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THE GROWTH THEOREM FOR STARLIKE MAPPINGS

ON BOUNDED STARLIKE CIRCULAR DOMAINS**

Liu Taishun* Ren Guangbin*

Abstract

The authors obtain the growth and covering theorem for the class of normalized biholomor-
phic starlike mappings on bounded starlike circular domains.

This type of domain discussed is rather general, since the domain must be starlike if there

exists a normalized biholomorphic starlike mapping on it. In the unit disc, it is just the famous
growth and covering theorem for univalent functions.

This theorem successfully realizes the initial idea of H. Cartan about how to extend geometric
function theory from one variable to several complex variables.
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§1. Introduction

On the geometric function theory of one complex variable, the following growth and
1
4 -covering theorem is well known (see [2]).

Theorem A. For each normalized univalent function f on the unit disc D ⊂ C,

|z|
(1 + |z|)2

≤ |f(z)| ≤ |z|
(1− |z|)2

, z ∈ D.

Especially, the left-hand side of the above inequality implies f(D) ⊇ 1
4D. For each z ∈ D,

z ̸= 0, equality occurs in the above inequality if and only if f is Koebe function K(z) =
z

(1−z)2 or its rotation e−iθK(eiθz).

It is natural to extend this and other results on the geometric function theory of one

variables to several variables. But as early as fifty years ago, H. Cartan pointed out where

the difficulty lies. For example, the following is a counter-example:

f(z) =
(
z1,

z2
(1− z1)k

)
, k ∈ N.

Obviously this is a normalized biholomorphic mapping on the unit ball B2 in C2, which

indicates that the corresponding result in several complex variables fails,

Then the question arises: to extend under some suitable restrict on biholomorphic map-

pings. Hence H. Cartan suggested the study of biholomorphic starlike mappings, convex
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mappings and some other important classes of mappings in several complex variables. Along

this direction, in 1988, the first affirmative result about the growth and 1
4 -covering theorem

in several complex variables was obtained by R. W. Barnard, C. H. Fitzgerald, S. Gong[3].

They gave the growth and 1
4 -covering theorem for the class of normalized biholomorphic

starlike mappings in the unit ball Bn ⊂ Cn. After that, for the class of normalized bi-

holomorphic starlike mappings, several authors, Liu[9], Gong, Yu, Wang[5,17], Pfaltzgraff[12],

Zhang, Dong[18], Chen[1] obtained respectively the generalization on other domains such

as the bounded symmetric domains, egg domains, and the unit ball in finite dimensional

Banach spaces. See [4] for more details.

In this paper, we obtain the growth and 1
4 -covering theorem on bounded starlike circular

domains for the class of normalized biholomorphic starlike mappings, which extend all the

corresponding results mentioned above. This paper was once reported by the first author

at the Conference of Several Complex Variables of China held in Beijing in 1990.

§2. Main Theorem

Our main result is the following theorem.

Main Theorem. Suppose Ω to be a bounded starlike circular domain in Cn, its defining

function ρ(z) is a C1 function except for a lower dimensional set. If f(z) is a normalized

biholomorphic starlike mapping on Ω, then

ρ(z)

(1 + ρ(z))2
≤ ρ(f(z)) ≤ ρ(z)

(1− ρ(z))2
, (2.1)

or equivalently

|z|
(1 + ρ(z))2

≤ |f(z)| ≤ |z|
(1− ρ(z))2

. (2.2)

Especially

f(Ω) ⊃ 1

4
Ω. (2.3)

Note 2.1. (i) This kind of domain on which we discuss is rather general, in the sense that

the domain must be starlike, if there exists a normalized biholomorphic starlike mapping f

on it, such that the “contractive” mappings 1
rf(rz) are also starlike. This is simply because

the identity mapping then as the limit of 1
rf(rz) is also starlike. On the other hand it

includes the following domains as examples.

(a) any bounded symmetric domain in Cn with its standard Harish-Chandra realization

(See Lemma 3.4 in the next section for the proof).

(b) Egg domains

Bp = {z = (z1, · · · , zn) ∈ Cn : |z1|p1 + · · ·+ |zn|pn < 1}, ∀p1 > 0, · · · , pn > 0,

or more general domains{
(z, · · · , w) ∈ Cn1+···+nk : |A1z|p1 + · · ·+ |Akw|pk < 1

}
,

∀p1 > 0, · · · , pk > 0, z ∈ Cn1 , · · · , w ∈ Cnk ,

where A1, · · · , Ak are the non-singular linear transformations in Cn1 , · · · ,Cnk respectively.

(ii) Taking Ω = Bn;RI , RII , RIII , RIV (the classical domains[6]); Bp; the unit ball in

finite dimensional Banach spaces; and bounded strictly balanced domains respectively in
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the Main Theorem gives the corresponding growth and 1
4 -covering theorems in [1, 3, 9, 17,

18].

§3. Preliminaries

Definition 3.1. A domain Ω ⊆ Cn is said to be circular if eiθz ∈ Ω, whenever z ∈ Ω, θ ∈
R. A domain Ω ⊆ Cn is said to be starlike (with respect to the origin) if the line segment

joining 0 ∈ Ω and every other point in Ω lies entirely in Ω.

Definition 3.2. Let Ω be a domain containing the origin. We call a holomorphic mapping

f(z) = (f1(z), · · · , fn(z)) from Ω into Cn normalized if f(0) = 0, Jf (0) = I, where Jf is the

Jacobian of f , I is the identity matrix. If f(Ω), the graph of f , is a starlike set with respect

to the origin in Cn, we call f a starlike mapping.

The following lemmas are needed in the proof of main theorem and its note.

Lemma 3.1. Ω ⊆ Cn is a bounded starlike and circular domain if and only if there exists

a unique real continuous function ρ : Cn −→ R, called the defining function of Ω, such that

(i) ρ(z) ≥ 0, ∀z ∈ Cn; ρ(z) = 0 ⇐⇒ z = 0,

(ii) ρ(tz) = |t|ρ(z), for any t ∈ C, z ∈ Cn,

(iii) Ω = {z ∈ Cn : ρ(z) < 1}.
Note 3.1. The function ρ(z) in the lemma is just the distance function in the book of

[8], which plays an important role in the characterization of pseudoconvex domains.

Proof. If the continuous function ρ(z) satisfies (i), (ii), and (iii), then clearly Ω is a

starlike circular domain. Its boundedness is also easy to prove, since if there exists a ray

coming from the origin which completely falls in the starlike domain Ω, then for any fixed

point z0 in this ray we have from (iii) ρ(tz0) < 1, ∀t ∈ [0,+∞). But we then obtain ρ(z0) = 0

by (ii). This contradicts (i).

Conversely, if Ω is a bounded starlike and circular domain in Cn, then we define

ρ(z) = inf{c > 0 : c−1z ∈ Ω}.

Obviously ρ(z) satisfies (ii), (iii) and ρ(z) ≥ 0, ∀z ∈ Cn. If there exists a point z0 ̸= 0 such

that ρ(z0) = 0, then by (ii) and (iii), Ω includes the whole ray which comes from the origin

and through the point z0, hence Ω is unbounded. Thus (i) holds. Finally we prove that ρ(z)

is continuous. Clearly {z ∈ Cn : r < ρ(z) < R} = RΩ \ rΩ is an open set in Cn, which

implies the continuity of ρ. This completes the proof of Lemma 3.1.

Lemma 3.2. If Ω is a Harish-Chandra realization of some bounded symmetric domain,

then its defining function ρ(z) is holomorphic about z, z (except for a lower dimensional set).

Proof. From [15, Proposition 4.6], Ω = {z ∈ Cn : ||ad(Rez)|| < 1}. Here Cn is regarded

as a subset p+ of complexification of Lie algebra of Aut(Ω), || · || is the operator norm

determined by the inner product of Killing form, Rez = 1
2 (z + z) for z ∈ p+ ≡ Cn. Note

that p+ = p−, p+ ∩ p− = 0.

Denote ρ̃(z) = ||ad(Rez)||. From [15, Lemma 4.5], it is easy to check that ρ̃(z) satis-

fies Lemma 3.1 (i), (ii) and (iii). Note that the function which satisfies the condition of

Lemma 3.1 (ii) and (iii) is unique, hence ρ(z) = ρ̃(z) = ||ad(Rez)||. Since the computation

of the operator norm ||ad(Rez)|| only involves the computation of Lie algebra and of solv-
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ing characteristic polynomial to get the maximum characteristic value, we see that ρ(z) is

holomorphic about z, z except for a lower dimensional set.

Lemma 3.3. If Ω ⊆ Cn is a bounded symmetric domains, and is convex and circular,

then its defining function ρ(z) is holomorphic about z, z (except for a lower dimensional

set).

Proof. Firstly suppose Ω is a irreducible bounded symmetric domain of rank≥ 2, and

is convex and circular domain, then Ω and its Harish-Chandra imbedding are the same up

to an affine linear transformation by Main Theorem in [10]. Thus the result follows from

Lemma 3.2.

Secondly, if Ω is a irreducible bounded symmetric domain of rank 1, and is a convex and

circular domain, then Ω is exactly the common ball. The result also holds.

Note that if ρ1(z), ρ2(z) are the defining functions of Ω1,Ω2 respectively, then the defining

function of Ω1×Ω2 is ρ(z, w) = max (ρ1(z), ρ2(w)) . Thus Lemma 3.3 holds for the reducible

situation.

Finally, let us recall the well-known result in the theory of one complex variable.

Lemma 3.4. Let g be a holomorphic function on the unit disc in C. If Re g(0) = 1,

Re g(ς) ≥ 0, ∀ς ∈ D, then the following inequality holds:

1− |ς|
1 + |ς|

≤ Re g(ς) ≤ 1 + |ς|
1− |ς|

, ∀ς ∈ D.

§4. Preparatory Theorem

Now, we provide a necessary condition of starlikeness for normalized biholomorphic map-

ping, which has its own interest.

Preparatory Theorem. Suppose Ω to be a bounded starlike circular domain in Cn,

its defining function ρ(z) is a C1 function except for a lower dimensional set. If f(z) is a

normalized biholomorphic starlike mapping, then we have

Re
∂ρ

∂z
(z)J−1

f (z)f(z) ≥ 0, ∀z ∈ Ω. (4.1)

Moreover

ρ(z)
1 + ρ(z)

1− ρ(z)
≥ 2Re

∂ρ

∂z
(z)J−1

f (z)f(z) ≥ ρ(z)
1− ρ(z)

1 + ρ(z)
, ∀z ∈ Ω, (4.2)

where f(z) is denoted by a column vector and ∂ρ
∂z (z) =

(
∂ρ
∂z1

(z), · · · , ∂ρ
∂zn

(z)
)
.

Note 4.1. In the special cases, that is, in the bounded strictly balanced domains, this

result was also obtained by Chen[1, Lemma 3.2].

Proof. Now, we list some simple properties of defining function derived directly from

Lemma 3.2(ii), which will be used very often below.

2Re
∂ρ

∂z
(z)z = ρ(z), ∀ z ∈ Cn, (4.3)

2Re
∂ρ

∂z
(z0)z0 = 1, ∀ z0 ∈ ∂Ω, (4.4)

∂ρ

∂z
(λz) =

∂ρ

∂z
(z), ∀ λ ∈ [0, ∞), (4.5)

∂ρ

∂z
(eiθz) = e−iθ ∂ρ

∂z
(z), ∀ θ ∈ R. (4.6)
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The above equalities hold except for a lower dimensional set.

In the following, we fix 0 ̸= z ∈ Ω and denote z0 = z
ρ(z) . Note that z0 ∈ ∂Ω.

First we begin to prove (4.1), which will be treated in two cases.

Case 1. z0 be a non-essential boundary point[8, p.125] of Ω.

This means f(ξ), J−1
f (ξ) can be holomorphically continued to some neighbourhood

of z0, so is the mapping f−1 ((1− r)f(ξ)) for any fixed r ∈ (0, 1). Note that under

this homomorphic extension, f(z0) is defined. Clearly f−1 ((1− r)f(z0)) ∈ Ω, that is,

ρ
(
f−1((1− r)f(z0))

)
≤ 1, 0 < r < 1. By expanding in Taylor series of r, the above inequal-

ity changes into

ρ
{
z0 − J−1

f (z0)f(z0)r +O(r2)
}
≤ 1.

Furthermore

ρ(z0)− 2Re
∂ρ

∂z
(z0)J

−1
f (z0)f(z0)r +O(r2) ≤ 1.

Recall that ρ(z0) = 1, thus

Re
∂ρ

∂z
(z0)J

−1
f (z0)f(z0) ≥ 0. (4.7)

Since Ω is a circular domain, for each θ ∈ R, eiθz0 is also a non-essential boundary point

of Ω just as z0, the same argument as (4.7) gives

Re
∂ρ

∂z
(eiθz0)J

−1
f (eiθz0)f(e

iθz0) ≥ 0.. (4.8)

Denote

h(ς) = Re
∂ρ

∂z
(z0)

J−1
f (ςz0)f(ςz0)

ς
, ς ∈ D,

where D is the unit disc in C.

Recall that all ςz0 (∀ς ∈ ∂D) are nonessential boundary points of Ω, thus h(ς) is the real

part of a homomorphic function, or a harmonic function on D. By (4.6) and (4.8), h(ς) ≥ 0

on ∂D. Using the minimal value principle of harmonic function, we have h(ς) ≥ 0, ς ∈ D.

Particularly taking ς = ρ(z), by (4.5) and (4.6), we obtain Re∂ρ
∂z (z)J

−1
f (z)f(z) ≥ 0.

Case 2. z0 be a essential boundary point of Ω.

From the Theorem 3.4.5 in [8], there exists a neighbourhood of z0 in ∂Ω which consists

of essential boundary points of Ω. Now Choosing some sufficient small neighborhood of z0
on ∂Ω and joining every point in this neighbourhood with the origin, we obtain a cone-type

domain Ω̃ in Cn, which is a domain of holomorphy.

Consider the closed analytic disc in Cn:

φr,t(ς) =
f−1 ((1− r)f(tςz0))

ς
, ς ∈ D,

for any fixed t ∈ (0, 1), r ∈ [0, 1]. It is easy to observe that φr,t(∂D) ⊂⊂ Ω.

Moreover, note that for the sufficient small r,

φr,t(ς) =
f−1 ((1− r)f(tςz0))

ς
= tz0 +O(r)

is very closed to the ray tz0, the center ray of the cone-type domain Ω̃. Hence

φr,t(∂D) ⊂⊂ Ω̃, ∀t ∈ (0, 1), r ∈ [0, δ], (4.9)



406 CHIN. ANN. OF MATH. Vol.19 Ser.B

where δ is a sufficient small positive number.

Now we claim that

φr,t(D) ⊆ Ω̃, ∀t ∈ (0, 1), r ∈ [0, δ]. (4.10)

If not, we can assume that there exists a positive constant s0 < 1 such that sφr,t(D) ⊆ Ω̃

for any 1
2s0 < s < s0, while for s0 < s < 1, sφr,t(D) * Ω̃.

This means
∪

1
2 s0<s<s0

φs,r,t(D) is not relative compact in Ω̃, where φs,r,t(z) = sφr,t(z).

At the same time recalling that Ω̃ is a cone-type domain, by (4.9) we have φs,r,t(∂D) =

sφr,t(∂D) ⊂⊂ Ω̃ for 1
2s0 < s < 1. Furthermore

∪
1
2 s0<s<1

φs,r,t(∂D) ⊂⊂ Ω̃.

But on the other hand, from the property of analytic disc of holomorphic domain (see

[8, Theorem 3.3.5 (3.3.5.1)]), we immediately obtain
∪

1
2 s0<s<s0

φs,r,t(D) ⊂⊂ Ω̃, which is a

contradiction. This proves the desired claim.

By Lemma 3.1, we know that (4.10) implies

ρ

(
f−1 ((1− r)f(tςz0))

ς

)
≤ 1, ∀|ς| < 1.

Letting t −→ 1, we have ρ
(
f−1 ((1− r)f(ςz0))

)
≤ |ς|, ∀|ς| < 1. Then take ζ = ρ(z) to

acquire ρ
(
f−1 ((1− r)f(z))

)
≤ ρ(z). Namely, ρ(z) − 2Re∂ρ

∂z (z)J
−1
f (z)f(z)r + o(r2) ≤ ρ(z).

Therefore Re∂ρ
∂z (z)ρ(z)J

−1
f (z)f(z) ≥ 0. This establishes the inequality (4.1).

Secondly, we prove the furthermore inequality (4.2).

Denote

g(ς) = 2
∂ρ

∂z
(z0)

J−1
f (ςz0)f(ςz0)

ς
, ∀ς ∈ D.

From (4.5), (4.6), we know that if let ς = |ς|eiθ, then ∂ρ
∂z (ςz0) =

∂ρ
∂z (z0)e

−iθ. Therefore

g(ς) =
2∂ρ
∂z (ςz0)J

−1
f (ςz0)f(ςz0)

|ς|
.

Clearly from the normalized condition of f , (4.4), and (4.1), we know that g(ς) satisfies

the conditions of Lemma 3.4. This implies

|ς|1 + |ς|
1− |ς|

≥ 2Re
∂ρ

∂z
(ςz0)J

−1
f (ςz0)f(ςz0) ≥ |ς|1− |ς|

1 + |ς|
, ∀ς ∈ D.

Thus, set ς = ρ(z) in the above equality to obtain the desired equality (4.2).

This completes the proof of the preparatory theorem.

§5. The proof of Main Theorem

Now we can give the proof of the Main Theorem.

Proof of Main Theorem. Denote z(t) = f−1(tf(z)), t ∈ (0, 1). Geometrically this

represents a curve in the domain Ω, obtained by pulling back the straight line segment

linking the point f(z) and the origin in f(Ω) through the mapping f−1. Then it is easy to
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see that

f(z(t)) = tf(z), (5.1)

Jf−1(tf(z)) = J−1
f (z(t)), (5.2)

dz(t)

dt
=

1

t
J−1
f (z(t))f(z(t)), (5.3)

z(t) = tf(z) +O(t2). (5.4)

Obviously,

dρ(z(t))

dt
= 2Re

(
∂ρ

∂z
(z(t))

dz(t)

dt

)
. (5.5)

Thus, by (4.2), (5.3) and (5.5), we obtain at once

1

t
ρ(z(t))

1 + ρ(z(t))

1− ρ(z(t))
≥ dρ(z(t))

dt
≥ 1

t
ρ(z(t))

1− ρ(z(t))

1 + ρ(z(t))
. (5.6)

Integrate the both sides of the right inequality above to yield∫ 1

ϵ

(1 + ρ(z(t))) dρ(z(t))

ρ(z(t)) (1− ρ(z(t)))
≥

∫ 1

ϵ

dt

t
.

An easy computation gives

log
ρ(z)

(1− ρ(z))2
− log

ρ(z(ϵ))

(1− ρ(z(ϵ)))2
≥ log

1

ϵ
,

that is,

ρ(z)

(1− ρ(z))
2 ≥ ρ(z(ϵ))

(1− ρ(z(ϵ)))
2
ϵ
.

If we set ϵ −→ 0 in the above equality, then by Lemma 3.1(ii) and (5.4) we obtain the

following ρ(z)
(1−ρ(z))2 ≥ ρ(f(z)). Similarly, integrating the both sides of the left inequality in

(5.6) gives ρ(f(z)) ≥ ρ(z)
(1+ρ(z))2 .

Now, we turn to the equivalence of the inequalities (2.1) and (2.2). The method is the

same as [5].

Denote r = |z|. Obviously

dr =
1

2r

n∑
i=1

(zidzi + zidzi), dρ =

n∑
i=1

(
∂ρ

∂zi
dzi +

∂ρ

∂zi
dzi

)
.

In the standard inner product

⟨dzi, dzi⟩ = ⟨dzi; dzi⟩ = 2, ⟨dzi, dzj⟩ = 0;

⟨dzi, dzj⟩ = ⟨dzi, dzj⟩ = 0 (i ̸= j),

by (4.3), we have

⟨dρ, dr⟩ = 1

r
2Re

∂ρ

∂z
z =

ρ

r
. (5.7)

On the other hand, it is easy to check that

⟨dρ, dr⟩ = ⟨∂ρ
∂r

dr, dr⟩ = ∂ρ

∂r
. (5.8)

Combining (5.7) and (5.8) gives

∂ρ

∂r
=

ρ

r
. (5.9)
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Then integrating the both sides of the equality from f(z) to f(ϵz) for any small positive

number ϵ, we obtain

ρ(f(z))

ρ(f(ϵz))
=

|f(z)|
|f(ϵz)|

. (5.10)

We will soon see that this equality gives the equivalence of (2.1) and (2.2). In fact, assume

(2.1), then combining it with (5.10) gives

|f(ϵz)| (1− ϵρ(z))2

ϵ(1 + ρ(z))2
≤ |f(z)| ≤ |f(ϵz)| (1 + ϵρ(z))2

ϵ(1− ρ(z))2
.

Then, letting ϵ −→ 0, we obtain (2.2) since lim
ϵ→0

|f(ϵz)|
ϵ = |z| by the normalized condition of

f .

The same argument shows that (2.2) implies (2.1). This completes the proof of Main

Theorem.
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