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§1. Introduction

Consider the following d-dimensional Vlasov-Poisson system, d = 2, 3,

∂tf + v · ∇xf − E · ∇vf = 0, f(0, x, v) = f0(x, v),

E(t, x) = c(d)

∫
x− y

|x− y|d
ρ(t, y) dy,

ρ(t, x) =

∫
f(t, x, v) dv.

(VP)

This system describes the problem of kinetic theory of galaxy in the growing process of

a star, where the function f(t, x, v) is denoted as the density of the star in phase space

Rd × V at time t, ρ(t, x) is total density at (t, x) and E(t, x) is the gravitation derived from

Newtonian potential associated with ρ(t, x).

Many mathematicians have studied system (VP), and got a lot of interesting results.

For example, in [1, 2, 8, 11], the authors studied their smooth solutions, and in [6, 7, 10,

13], the weak solutions. From those discussion, it should be pointed out that there exists

a natural restriction for density distribution in phase space; that is, the density should

be a bounded Randon measure. Under this restriction, Y. Zheng and A. Majda stud-

ied the existence of global weak solutions in their sense for 1-dimensional (VP) system in

[10]. They assumed further that the initial data f0(x, v) is a probability measure satisfying∫∫
eα|v|f0(x, v)dvdx ≤ Cα <∞ for any α ≥ 0, and utilized the special nonlinear structure of

1-dimensional (VP) system to obtain the existence mentioned as above. Now, the questions

are: could the concept of weak solutions and the method provided by [10] be generalized
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to multidimensional (VP) system? What assumption posed to f0(x, v) is suitable for mul-

tidemensional case? (see [7]). We note that the assumption and method established in [10]

are unsuitable for studying the corresponding problem of multidimensional case. In fact,

when d ≥ 2, we can not deduce E(x, t) ∈ L∞([0, T ], Rd) from f ∈ L∞([0, T ], L1(Rd ×Rd));

and since the operator ∂i∇△−1 is only a Caldéron-Zygmund type singular integral opera-

tor which does not persist L1-boundedness, we can not estimate the norm of ∂iE(t, x) in

L1([0, T ]×Rd) (see the end of this section for details); finally, because of the appearance of

the term
d∑

i=1

vi∂if in the first equation of (VP), we may not apply the proof argument of The-

orem 2. 5 in [10] by use of the test function vβφ(t, x, v) with φ(t, x, v) ∈ C∞
0 (R+×Rd×Rd),

where β = (β1, · · · , βα) being multi-index. Therefore, in this paper, we have to impose a

reasonable assumption on Randon measure f0(x, v), and then develop the concept of weak

solution to multidimensional (VP) system and prove its existence.

For this end, we first state some background of the condition posed on the initial data

here. For convenience, we assume that f0(x, v) ∈ L1
comp, and let fε0 (x, v) be the Friedrichs’

molifying of f0(x, v). So, there exists a unique global classical solution fε(t, x, v), Eε(t, x)

to (VP) with the initial data fε0 (x, v) for every ε > 0 (see [8, 11]), which satisfies∫∫
fε(t, x, v)dxdv =

∫∫
fε0 (x, v)dxdv =

∫∫
f0(x, v)dxdv.

Since divx,v(v,E(t, x)) = 0, following the argument given in Theorem 1 in [12], we can

extract a subsequence {fεj (t, x, v)} of {fε(t, x, v)} such that

fεj (t, x, v)⇀ f(t, x, v) in L∞([0,∞), L1(Rd × Rd)).

Then
∫
f(t, x, v)dv ∈ L∞([0,∞], L1(Rd)). On the other hand, notice that E(t, x) =

∇△−1ρ(t, x), and

∂i∇△−1ρ(t, x) =

∫
∂i

(
x− y

|x− y|d

)
ρ(t, y)dy =

∫
Ω(x− y)

|x− y|d
ρ(t, y)dy,

where Ω(x) satisfies
∫ 1

0
ω(δ)
δ dδ ≤ 4 as

ω(δ) = sup
|x′−x|≤δ
|x′|=|x|=1

|Ω(x)− Ω(x′)|.

Hence by Theorem 4 in [9, p. 42], ∂iE(t, x) is determined for x, a. e., and

m
{
x ∈ Rd||∂iE(t, x)| > α

}
≤ c

α

∫
Rd

ρ(t, y)dy, for α > 0, (1.1)

where m denotes the Lebesgue measure on Rd. Even if we strengthen (1.1) by assuming

that ∂iE(t, x) ∈ L∞([0,∞), L1(Rd)), since
∫
φ(t, x, v)f(t, x, v)dv can not be rewritten as

a first derivative of a BV function here as the one-dimensional case does, for φ(t, x.v) ∈
C∞

0 (R+ × Rd × Rd), it is still impossible for us to follow the definition of weak solution in

[10] for multidimensional (VP) system with initial data in L1 or Randon measure space.

Now, we impose the following condition on f0(x, v),∫
ψ(x, v)f0(x, v)dxdv ≤

∫
ψ(x, v)h(|v|)dxdv, (1.2)

where ψ(x, v) is an arbitrary nonnegative function in C∞
0 (Rd×Rd), h(|v|) is a non-increasing
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continuous function of |v| with
∫
Rd h(|v|)dv < ∞, and f0(x, v) is a probability distribu-

tion whose support is in {(x, v)||x| ≤ R, |v| ≤ R}. The condition corresponds to the es-

sential boundedness of the initial total density distribution. It is worth while noticing

that here the hypothesis (1.2) generalizes the assumption given by many mathematicians

when they studied system of Vlasov type. For instance, J. Cooper and A. Klimas posed

a special similar restriction for f0(x, v) ∈ L1(R × R) to prove the existence of generalized

solution in their sense for one dimensional Vlasov-Maxwell system[1], and in [2, 11] for

proving the existence of global classical solution to Vlasov-Fokker-Planck systems and 2-D

Vlasov-Poisson systems, the authors assumed that (1 + |v|2) r
2 f0(x, v) ∈ L∞(Rd × Rd), and

(1 + |x|)2γ(1 + |v|)2γf0(x, v) ∈ L∞(R2 × R2) respectively for some γ > d.

Now, under the assumption (1.2), we develop the concept of almost global weak solution

to (VP) system and prove its existence in the following theorem.

Theorem 1.1. Let f0(x, v) be as above, and satisfy (1.2), for d = 2, 3. Then there exists

an almost global weak solution f(t, x, v) ∈ L∞
loc

(
R+,Prob(Rd × Rd)

)
and E(t, x) to (VP)

system in the following sense:

(1) t 7−→ f(t, ·, ·) ∈ Prob(Rd × Rd)) is weakly continuous, that is, for any ψ(x, v) ∈
C∞

0 (Rd × Rd), we have

lim
t→ t0

∫∫
Rd×Rd

ψ(x, v)f(t, x, v)dxdv =

∫∫
Rd×Rd

ψ(x, v)f(t0, x, v)dxdv, 0 < t0 <∞.

(2) E(t, x) ∈ L∞
loc(R+,W 1,p

loc ) ∩ C([0,∞),W s,p
loc ), for all 0 < s < 1, 1 < p < +∞.

(3) For every t ∈ [0, T ], ρ(t, x) ∈ L∞
loc(R+, L∞) ∩ L∞

loc(R+, L1).

(4) For every φ(t, x, v) ∈ C∞
0 |(R+ × Rd × Rd), we have∫ ∞

0

∫∫
Rd×Rd

(∂tφ(t, x, v) + v.∇xφ(t, x, v)− E · ∇vφ(t, x, v))f(t, x, v)dtdxdv = 0,

E(t, x) = c(d)

∫
x− y

|x− y|d
ρ(t, y)dy.

Remark 1.1. As in [10],
∫∫
V

f(t, x, v)dxdv is only regarded as the measure of f(t, ·, ·) on

a Borel subset V of R2d, so does
∫
V

f(t, x, v)dv.

Remark 1.2. As in [3, 4, 6, 10], here we can not guarantee the uniqueness of the weak

solution to (VP) in our sense because the operator ∂i∇△−1 does not persist L1 boundedness.

On the other hand, by [8, 11], we know that for smooth initial data with compact support,

there exists a unique classical solution to d-dimensional (VP) for d = 2, 3. Hence, for

convenience, we only prove Theorem 1.1 for d = 2; the method given here can be exactly

extended to the 3-dimensional case.

§2. Proof of Theorem 1.1

Take j(x) ∈ C∞
0 (R2), j(x) ≥ 0, supp j(x) ⊂ {x||x| ≤ 1} and

∫
j(x)dx = 1, set

Jε(x, v) = ε−4j
(x
ε

)
j
(v
ε

)
for all ε > 0.



384 CHIN. ANN. OF MATH. Vol.19 Ser.B

Let fε0 (x, v) = f0 ∗ Jε. Then by the given conditions of f0(x, v) in Theorem 1.1, we have∫∫
R2×R2

fε0 (x, v)dxdv = 1, fε0 (x, v) ∈ C∞
0 (R4),

and

supp fv0 (x, v) ⊂ {(x, v)||x| ≤ R+ 1, |v| ≤ R+ 1} , for 0 ≤ ε ≤ 1.

Now, we take φ(y, v′) = Jε(x− y, v − v′) in (1.2). We have

fε0 (x, v) ≤
∫

ε−2j
(v − v′

ε

)
h1(|v′|)dv′ ≤ h1(|v|), 0 ≤ ε ≤ 1,

where

h1(|v|) =
{
h(0), |v| ≤ 1,
h(|v| − 1), |v| ≥ 1.

So, for convenience, we still assume fε0 (x, v) ≤ h(|v|), with h satisfying the same conditions

as the correspondence in (1.2). By [11], we know that there exists a unique smooth solution

fε(t, x, v) ∈ C∞(R+ ×R2 ×R2) and Eε(t, x) ∈ C∞(R+ ×R2) to (VP) system with fε0 (x, v)

as initial data, and ∫∫
R2×R2

fε(t, x, v) dxdv =

∫∫
R2×R2

fε0 (x, v) dxdv = 1, (2.1)

fε(t, x, v) = fε0 (x0, v0), (2.2)

where (x, v) and (x0, v0) satisfy{ dx
dt = v, x|t=0 = x0,
dv
dt = −Eε(t, x), v|t=0 = v0.

(2.3)

Lemma 2.1. For every T > 0, there exists MT > 0 such that

∥Eε(t, x)∥L∞([0,T ]×R2) ≤MT .

Proof. By fε0 (x, v) ≤ h(|v|), (2.2) and (2.3), we find

fε(t, x, v) = f0(x0, v0) ≤ h(|v0|),

and

|v − v0| ≤ t∥Eε(t, x)∥L∞([0,t]×R2).

So, by the noninreasing condition of h(·), we have

fε(t, x, v) ≤ ht∥Eε(t,x)∥L∞([0,t]×R2)
(|v|),

where

hr(|v|) =
{
h(0), |v| ≤ r,

h(|v| − r), |v| ≤ r.

On the other hand,

∥Eε(t, ·)∥L∞ ≤
∫

|x−y|≤r

1

|x− y|
ρε(t, y) dy +

∫
|x−y|≥r

1

|x− y|
ρε(t, y) dy

≤ 2πr∥ρε(t, ·)∥L∞ +
1

r
∥ρε(t, ·)∥L1 ;
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taking r =
√

∥ρε(t,·)∥L1

2π∥ρε(t,·)∥L∞ , we find

∥Eε(t, ·)∥L∞ ≤ 2π∥ρε(t, ·)∥
1
2

L1∥ρε(t, ·)∥
1
2

L∞ , (2.4)

while

∥ρε(t, ·)∥L1 =

∫∫
fε(t, x, v) dxdv = 1,

∥ρε(t, ·)∥L∞ ≤
∫
ht∥Eε(·,·)∥L∞([0,t]×R2)

(|v|) dv

= πt2∥Eε(t, x)∥2L∞([0,t]×R2)h(0) +

∫
h(|v|) dv.

Denoting
∫
h(|v|) dv by C0, substituting the above two formulas to (2.4), and taking t1 =

1
4π2

√
2π
h(0) , we obtain

∥E(t, x)∥L∞([0,t1]×R2) ≤ 2π
√
2C0. (2.5)

In what follows, we will inductively prove the following assertion:

For any t ∈ [n−1
4π2

√
2π
h(0) ,

n
4π2

√
2π
h(0) ], n being an arbitrary positive integer, we have

∥E(t, ·)∥L∞(R2) ≤ 2π
√

2Cn−1, (2.6)

where

Cn−1 = 1 + (n− 1)2(n− 2)2 + · · ·+ (n− 1)2(n− 2)2 · · · (n− k)2 + · · ·+ [(n− 1)!]2.

To this end, we assume the above assertion is true for n = k. By

k

4π2

√
2π

h(0)
· 2π

√
2Ck−1 =

k

π

√
πCk−1

k(0)
,

and (2.2), we get

fε(t, x, v) ≤ h
k
π

√
πCk−1
h(0)

(|v|), t ∈
[
0,

k

4π2

√
2π

k(0)

]
.

Denote h
k
π

√
πCk−1
h(0)

(|v|) by hk(|v|). Then hk(0) = h(0). Repeating the proof of (2.5) with

hk(|v|) instead of h(|v|), we find

∥E(t, ·)∥L∞ ≤ 2π
√
2Ck, t ∈

[ k

4π2

√
2π

h(0)
,
k + 1

4π2

√
2π

h(0)

]
,

where Ck is defined as above. This complets the proof of (2.6).

On the other hand, for every T > 0, there exists a positive integer k such that

k − 1

4π2

√
2π

h(0)
≤ T ≤ k

4π2

√
2π

h(0)
.

Thus by (2.6),

∥E(·, ·)∥L∞([0,t]×R2) ≤ 2π
√
2Ck−1.

This concludes Lemma 2.1.

Noticing that E(t, x) = ∇△−1ρ(t, x), where ∇ and △−1 are the divengence and inverse

operator of △ with respect to x respectively, we further have the following Lemma 2.2.
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Lemma 2.2. For every T > 0, there exists KT > 0 such that

∥Eε(t, x)∥L∞([0,T ],W 1,p
loc ) ≤ KT ,

for 1 < p <∞.

Proof. By Lemma 2.1, we have

∥Eε(t, x)∥L∞([0,T ],Lp
loc)

≤ NT . (2.7)

∂xiE
ε(t, x) = ∂i∇△−1ρε(t, ·),

and ξiξj/|ξ|2 is a multiplier which is homogeneous of degree zero and is infinitely differen-

tiable on the sphere. Hence by Theorem 3.6 of [9], ∂i∇△−1 persists Lp boundedness for

1 < p <∞; that is,

∥∂iEε(t, ·)∥L∞([0,T ],Lp(R2)) ≤ C∥ρε(t, ·)∥L∞([0,T ],Lp(R2))

≤ C∥ρε(t, ·)∥p−1
L∞([0,t]×R2)∥ρ

ε(t, ·)∥L∞([0,t],L1)

≤ ((TMT )
2h(0) + c0)

p−1, i = 1, 2,

(2.8)

where MT is the same as the correspondence in Lemma 2.1. Combining (2.7) and (2.8) we

find that Lemma 2.2 holds.

By (1.3) and applying Theorem 1.2 in [5], we know that for all t ∈ [0, T ], there exists a

subsequence {fεj (t, x, v)} of {fε(t, x, v)} such that {fεj (t, x, v)} weakly converges to f(t, ·, ·)
in M+(R2 ×R2)(the positive Radon measure space). And by (2.2) and Lemma 2.1, we find

supp fε(t, ·, ·) ⊂ {(x, v)||x| ≤ R+Rt+
1

2
Mtt

2, |v| ≤ R+Mtt}.

Take χt(x, v) ∈ C∞
0 (R2 × R2) which is equal to 1 in supp fε(t, ·, ·). Then we have

1 = lim
εj → 0

∫∫
R2×R2

fεj (t, x, v)χt(x, v)dxdv =

∫∫
χt(x, v) f(t, x, v)dxdv

=

∫∫
R2×R2

f(t, ·, ·)dxdv;

that is, f(t, ·, ·) ∈Prob(R2 × R2).

Now, for every T > 0, denote the rational number set of [0, T ] by {tr|r ∈ N}. Then by

diagnonal process, we can take a subsequence {fεj (t, x, v)} of {fε(t, x, v)} and a sequence

of probability measure f(tγ , x, v) such that {fεj (tr, x, v)} weakly converges to f(tr, x, v) in

M+(R2 × R2). Hence, similiar to the idea in [6], we have

Lemma 2.3. There exists a probability measure f(t, ·, ·) which is weakly continuous with

respect to t ∈ [0, T ], that is, for every ψ ∈ C∞
0 (R4), the function

∫∫
R2×R2

ψ(x, v)f(t, x, v) dxdv

is continuous with respect to t ∈ [0, T ], and a subsequence {fεj (t, x, v)} of {fε(t, x, v)} such

that

lim
j→∞

∫∫
ψ(x, v)fεj (t, x, v)dxdv =

∫∫
ψ(x, v)f(t, x, v)dxdv.

Proof. Firstly, we prove the following assertion:

for every function ψ(x, v) in a enumerable dense subset of C∞
0 (R4), the function

[0, T ] ∋ t 7−→
∫∫

R2×R2

ψ(x, v)fεj (t, x, v) dxdv (2.9)
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is equicontinuous.

Take arbitrary t1, t2 ∈ [0, T ], then∣∣∣ ∫∫
R2×R2

ψ(x, v)(fεj (t2, x, v)− fεj (t1, x, v))dxdv
∣∣∣

=
∣∣∣ ∫∫
R2×R2

ψ(x, v)

∫ t2

t1

∂sf
εj (s, x, v)dsdxdv

∣∣∣
=

∫ t2

t1

∣∣∣ ∫∫
R2×R2

ψ(x, v)(−v · ∇xf
εj (s, x, v) + Eεj · ∇vf

εj (s, x, v)dxdv
∣∣∣ds

=

∫ t2

t1

∣∣∣ ∫∫
R2×R2

(v · ∇xψ(x, v)− Eεj · ∇vψ(x, v))f
εj (s, x, v)dxdv

∣∣∣ds.
Then, by Lemma 2.1,∣∣∣ ∫∫

R2×R2

ψ(x, v)(fεj (t2, x, v)− fεj (t1, x, v))dxdv
∣∣∣ ≤ CT,φ|t1 − t2|.

Secondly, by the discussion after Lemma 2.2, we know that
∫∫

R2×R2

ψ(x, v)fεj (t, x, v)dxdv is

pointwise convergent on a dense subset of [0, T]. Combining the above facts with the follow-

ing Lemma 2.4, we find that
∫∫

R2×R2

ψ(x, v)fεj (t, x, v)dxdv is uniformly convergent in [0,T].

Furthermore, following the discussion after Lemma 2.2, we know that for every t ∈ [0, T ],

there exists a probability measure f(t, ·, ·) and a subsequence {fεjn (t, x, v)} of {fεj (t, x, v)}
such that

lim
j →∞

∫∫
R2×R2

fεj (t, x, v)ψ(x, v)dxdv = lim
n→∞

∫∫
R2×R2

fεjn (t, x, v)ψ(x, v)dxdv

=

∫∫
R2×R2

ψ(x, v)f(t, x, v)dxdv.

Then, by diagnoal process and standard dense argument, there exists a common subsequence

of {fεj (t, x, v)} for every ψ ∈ C∞
0 , without arousing ambiguity, still denoted by {fεj (t, x, v)},

such that

lim
j →∞

∫∫
R2×R2

fεj (t, x, v)ψ(x, v)dxdv =

∫∫
R2×R2

ψ(x, v)f(t, x, v)dxdv.

And by the fact that the uniform limit of a sequence of continuous function is still a contin-

uous function, the map [0, T ] ∋ t 7→ f(t, ·, ·) ∈Prob(R2 × R2) is weakly continuous.

Lemma 2.4. Assume that {Gn(z)} is a equicontinuous sequence of function defined on a

compact subset K of Rn and pointwise convergent on a dense subset A of K. Then {Gn(z)}
is uniformly convergent on K.

Lemma 2.5. There exists a subsequence of {Eεj (t, x)}, without arousing ambiguity, still

denoted by {Eεj (t, x)}, and E(t, x) ∈ L∞([0, T ],W 1p
loc) ∩ C([0, T ],W

sp
loc), for all T > 0, 0 <

s < 1, 1 < p < +∞, such that

lim
j →+∞

Eεj (t, x) = E(t, x) in C([0, T ],W sp
loc).
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Proof. First, we prove that for every t1, t2 ∈ [0, T ], there exist L > 0, CT > 0, such that

∥ρεj (t1, ·)− ρεj (t2, ·)∥H−L ≤ CT |t1 − t2|. (2.10)

Now, we take an arbitrary function ψ(x) ∈ C∞
0 (R2), multiplying this function by the first

equation in (VP),∣∣∣ ∫ ψ(x)(ρεj (t1, x)− ρεj (t2, x))dx
∣∣∣ ≤ ∫ t2

t1

∣∣∣ ∫∫
R2×R2

ψ(x)∂sf
εj (s, x, v)dvdx

∣∣∣ds
=

∫ t2

t1

∣∣∣ ∫∫
R2×R2

ψ(x)v · ∇xf
εj (t, x, v)dxdv

∣∣∣dt
≤ (MTT +R)∥∇xψ∥L∞ |t1 − t2|
≤ (MTT +R)∥ψ∥HL |t1 − t2|;

for every L > 2
2 + 1 = 2 by Sobolev interpolation inequality, (2.10) holds.∣∣∣ ∫ ψ(x)(Eεj (t1, x)− Eεj (t2, x)) dx

∣∣∣
=
∣∣∣ ∫ ψ(x)(∇△−1ρεj (t1, x)−∇△−1ρεj (t2, x)) dx

∣∣∣
=
∣∣∣ ∫

|x|≤R+RT+ 1
2MT 2

∇△−1ψ(x)(ρ(t1, x)− ρ(t2, x)) dx
∣∣∣

≤ CT ∥∇△−1ψ(x)∥
HL

{
x
∣∣|x|≤R+T+ 1

2MTT 2
} · |t1 − t2|.

(2.11)

Since |∇△−1ψ(x)| ≤
∫

1
|x−y| |φ(y)|dy, by Riesz potential theory[9],

∥∇△−1ψ(x)∥L2 ≤ ∥ψ∥L1 .

Hence, by Poincare’s inequality[14]

∥∇△−1φ(x)∥
L2(x

∣∣|x|≤R+RT+ 1
2MT 2)

≤ gT (∥∂1∇△−1ψ(x)∥L2 + ∥∂2∇△−1ψ(x)∥L2(R2))

≤ gT ∥ψ(x)∥L2 .

Noticing that ∂i∇△−1 is an operator of Calderon-Zygmund type, and ∂α commutes with

∂i∇△−1, where α = (α1, α2), α1 + α2 ≤ L− 1, we have

∥∂α∂i∇△−1ψ(x)∥L2 ≤ C∥∂αψ(x)∥L2 ≤ C∥ψ∥HL−1 .

Combining the above and (2.11), we know that

∥Eεj (t1, ·)− Eεj (t2, .)∥H−L+1 ≤ CT |t1 − t2|. (2.12)

The mapping W 1p
loc ↪→ W sp

loc, for 0 < s < 1, is a compact imbeding. Hence, by (2.12) and

using Lions-Aubin Lemma, we know that, for every ε > 0, the following inequality holds:

∥Eεj (t1, .)− Eεj (t2, .)∥W sp
loc

≤ ε∥Eεj (t, s)∥L∞([0,T ],W 1.p
loc ) + Cε,T |t1 − t2| (2.13)

for t1, t2 ∈ [0, T ], 0 < s < 1, 1 < p < ∞. And by diagonal precess, we can extract a

subsequence of {Eεj (t, x)}, still denoted by {Eεj (t, x)}, which converges in W sp
loc for t in the

rational number subset {tγ |γ ∈ N} of [0, T]. For every fixed t ∈ [0, T ] and δ > 0 there exists

some tγ ∈ {tγ |γ ∈ N} such that |t− tγ | < δ. Then

∥Eεj (t, ·)− Eεk(t, ·)∥W sp
loc

≤ ∥Eεj (t, ·)− Eεj (tγ , ·)∥W sp
loc

+ ∥Eεj (tγ , ·)− Eεk(tγ , ·)∥W sp
loc

+ ∥Eεk(tγ , ·)− Eεk(t, ·)∥W sp
loc
,
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and

∥Eεj (t1, ·)− Eεk(t2, ·)∥W sp
loc

≤ ∥Eεj (t1, ·)− Eεj (t2, ·)∥W sp
loc

+ ∥Eεj (t2, ·)− Eεk(t2, ·)∥W sp
loc
.

Hence by (2.13), we conclud that {Eεj (t, ·)} converges to some E(t, x) in C([0, T ],W sp
loc).

Therefore by Lemma 2.2, we know that E(t, x) ∈ L∞([0, T ],W 1.p
loc ) ∩ C([0, T ],W s.p

loc ), for

every 0 < s < 1 and 1 < p < +∞.

Since Lemma 2.3 and Lemma 2.5 hold for every T > 0, there exist two subsequences,

{fεj (t, x, v)}, {Eεj (t, x)} of {fε(t, x, v)} and {Eε(t, x)} respectively, such that Lemma 2.3

and Lemma 2.5 hold for arbitrary 0 < T < +∞ by diagonal process.

Having the above preparation, now we can prove Theorem 1.1.

Proof of Theorem 1.1. By Lemma 2.3, Lemma 2.5, it is easy to know that

lim
j →∞

∫
Eεj (t, x) · ∇vφ(t, x, v)f

εj (t, x, v)dtdxdv

=

∫
E(t, x) · ∇vφ(t, x, v)f(t, x, v)dtdxdv (2.14)

for every φ(t, x, v) ∈ C∞
0 ((0,∞) × R4). It implies that first equality of (4) in Theorem 1.1

holds.

Up to now, to verify Theorem 1.1, we only need to prove (3) and the second equality of

(4) in Theorem 1.1. It will be realized when we have the following Lemma 2.6.

Lemma 2.6. Let ρ(t, x) =
∫
R2 f(t, x, v)dv, where f(t, x, v) is obtained as above. Then

ρ(t, .) is absolutely continuous with respect to Lebesgue measure, and by redefining ρ(t, ·) on
a set of zero measure, ρ(·, ·) ∈ L∞

loc(R
+, L∞(R2)) ∩ L∞

loc(R+, L1(R2)), and

E(t, x) = C(2)

∫
x− y

|x− y|2
ρ(t, y) dy,

where t ∈ (0,∞).

Proof. Take any function ψ(x) ∈ C∞
0 (R2) and χ(v) ∈ C∞

0 (R2), such that χ(v) is equal

to 1 when |v| ≤ R+MTT , for some T > t. Then∣∣∣ ∫
R2

ψ(x)ρ(t, x)dx
∣∣∣ = ∣∣∣ lim

j →+∞

∫∫
R2×R2

ψ(x)χ(v)fεj (t, x, v)dxdv
∣∣∣

≤ lim
j →+∞

∫
R2

|ψ(x)|ρεj (t, x)dx

≤ ((TMT )
2h(0) + C0)∥ψ∥L1

.
= LT ∥ψ∥L1 .

(2.15)

Notice that C∞
0 (R2) is dense in L1(R2) and L1 is the dual of L∞. Hence by (2.15) there

exists g(t, x) ∈ L∞
loc([0,∞), L∞(R2)) such that∫

ψ(x)ρ(t, x)dx =

∫
ψ(x)g(t, x)dx. (2.16)

Following this equality, we find that ρ(t, ·) is absolutely continuous with respect to Lebesgue

measure, and g(t, ·) = dρ(t,·)
dm , which is the Randon-Nikoydim derivetive of ρ(t, ·) with respect

to Lebesgue measure m, and by (2.16) ρ(t, ·) a. e.
= g(t, ·).

Next, we prove the last assertion of Lemma 2.6.

Take an arbitrary δ > 0,∣∣∣ ∫
|x−y|≤δ

x− y

|x− y|2
ρεj (t, y) dy

∣∣∣ ≤ (2π ∫ htMt(|v|) dv
)
δ,
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while ∣∣∣ ∫
|x−y|≤δ

x− y

|x− y|2
ρ(t, y)dy

∣∣∣ ≤ 2π∥ρ(t, .)∥L∞δ.

For every fixed x ∈ {R2
∣∣|x − y| ≥ δ}, x−y

|x−y|2 is a smooth function of y which tends to zero

when |y| tends to infinity, so we have

lim
εj→0

∣∣∣ ∫
|x−y|≥δ

x− y

|x− y|2
ρεj (t, x) dx−

∫
|x−y|≥δ

x− y

|x− y|2
ρ(t, y)dy

∣∣∣
= lim

εj→ 0

∫∫
|x−y|≥δ

x− y

|x− y|2
χ(v)(fεj (t, y, v)− f(t, y, v)) dydv.

Hence from Lemma 2.3, the last conclusion of Lemma 2.6 holds.
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