epbap Np,
B

(5.3)
dfap = Z€CQAC NOcp —ca N0,
C

which is the structure equation of NJ'*?(c).

Let M™ be a space-like n-submanifold in N;**?(c) and F(M™) the bundle of orthonormal
frames on M™. If P is the set of elements p = (z,e1, -+ ,enyp) € F(N)1P(c)) such that
x € M™ and (z,e1, -+ ,e,) € F(M™), then ¥ : P — M™ can be viewed as a principal bundle
with the fibre G(n) x O,(p) and i : P — F(N}*?(c)) is the natural identification.

Let @ be the set of all totally geodesic space-like n-spaces in Ng‘“’(c), which is identified
with a pseudo-Grassmannian G(n + p)/G(n) x O,(p). By means of forms 045 of G(n + p)
we can introduce a pseudo-Riemannian metric on Q:

dsg) = €o Z €alboa)” + Z cifal(lia)?, (5.4)

which is invariant under the action of G(n + p).

As a natural generalization of the Gauss maps of Riemannian submanifolds described as
in [13], the Gauss map for M™ of Ng”‘p(c) in a generalized sense may be defined as the map
g: M"™ — Q such that g(z), z € M", is a totally geodesic space-like n-space in N}'*?(c)
which is tangent to M™ at x. Then, we have the following commutative diagram:

P —  F(NTP(0) = G(n+p)

ﬁl ”J (5.5)

M — Q = G(n+p)/G(n) x Oy(p)

where 7 is the natural projection.

By using the same method as in [9] or [16], from (5.1)—(5.5) we can give easily the following
theorem whose proof is omitted here.

Theorem 5.1. Let M™ be a space-like n-submanifold in N;}‘”’(c). Then, the Gauss map
g: M" — G(n+p)/G(n) x Op(p) is harmonic if and only if

(i) M™ has parallel mean curvature vector when ¢ = 0; or

(if) M™ is a mazimal submanifold when ¢ # 0.

Remark. When ¢ = 0 and p = 1, the proof of the theorem was given in [3]. This theo-
rem provides a class of harmonic maps from Riemannian manifolds to pseudo-Riemannian

manifolds.
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