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Abstract

Bifurcation problems equivariant under the standard action of the orthogonal group O(n)

up to O(n)-codimension 4 are classified into 19 classes. For each class the normal form and one
universal unfolding are calculated and the recognition problem is solved.

Keywords O(n)-equivariant bifurcation, Normal form, Universal unfolding, Recognition

problem

1991 MR Subject Classification 55M10, 58E09

Chinese Library Classification 0189.2, 019

§1. Introduction

In this paper we investigate local bifurcations equivariant under the standard action of

the orthogonal group O(n) on Rn. One of the motivations to study such problems is that

many physical systems possess the spherical symmetry, for example, in the study of buckling

of a planar disk of a spherical shell. Another motivation comes from some mathematical

requirement, for example, the study of degenerate Hopf bifurcations (see [2, 6]). Most

of these problems can be reduced to the study of the local bifurcation diagrams of O(n)-

equivariant bifurcation problems. A fundamental approach to the study of O(n)-equivariant

bifurcation problems is the equivariant singularity theory which was developed in [3, 4]. One

of the goals of singularity theory is to classify and characterize equivalent classes. The other

one is to study perturbation problems, which is related to universal unfoldings and then

induces the notion of O(n)-codimension.

There are some previous results for the special case n = 1 due to several authors. Gol-

ubitsky and Langford in [2] studied the Z2-equivariant bifurcation up to Z2-codimension

three. They gave a complete discussion of classification, unfoldings and recognition. Shi in

[6] generalized their result to the case of Z2-codimension four. In the present paper we show

that for any positive integer n every O(n)-equivariant bifurcation of O(n)-codimension less

than five is equivalent to one of the 19 normal forms listed in Table 3.1. For each class the
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normal form and one universal unfolding ard calculated, and by using the method proposed

by Melbourne in [5] the recognition problem is solved.

The remainder of the paper is organized as follows. In Section 2 some notations and con-

cepts are introduced. Then in Section 3 the classification and unfolding theorem (Theorem

3.1) are established. Finally in Section 4 the recognition conditions are derived (Theorem

4.1).

§2. Preliminaries

Let the n-dimensional orthogonal group O(n) act on Rn in the standard way. We first

introduce some invariants related to O(n)-equivariant bifurcation problems. Let (x, λ) ∈
Rn ×R. Denote by Ex,λ((n)) the set of all O(n)-invariant C∞ germs, i.e., germs f : (Rn ×
R, 0) → R satifying

f(γx, λ) = f(x, λ), ∀γ ∈ O(n), x ∈ Rn, λ ∈ R; (2.1)

by
→
E x,λ(O(n)) the set of all O(n)-equivariant C∞ germs, i.e., germs g : (Rn × R, 0) → Rn

satisfying

g(γx, λ) = γg(x, λ), ∀γ ∈ O(n), x ∈ Rn, λ ∈ R; (2.2)

by
↔
E x,λ(O(n)) the set of all matrix-valued O(n)-equivariant C∞ germs, i.e., germs g :

(Rn × R, 0) → L(Rn) satisfying

S(γx, λ) = γS(x, λ), ∀γ ∈ O(n), x ∈ Rn, λ ∈ R; (2.3)

and finally, by Eλ the set of all C∞ germs (R, 0) → R.
The following proposition gives the O(n)-invatriant theory.

Proposition 2.1. Let u = |x|2. Then

(a) Every f ∈ Ex.λ(O(n)) can be expressed as

f(x, λ) = r(u, λ), r ∈ Eu,λ. (2.4)

(b) Every g ∈
→
E x,λ(O(n)) can be expressed as

g(x, λ) = r(u, λ)x, r ∈ Eu,λ. (2.5)

(c) Every S ∈
↔
E x,λ(O(n)) can be expressed as

S(x, λ) = p(u, λ)In + q(u, λ)xxT , p, q ∈ Eu,λ. (2.6)

Proof. For the special case n = 1,O(n) = Z2, the theorem is well-known[3]. We consider

general case n > 1. Set the group

Z2 =

{[
±1 0
0 In−1

]}
that acts on the space V := {(x1, 0, · · · , 0) ∈ Rn|x1 ∈ R}. Since O(n) acts transitively on

the sphere Sn−1, it follows that for any x ∈ Rn there exists an orthogonal transformation

γx ∈ O(n) such that γxx = (|x|, 0, · · · , 0) ∈ V.

(a) For f ∈ Ex,λ(O(n)), obviously, f | V : (V × R, 0) → R is a C∞ Z2-invariant germ.

One has an r ∈ Eu,λ such that f(y, λ) = r(|y|2, λ) for all (y, λ) ∈ (V × R, 0). So for

(x, λ) ∈ (Rn × R, 0), f(x, λ) = f(γ−1
x (|x|, 0, · · · , 0), λ) = f((|x|, 0, · · · , 0), λ) = r(|x|2, λ).
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(b) For g ∈
→
E x,λ(O(n)) it is easy to see that g(V ×R) ⊂ V and g | V : (V ×R, 0) → V is a

C∞ Z2-equivariant germ. Hence there exists a germ r ∈ Eu,λ such that g(y, λ) = r(|y|2, λ)y
for all (y, λ) ∈ (V × R, 0). So for (x, λ) ∈ (Rn × R, 0),

g(x, λ) = g(γ−1
x (|x|, 0, · · · , o), λ) = γ−1

x g((|x|, 0, · · · , o), λ)
= γ−1

x r((|x|, λ)(|x|, 0, · · · , 0) = r(|x|2, λ)x.

(c) can be proved by arguments similar to those for (b).

Remark 2.1. (i) We introduce an equivalence ∼ on Eu,λ:

r1 ∼ r2 if and only if r1(u, λ) = r2(u, λ) for all u > 0 and λ ∈ (R, 0).

Then (2.5) defines a 1-1 correspondence between germs in
→
E x,λ(O(n)) and equivalence classes

in Eu,λ/ ∼. For this reasom we identify g ∈
→
E x,λ(O(n)) with the corresponding equivalent

class [r] ∈ Eu,λ/ ∼. It is easy to that r1 − r2 is a flat germ whenever r1 ∼ r2. As we will

see below, for germs of finite O(n)-codimension the classfication and recognition problems

depend only on their low order derivatives at the origin and then the solution of these

problems do not depend on the particular choice of the representative in an equivalent class.

(ii) Eu,λ and Eλ are local rings whose maximal ideals are respectively

Mu,λ = {r ∈ Eu,λ|r(0, 0) = 0} and Mλ = {r ∈ Eλ|r(0) = 0}.

By (b) and (c),
→
E x,λ(O(n)) and

↔
E x,λ(O(n)) are Eu,λ-modules generated by {x} and {In,

xxT } respectively. Let R be a ring and I be R or an ideal of R. Let M be an R-module

and S a subset of M. We denote by

IS := {r1g1 + · · ·+ rkgk|ri ∈ I, gi ∈ S, i = 1, · · · , k}

the submodule of M generated by elements all like rg, where r ∈ I and g ∈ S. Hence
→
E x,λ(O(n)) = Eu,λ{x} and

↔
E x,λ(O(n)) = Eu,λ{In, xxT }.

Now we condider bifurcation problems. An O(n)-equivariant bifurcation problem g is a

germ g ∈
→
E x,λ(O(n)) satisfying g(0, 0) = 0 and det(dg)0,0 = 0, where dg is the derivative of

g with respect to x. The (local) bifurcation diagram of g is the set

{(x, λ) ∈ Rn × R, 0)|g(x, λ) = 0}.

A triple (S,X,Λ) ∈
↔
E x,λ(O(n))×

→
E x,λ(O(n))×Eλ is called an O(n)-equivalence if it datisfies

X(0, 0) = 0, Λ(0) = 0, detS(0, 0) > 0, det(dX)0,0 > 0, Λ′(0) > 0; (2.7)

and it is called a strong O(n)-equivalence if furthermore Λ(λ) ≡ λ. Two germs g, h ∈
→
E x,λ(O(n)) are said to be (strongly) equivalent if there is a (respectively, strong) O(n)-

equivalence (S,X,Λ) such that

h(x, λ) = S(x, λ)g(X(x, λ),Λ(λ)), ∀(x, λ) ∈ (Rn × R, 0), (2.8)

Hence equivalent germs have diffeomorphic bifurcation diagrams. Let α ∈ Rk. The nota-

tions Eλ,α, Ex,λ,α(O(n)),
→
E x,λ,α(O(n)) and

↔
E x,λ,α(O(n)) have the similar meaning as their

counterparts with a single paramter λ. A k-parameter O(n)-unfolding of g ∈
→
E x,λ(O(n)) is

a germ G ∈
→
E x,λ,α(O(n)) satisfying G(x, λ, 0) = g(x, λ) for all (x, λ) ∈ (Rn × R, 0), where
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α = (α1, · · · , αk) ∈ Rk are called unfolding parameters. Equivalences on
→
E x,λ,α(O(n)) can

be defined similarly as those on
→
E x,λ(O(n)) (see [4]). An O(n)-unfolding G ∈

→
E x,λ,α(O(n))

of g ∈
→
E x,λ(O(n)) is said to be versal if any O(n)-unfolding of g is equivalent to an un-

folding induced from G. Universal O(n)-unfoldings of g are the versal ones with the least

number of unfolding parameters, which is called the O(n)-codimension of g and denoted by

codimO(n)g.

Let D(O(n)) (Ds(O(n))) be set of all (respectively, strong) O(n)-equivalences. Then

D(O(n)) is a group with a suitably defined binary operation and Ds(O(n)) is a subgroup

of D(O(n)) and their actions on
→
E x,λ(O(n)) are defined as the right-hand side in (2.8) (see

[5]). For g ∈
→
E x,λ(O(n)) denote by TD(s)(g,O(n)) the tangent space to the group orbit

D(O(n)) · g (respectively, Ds(O(n)) · g). It is easy to see that

TDs([r],O(n)) = Eu,λ{[r], [uru]}, (2.9)

TD([r],O(n)) = Eu,λ{[r], [uru]}+ Eλ{[λr]}. (2.10)

They are respectively an Eu,λ-submodule and an Eλ-submodule of
→
E x,λ(O(n)).

Remark 2.2. Since (2.5), (2.9), and (2.10) have the same expressions as those in Z2

case, it is not surprising that some discussions in this paper parallel to that in [2].

A submodule M of
→
E x,λ(O(n)) is said to be intrinsic if it consists of entire Ds(O(n))-

orbits. For a subset S ⊂
→
E x,λ(O(n)) containing zero we denote by ItrDsS the maximal

intrinsic submodule contained in S.

The following theorems are our main tools to classity O(n)-equivariant germs and to

calculate the normal forms and universal unfoldings for each class.

Theorem 2.1. Let M be a submodule of
→
E x,λ(O(n)) of finite codimension. Then M

is intrisic if and only if M = ⟨uk1λl1 , uk2λl2 , · · · , uksλls⟩{x} for some intrgers ki, li (i =

1, · · · , s) such that k1 > k2 > · · · > ks = 0 = l1 < l2 < · · · < ls. Here ⟨uk1λl1 , uk2λl2 , · · · ,
uksλls⟩ is the ideal of Eu,λ generated by ukiλli .

Proof. This theorem can be proved as [3, Proposition VI.2.8].

Theorem 2.2. Let g, p ∈
→
E x,λ(O(n)).

(a) (Homotopy, [1, Theorem 2.2], [4, Theorem XIV.1.3]) If TD(s)(g,O(n)) = TD(s)(g +

tp,O(n)), for all t ∈ [0, 1], then g + tp is (strongly) O(n)-equivalent to g for all t ∈ [0, 1].

(b) ([4, Theorem XIV.7.2]) If p ∈ ItrDsMu,λTD
s(g,O(n)), then g + p is strongly O(n)-

equivalent to g.

Theorem 2.3 (Versal Unfolding Theorem, [4,Theorem XV.2.1]). Suppose G ∈
→
E x,λ,α

(O(n)) be a k-parameter O(n)-unfolding of g ∈
→
E x,λ(O(n)). Then G is versal if and only if

→
E x,λ(O(n)) = T (g,O(n)) + R

{ ∂G

∂α1

∣∣∣
α=0

, · · · , ∂G
∂αk

∣∣∣
α=0

}
, (2.11)

where

T (g,O(n)) = Eu,λ{g, dg · x}+ Eλ{gλ} (2.12)

is the tangent space. Moreover, if
{

∂G
∂α1

(·, 0), · · · , ∂G
∂αk

(·, 0)
}

is a basis of a subspace of
→
E x,λ(O(n)) complement to T (g,O(n)), then G is a universal O(n)-unfolding of g.
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§3. Classification and Unfoldings

Throughout this paper we assume ε, δ, σ = ±1 and denote

ri,j =
∂i+jr

∂ui∂λj
(0, 0).

The following classsification and unfolding theorem is one of the two main results of this

paper.

Theorem 3.1. Let g ≡ [r] ∈
→
E x,λ(O(n)), where r ∈ Eu,λ satisfying r0,0 = 0. If

codimO(n)g ≤ 4, then g is O(n)-equivalent to one of the normal forms listed in Table 3.1

where the O(n)-codimension and a universal unfolding for each normal form are also given.

Table 3.1 Normal forms, O(n)-Codimensions and Universal Unfoldings

No. Normal Form h codimO(n)h Universal Unfolding of h

(1) (δu+ ελ)x 0 h
(2) (δu+ ελ2)x 1 h+ α1x
(3) (δu2 + ελ)x 1 h+ α1ux
(4) (δu+ ελ3)x 2 h+ (α1 + α2λ)x
(5) (δu3 + ελ)x 2 h+ (α1u+ α2u

2)x
(6) (δu2 + ελ2)x 3 h+ (α1 + α2u+ α3uλ)x
(7) (δu+ ελ4)x 3 h+ (α1 + α2λ+ α3λ

2)x
(8) (δu2 + 2buλ+ ελ2)x,

b ̸= 0, b2 ̸= εδ 3 h+ (α1 + α2λ+ α3u)x
(9) (δu2 + 2σu(λ+ λ2) + δλ2)x 3 h+ (α1 + α2λ+ α3λ

2)x
(10) (δu2 + σuλ+ ελ3)x 3 h+ (α1 + α2λ+ α3λ

2)x
(11) (δu3 + σuλ+ ελ2)x 3 h+ (α1 + α2λ+ α3u

2)x
(12) (δu4 + ελ)x 3 h+ (α1u+ α2u

2 + α3u
3)x

(13) (δu+ ελ5)x 4 h+ (α1 + α2λ+ α3λ
2 + α3λ

3)x
(14) (δu2 + σuλ+ ελ4)x 4 h+ (α1 + α2λ+ α3λ

2 + α4u)x
(15) (δu2 + σuλ2 + ελ3)x 4 h+ (α1 + α2λ+ α3u+ α4uλ)x
(16) (δu3 + σuλ+ ελ3)x 4 h+ (α1 + α2λ+ α3λ

2 + α4u
2)x

(17) (δu3 + σu2λ+ ελ2)x 4 h+ (α1 + α2λ+ α3u+ α4uλ)x
(18) (δu4 + σuλ+ ελ2)x 4 h+ (α1 + α2u+ α3u

2 + α4u
3)x

(19) (δu5 + ελ)x 4 h+ (α1u+ α2u
2 + α3u

3 + α4u
4)x

Note. In this table u = |x|2 and all the αis are unfolding parameters.

The proof of Theorem 3.1 needs several lemmas.

Lemma 3.1. Let r ∈ Eu,λ, r(0, 0) = 0. Suppose that [r] has finite O(n)-codimension.

Then

(a) k ≡ min{i| ri,0 ̸= 0} < ∞ and l ≡ min{j| r0,j ̸= 0} < ∞.

(b) T ([r],O(n)) ⊂ Eu,λ{ukx, uλx, λix}+ R{[rλ]} and hence codimO(n)[r] ≥ k + l − 2.

(c) [r] is O(n)-equivalent to

(ελl + a1(λ)u+ · · ·+ ak−1(λ)u
k−1 + δuk + ak+2(u, λ)u

k+2)x, (3.1)

where aj(0) = 0, 1 ≤ j < k.

Proof. Since [r] is of finite O(n)-codimension, it follows obviously that k < ∞ and

l < ∞, so (a) holds. We may assume that

r(u, λ) = b0(λ)λ
l+b1(λ)u+· · ·+bk−1(λ)u

k−1+bk(λ)u
k+bk+1(λ)u

k+1+bk+2(u, λ)u
k+2, (3.2)
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where b0(0) ̸= 0, bk(0) ̸= 0 and b1(0) = · · · = bk−1(0) = 0. It is easy to check that [r], [uru]

and [rλ] are in Eu,λ{ukx, uλx, λlx} + R{[rλ]} and hence by (2.12), (b) is valid. Note that

for and p, q, A ∈ R

pr(u+ u2A, qλ) = c0(A, p, q, λ)λl +
k+1∑
i=1

ci(A, p, q, λ)u
i + ck+2(A, p, q, u, λ)uk+2,

where

c0(A, p, q, λ) = pqlb0(qλ),

cj(A, p, q, λ) = p

[j/2]∑
i=0

(
j − i
i

)
Aibj−i(qλ), j = 1, 2, · · · , k + 1.

By the Implicit Function Theorem there exist smooth germs A, p, q : (R, 0) → R such

that

c0(A(λ), p(λ), q(λ), λ) = ε, ck(A(λ), p(λ), q(λ), λ) = δ, ck+1(A(λ), p(λ), q(λ), λ) = 0,

where ε = sgn b0(0) and δ = sgn bk(0). Denote ai(λ) = ci(A(λ), p(λ), q(λ), λ) for 1 ≤ i < k

and ak+2(u, λ) = ck+2(A(λ), p(λ), q(λ), u, λ). Hence

p(λ)r(u+ u2A(λ), q(λ)λ) = ελl +
k−1∑
i=1

ai(λ)u
i + δuk + ak+2(u, λ)u

k+2. (3.3)

Lemma 3.2. Let r ∈ Eu,λ.
(a) If r0,0 = · · · rk−1,0 = 0 and rk,0 · r0,1 ̸= 0 for some k ≥ 1, then [r] is O(n)-equivalent

to (ελ+ δuk)x, where ε =sgn r0,1 and δ =sgn rk,0.

(b) If r0,0 = · · · r0,l−1 = 0 and r1,0 · r0,l ̸= 0 for some l ≥ 1, then [r] is O(n)-equivalent

to (ελl + δu)x, where ε =sgn r0,l and δ =sgn r1,0.

(c) If r = ελl + δuk,where ε, δ = ±1, then codimO(n)[r] = kl − 1 and [r] has a universal

O(n)-unfolding in one of the following forms:

(c.1)
(
ελl + δuk +

l−2∑
i=0

αiλ
i +

k−1∑
i=1

l−1∑
j=0

βi,ju
iλj

)
x (k > 1, l > 1),

(c.2)
(
ελl + δu+

l−2∑
i=0

λi
)
x (k = 1, l > 1),

(c.3)
(
ελ+ δuk +

k−1∑
i=1

αiu
i
)
x (k > 1, l = 1),

(c.4) (ελ+ δu)x (k = l = 1),

where αi, βi,j are unfolding parameters.

Proof. By (2.9) and (2.10), (a) and (b) can be proved with an argument similar to that

for Z2 cases in [2]. By (2.12) a simple calculation shows that

T ((ελl + δuk)x,O(n)) = Eu,λ{λlx, ukx}+ R{λl−1x}.

If k > 1 and l > 1, then {uiλjx|1 ≤ i < k, 0 ≤ j < l} ∪ {λjx|0 ≤ j < l− 1} form a basis for

subspace complement to T ((ελl+δuk)x,O(n)), By the Versal Unfolding Theorem (Theorem

2.3), (ελl+ δuk)x is of O(n)-codimension kl−1 and (c.1) gives a universal unfolding. Other

cases can be similarly proved.

Lemma 3.3. If r ∈ Eu,λ satisfies r0,0 = r1,0 = r0,1 = · · · = r0,l−1 = 0 and r2,0 · r0,l ̸= 0

for some l ≥ 2 and codimO(n)[r] ≤ 4, then [r] is O(n)-equivalent to one of normal forms
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(6),(8),(9),(10),(14),(15) in Table 3.1

Proof. This lemma follows by an argument similar to that for Z2 cases in [2].

Lemma 3.4. If r ∈ Eu,λ satisfies r0,0 = r1,0 = r2,0 = r0,1 = · · · = r0,l−1 = 0 and

r3,0 · r0,l ̸= 0 for some l ≥ 2 and codimO(n)[r] ≤ 4, then [r] is O(n)-equivalent to one of

normal forms (11),(16),(17) in Table 3.1

Proof. By Lemma 3.1, r can be written as

r = ελl + a1(λ)λ
pu+ a2(λ)λ

qu2 + δu3 + a5(u, λ)u
5,

where p, q ≥ 1, and ε, δ = ±1. By the assumption that codimO(n)[r] ≤ 4 we have l ≤ 3. If

p, q ≥ l, then

λpux, λqu2x, u5x ∈ Mu,λTDs((ελl + δu3)x,O(n))

and hence by Theorem 2.1 and Theorem 2.2 (b), [r] is equivalent to (ελl+δu3)x. By Lemma

3.2, codimO(n)[r] = 3l − 1 ≥ 5, which contradicts the assumption that codimO(n)[r] ≤ 4.

Therefore we have p < l or q < l.

If l = 2, p = 1, q ≥ 1, it can be proved similarly as its counterpart in [2] that [r] is

equivalent to (ελ2 + σλu + δu3)x, which is of O(n)-codimension three and has a universal

unfolding of the form

(ελ2 + σλu+ δu3 + α1 + α2λ+ α3u
2)x.

If l = 2, p > 1, q = 1, let h = (ελ2 + α2(0)λu
2 + δu3)x. Then

TDs(h,O(n)) = Eu,λ{(δu3 − 2ελ2)x, (3ελ2 + a2(0)λu)x}

and

2ε

δ
uλ2x ≡ u4x ≡ −2a2(0)

3δ
u3λx ≡ 4(a2(0))

2

9
u2λ2x, modMu,λTDs(h,O(n)).

It follows that uλ2x ∈ Mu,λTDs(h,O(n)) and hence u2λ2x, u4x ∈ Mu,λTDs(h,O(n)).

Therefore [r]−h ∈ ItrDsMu,λTDs(h,O(n)) and by Theorem 2.2 [r] is equivalent to h. Since

TDs(h,O(n)) = Eu,λ{u3x, u2λx, λ2x} is independent of a2(0) which is nonzero, by Theorem

2.2 (a), h is equivalent to (ελ2+sgn a2(0)λu
2 + δu3)x. An easy calculation shows that

x, ux, λx, uλx span a complementary space to T (h,O(n)) and this shows that codimO(n)h =

4.

If l = 3, p = 1, q ≥ 1, it can be proved similarly that [r] is equivalent to (ελ3+σuλ+δu3)x,

which is of O(n)-codimension four and has a universal unfolding of the form

(ελ3 + σλu+ δu3 + α1 + α2λ+ α3λ
2 + α4u

2)x.

If l = 3, p > 1, q ≥ 1, similar argument as in the proof of Lemma 3.1(b) shows

T ([r],O(n)) ⊂ Eu,λ{u3x, u2λx, uλ2x, λ3x}+ R{rλx}

and hence codimO(n)[r] ≥ 5.

Lemma 3.5. If r ∈ Eu,λ satifies r0,0 = r1,0 = r2,0 = r3,0 = r0,1 = · · · = r0,l−1 = 0 and

r4,0 · r0,l ̸= 0 for some l ≥ 2 and codimO(n)[r] ≤ 4, then [r] is of O(n)-codimension four and

O(n)-equivalent to (ελ2 + σλu+ δu4)x which has a universal unfolding as

(ελ2 + σλu+ δu4 + α1 + α2u+ α3u
2 + α4u

3)x.
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Proof. As in Lemma 3.1 r can be written as

r = ελl + a1(λ)λ
pu+ a2(λ)λ

qu2 + a3(λ)λ
mu3 + δu4 + a5(u, λ)u

5,

where ε, δ = ±1 and p, q,m ≥ 1. By the restriction on the O(n)-codimension of [r] it follows

that l = 2. If p ≥ 2, then

T ([r],O(n)) ⊂ Eu,λ{u4x, u2λx, λ2x}+ R{rλx}

and hence codimO(n)[r] ≥ 5, which is a contradiction to the assumption that codimO(n)[r] ≤
4. Therefore p = 1 and a similar argument as in the proof of Lemma 3.4 shows that [r]

is equivalent to (ελ2 + sgn a1(0)λu + δu4)x, which is of O(n)-codimension four and has a

universal unfolding of the form h+ (α1 + α2u+ α3u
2 + α4u

3)x.

Proof of Theorem 3.1. By Lemma 3.1, [r] can be assumed to take the form

r = ελl + a1(λ)u+ · · ·+ ak−1(λ)u
k−1 + δuk + ak+2(u, λ)u

k+2,

where a1(0) = · · · = ak−1(0) = 0, ε, δ = ±1 and k + l ≤ 6.

If k = 1 or l = 1, then [r] satisfies the condition in Lemma 3.2 and hence is equivalent to

one of the normal forms (1),(2),(3),(4),(5),(7),(12),(13),(19).

If k = 2 and 1 < l ≤ 4, then [r] satisfies the condition in Lemma 3.3 and hence [r] is

equivalent to one of the normal forms (6),(8),(9),(10),(14),(15).

If k = 3 and 1 < l ≤ 3, then [r] satisfies the condition Lemma 3.4 and [r] is equivalent to

one of the normal forms (11),(16),(17).

If k = 4 and l = 2, then [r] satisfies the condition in Lemma 3.5 and [r] is equivalent to

nomal form (18).

§4. Recognition Problem

In this section we focus on characterizing the group orbit D(O(n)) · g for a given O(n)-

equivariant germ g, i.e., solving the recognition problem for g. We prove

Theorem 4.1. Let g ≡ [r] ∈
→
E x,λ(O(n)), where r ∈ Eu,λ satisfies r(0, 0) = 0. Then g is

O(n)-equivalent to one of the normal forms listed in Theorem 3.1 if and only if r satisfies

the corresponding conditions in Table 4.1

According to [5], D(O(n)) can be expressed as a product of the unipotent subgroup

U(O(n)) and the scaling subgroup S(O(n)) (see [5] for their exact definitions):

D(O(n)) = U(O(n)) · S(O(n)).

S(O(n)) consists of O(n)-equivalences (S,X,Λ), where S,X,Λ are scalar maps and hence

S(O(n))-orbits can be easily characterized and hence recognition problem concentrates on

discribing U(O(n))-orbits. Let

M(g,U) = {h ∈
→
E x,λ(O(n))|g + h ∈ U(O(n)) · g}.

Then U(O(n)) · g = g +M(g,U). Then main result in [5] can be stated as

Theorem 4.2.[5] Let g ∈
→
E x,λ(O(n)) be of finite O(n)-codimension. Then

(a) ItrUM(g,U) = ItrUTU(g,O(n));

(b) M(g,U) is U-intrinsic if and only if TU(g,O(n)) is.
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Table 4.1. Defining Conditions and Non-Degeneracy Conditions

No. Defining Conditions Non-Degeneracy Conditions

(1) r0,0 = 0 sgn r1,0 = δ, sgn r0,1 = ε
(2) r0,0 = r0,1 = 0 sgn r1,0 = δ, sgn r0,2 = ε
(3) r0,0 = r1,0 = 0 sgn r2,0 = δ, sgn r0,1 = ε
(4) r0,0 = r0,1 = r0,2 = 0 sgn r1,0 = δ, sgn r0,3 = ε
(5) r0,0 = r1,0 = r2,0 = 0 sgn r3,0 = δ, sgn r1,0 = ε
(6) r0,0 = r1,0 = r0,1 = r1,1 = 0 sgn r2,0 = δ, sgn r0,2 = ε
(7) r0,0 = r0,1 = r0,2 = r0,3 = 0 sgn r1,0 = δ, sgn r0,4 = ε
(8) r0,0 = r1,0 = r0,1 = 0 sgn r2,0 = δ, sgn r0,2 = ε,

r1,1[r
2
1,1 − r2,0r0,2] ̸= 0.

(9) r0,0 = r1,0 = r0,1 = 0 sgn r2,0 = δ, sgn r0,2 = δ

r21,1 − r2,0r0,2 = 0 sgn
(
r3,0 − 3r2,1r1,1

r0,2
+

3r1,2r
2
1,1

r20,2
− r0,3r

3
1,1

r30,2

)
= δσ

(10) r0,0 = r1,0 = r0,1 = r0,2 = 0 sgn r2,0 = δ, sgn r1,1 = σ, sgn r0,3 = ε
(11) r0,0 = r1,0 = r2,0 = r0,1 = 0 sgn r3,0 = δ, sgn r1,1 = σ, sgn r0,2 = ε
(12) r0,0 = r1,0 = r2,0 = r3,0 = 0 sgn r4,0 = δ, sgn r0,1 = ε
(13) r0,0 = r0,1 = r0,2 = r0,3 = r0,4 = 0 sgn r1,0 = δ, sgn r0,5 = ε
(14) r0,0 = r1,0 = r0,1 = r0,2 = r0,3 = 0 sgn r2,0 = δ, sgn r1,1 = σ sgn r0,4 = ε
(15) r0,0 = r1,0 = r0,1 = r0,2 = r1,1 = 0 sgn r2,0 = δ, sgn r1,2 = σ sgn r0,3 = ε
(16) r0,0 = r1,0 = r2,0 = r0,1 = r0,2 = 0 sgn r3,0 = δ, sgn r1,1 = σ sgn r0,3 = ε
(17) r0,0 = r1,0 = r2,0 = r0,1 = r1,1 = 0 sgn r3,0 = δ, sgn r2,1 = σ sgn r0,2 = ε
(18) r0,0 = r1,0 = r2,0 = r3,0 = r0,1 = 0 sgn r4,0 = δ, sgn r1,1 = σ sgn r0,2 = ε
(19) r0,0 = r1,0 = r2,0 = r3,0 = r4,0 = 0 sgn r5,0 = δ, sgn r0,1 = ε

Here TU(g,O(n)) is the tangent space to the group orbit U(O(n)) · g and a subspace V

of
→
E x,λ(O(n)) is said to be U-intrinsic if it coincides with ItrUV by which we denote the

maximal subsqace of V consisting of entire U(O(n))-orbits. By Theorem 4.2 the key steps

in solving the recognition problem are to calculate the tangent space TU(g,O(n)) and to

check whether it is U-intrinsic.
Proof of Theorem 4.1. Let Us(O(n)) = Ds(O(n))∩U(O(n)) and let TUs(g,O(n)) be

the tangent spaces to the group orbits Us(O(n)) · g. By the results in [5] we have

TUs([r],O(n)) = Eu,λ{[ur], [λr], [u2ru], [uλru]}, (4.1)

TU([r],O(n)) = Eu,λ{[ur], [λr], [u2ru], [uλru]}+ Eλ{[λ2rλ}, (4.2)

Table 4.2. Tangent Spaces to U(O(n))-Orbits

Normal Form h TU(h,O(n)) No. in Table 3.1

and Table 4.1
(δuk + ελl)x Eu,λ{uk+1x, ukλx, uλlx, λl+1x} (1–7), (12), (13), (19)
(δu2 + 2buλ+ ελ2)x M3

u,λ{x} (8)

b ̸= 0, b2 ̸= εδ
(δu2 + 2σu(λ+ λ2) + δλ2)x M4

u,λ{x}+ R{u2(δu+ σλ)x,

uλ(δu+ σλ)x, λ2(δu+ σλ)x} (9)
(δuk + σuλ++ελl)x, k, l ≥ 2 Eu,λ{uk+1x, u2λx, uλ2x, λl+1x} (10), (11), (14), (16), (18)
(δu3 + σu2λ++ελ2)x M4

u,λ{x}+ R{uλ2x, λ3x} (17)

(δu2 + σuλ2 ++ελ3)x M4
u,λ{x}+ R{u3x, u2λx} (15)
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We list in Table 4.2 the tangent spaces to the U(O(n))-orbits of the normal forms as

the main data for solving recognition problems and prove two cases as examples. By [5,

Theorem 5.5] it can be checked that all these tangent spaces are U-intrinsic.
(i) (δuk + ελl)x

f ∈ S(O(n)) · (δuk + ελl)x iff f(x, λ) = (δA2k+1uk + εABlλl)x for some A,B > 0. Then

from (4.1) and (4.2)

TU(f,O(n)) = TUs(f,O(n)) = Eu,λ{uk+1x, ukλx, uλlx, λl+1x}.

By Theorem 2.1 it is U-intrinsic and hence

M(f,O(n)) = TU(f,O(n)),

g ∈ U(O(n)) · f iff g ∈ f + Eu,λ{uk+1x, ukλx, uλlx, λl+1x}.

The necessary and sufficient condition for g = [r] being equivalent to (δuk + ελl)x is

ri,j = 0, 0 ≤ i < k, 0 ≤ j < l; sgn rk,0 = δ; sgn r0,l = ε. (4.3)

(ii) (δuk + σuλ+ ελl)x, k, l ≥ 2

f ∈ S(O(n)) · (δuk+σuλ+ελl)x iff f(x, λ) = (δA2k+1u4+σA3Buλ+εABlλ2)x for some

A,B > 0. Then

TUs(f,O(n)) = Eu,λ{P1, P2, P3, P4},

where
P1

P2

P3

P4

 =


kδA2k+1 σA3B 0 0

0 kδA2k+1uk−2 σA3B 0
(k − 1)δA2k+1 0 −εABlλl−2 0

0 (k − 1)δA2k+1uk−2 0 −εABl




uk+1x
u2λx
uλ2x
λl+1x

 .

Since the matrix in the above equation is invertible, we get

TU(f,O(n)) = TUs(f,O(n)) = Eu,λ{uk+1x, u2λx, uλ2x, λl+1x}.

By Theorem 2.1 it is U-intrinsic. Hence M(f,O(n)) = TU(f,O(n)) and

g ∈ U(O(n)) · f iff g ∈ f + Eu,λ{uk+1x, u2λx, uλ2x, λl+1x}.

The necessary and sufficient condition for g = [r] being equivalent to (δuk + σuλ +

ελl)x, k, l ≥ 2, is

r0,0 = r1,0 = · · · = rk−1,0 = r0,1 = · · · = r0,l−1 = 0;

sgn rk,0 = δ; sgn r1,1 = σ; sgn r0,1 = ε. (4.4)
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