REFINED CONNECTIVITY PROPERTIES OF ABELIAN CAYLEY GRAPHS***

LI QIAOLIANG* LI QIAO**

Abstract

Restricted edge connectivity λ' of a graph G is defined to be the minimum size |U| of a set U of edges such that G - U is disconnected and G - U contains no trivial component K_1 . The high order edge connectivity N_i , $i \ge 1$, is the number of edge cutsets of size i. To determine all N_i , $i \ge 1$, for a general graph is NP-hard. In this paper, the authors evaluated the restricted edge connectivity λ' and the high order edge connectivity N_i , $1 \le i \le \lambda' - 1$, for any connected Abelian Cayley graphs explicitly.

Keywords Abelian Cayley graph, Restricted edge connectivity, High order edge connectivity

1991 MR Subject Classification O5C40, O5C25 **Chinese Library Classification** O157.5

§1. Introduction

A graph G = (V, E) means a finite graph without loops and multiple edges with vertex set V and edge set E, the classical edge connectivity $\lambda(G)$ of G is the minimum size of a set U of edges such that G - U is disconnected, and such a set U is called a cutset of G. Note that in the above definition, absolutely no conditions or restrictions are imposed either on the components of G - U or on the set U. Thus it would seem natural to generalize the concept of edge connectivity by introducing some conditions or restrictions on the components of G - U and/or the set U.

As a generalization of classical edge connectivity, Esfahanian and Hakimi in [5] proposed the concept of restricted edge connectivity as follows:

Definition 1.1. A set U of edges of a connected graph G is called a restricted cutset (RC, in brevity) if G - U is disconnected and G - U contains no trivial component K_1 . The restricted edge connectivity $\lambda'(G)$ is the minimum size of RCs in G.

They also proved the following basic property:

Proposition 1.1. If G is a connected graph with at least four vertices and it is not a star graph $K_{1,m}($ from now on we make this assumption), then $\lambda'(G)$ is well defined and

$$\lambda(G) \le \lambda'(G) \le \xi(G),$$

Manuscript received November 24, 1996.

^{*} Department of Applied Mathematics, Shanghai Jiaotong University, Shanghai 200030, China.

Presend in Department of Mathematics, Hunan Normal University, Changsha 410082, China.

 $[\]ast\ast$ Department of Applied Mathematics, Shanghai Jiaotong University, Shanghai 200030, China

^{***}Project supported by the National Natural Science Foundation of China (No. 19671057).

where $\xi(G) = \min\{d(x) + d(y) - 2: \{x, y\} \in E(G)\}.$

Recently, motivated by the reliability analysis of communication networks, the following two concepts were proposed by Bauer, Boesch, Suffel, and Tinell^[2].

Definition 1.2. The high order edge connectivity $N_i(G)$ of a graph G is the number of cutsets of size i.

Definition 1.3. A connected graph is said to be super- λ if every cutset of size λ isolates a vertex with the minimum degree δ in G.

It is easy to see that a graph G is super λ iff $\lambda(G) = \delta(G)$ and $\lambda'(G) > \lambda(G)$. Thus the qualitative property super- λ of G is quantified by $\lambda'(G)$. By Proposition 1.1, we introduce the following concept:

Definition 1.4. A super- λ graph G is said to be optimal super- λ if $\lambda'(G) = \xi(G)$.

Now we turn to a special class of regular graphs known as Cayley graphs.

Let S be a subset generating a finite group Γ . The pair (Γ, S) determines a connected Cayley digraph Cay (Γ, S) , in which the vertices are the elements of Γ and the arcs are the pairs (g, gx) with $g \in \Gamma$ and $x \in S$. The arc (g, gx) is called an x-arc of the Cayley digraph.

If $1_{\Gamma} \notin S$ and $S = S^{-1}$ (i.e., $x \in S \Leftrightarrow x^{-1} \in S$), then $\operatorname{Cay}(\Gamma, S)$ is a loopless symmetric digraph, which is considered as a graph, the edge $\{g, gx\} = \{g, gx^{-1}\}$ is called an *x*-edge or x^{-1} -edge.

Let Z_n be the additive group of residue classes of numbers modulo n. By abuse of notation, we identify the elements of Z_n with the natural numbers $0, 1, 2, \dots, n-1$. A Cayley graph of the form $\operatorname{Cay}(Z_n, S)$ with $0 \notin S$ and S = -S is called a circulant (graph). In [3], Boesch and Wang showed that the only circulants that are not super- λ are the cycles C_n and $\operatorname{Cay}(Z_{2m}, \{2, 4, \dots, m-1, m\})$ for some odd integer m > 1. They also proved:

Theorem A. Let $H = \text{Cay}(Z_n, \{1, 2, \dots, k, n-1, n-2, \dots, n-k\}), k < n/2, and let U be a cutset of H of size i, <math>2k \leq i \leq 4k-3$, then U isolates exactly one vertex and

$$N_i(H) = \binom{nk - 2k}{i - 2k} n$$

In [10] Yang, Wang, Lee and Boesch proved that the generalized hypercube $\operatorname{Cay}(Z_r^n, \{(1, 0, \dots, 0), \dots, (0, 0, \dots, 1)\})$ is super- λ unless n = r = 2. Recently, Hamidoune and Tindell in [6] generalized both mentioned super- λ results as follows:

Theorem B. A connected Abelian Cayley graph that is not super- λ is either a cycle C_n or is isomorphic to $K_m \times K_2$ for some $m \ge 2$.

In the present work, we first prove a nice property of RCs of size λ' for any connected Abelian Cayley graphs (the key lemma). Then by the key lemma, we evaluate the restricted edge connectivity λ' and the high order edge connectivity N_i , $\lambda \leq i \leq \lambda' - 1$, for any connected Abelian Cayley graph explicitly. In particular, we show that every connected Abelian Cayley graph is optimal super- λ unless S contains exactly one element x of order 2, such that $\langle \Gamma - x \rangle \neq \Gamma$ and $|\Gamma| < 4|S| - 4$. We also prove that the conclusion of Theorem A holds for every connected Abelian Cayley graphs $\operatorname{Cay}(\Gamma, S)$ whenever S contains no order 2 elements of Γ . As a corollary, the mesh $C_n \times C_k = \operatorname{Cay}(Z_n \times Z_k, \{(0,1), (0,-1), (1,0), (-1,0)\}$ is optimal super- λ .

Throughout this paper, G denotes a (simple) graph, Γ denotes a finite group, and Cay (Γ, S) denotes the Cayley graph of a generating set S of Γ with $1_{\Gamma} \notin S$ and $S = S^{-1}$.

§2. Key Lemma

In order to state and prove the key lemma, we need some definitions and propositions.

Let G = (V, E) be a graph. For $X \subseteq V$, (X, V - X) denotes the set of edges with one end in X and the other not in X. $\delta(X)$ denotes the number of edges in (X, V - X). X is called a super fragment of G if (X, V - X) is a RC and $\delta(X) = \lambda'$, and a minimal super fragment is called a super atom.

Proposition 2.1^[9] Every connected vertex-symmetric grpaph G has edge connectivity δ , where δ is the minimum vertex degree of G.

Proposition 2.2.^[8,Exercise 6.48] $\delta_G(X \cap Y) + \delta_G(X \cup Y) \leq \delta_G(X) + \delta_G(Y)$ for any $X, Y \subseteq V(G)$.

Now we consider properties of RCs of a connected Abelian Cayley graphs.

Proposition 2.3. Let $G = \text{Cay}(\Gamma, S)$ be a connected Abelian Cayley graph with $3 \leq |S| \leq 4$. X is a super atom of G with |X| = 3. If for any $x \in S$ there is at most one x-edge in the induced subgraph G[X] of G on X, then $G[X] \neq K_3$.

Proof (By contradiction). Suppose $G[X] = K_3$. Then there exists three distinct elements x_1, x_2, x_3 in S such that $gx_1x_2 = gx_3$ for some $g \in X$. This implies

$$x_1 x_2 = x_3. \tag{(*)}$$

There are two cases:

Case 1. |S| = 4.

Subcase 1.1. S contains no element of order greater than 2. Then $G \cong Q_4$ (4-cube), which contains no induced K_3 .

Subcase 1.2. S contains one element of order at least 3. As $S = S^{-1}$, let $S = \{a, b, c, c^{-1}\}$ where o(c) (the order of c in Γ) ≥ 3 . By (*) one of the following 10 equations holds:

(1) ab = c, (2) $ab = c^{-1}$, (3) ac = b, (4) $ac = c^{-1}$, (5) $ac^{-1} = b$, (6) $ac^{-1} = c$, (7) bc = a, (7) $bc = c^{-1}$, (9) $bc^{-1} = a$, (10) $bc^{-1} = c$.

And (1), (2), (5), (7), (9) each imply that o(c) = 2 or $o(c^{-1}) = 2$, which contradicts the hypothesis. (4), (6), (8), (10) each imply that o(c) = 4, thus Cay $(\Gamma, S) \cong K_4 \times K_2$, and $\lambda'(K_4 \times K_2) = 4$. But if $G[X] = K_3$, then $\delta(X) = (4-2)3 = 6 > 4$, which contradicts the definition of X.

Subcase 1.3. S contains two elements of order at least 3. Let $S = \{a, b, a^{-1}, b^{-1}\}$ with $o(a) \ge 3$ and $o(b) \ge 3$. By (*), one of the following 8 equations holds:

(1) $ab = a^{-1}$, (2) $ab = b^{-1}$, (3) $ab^{-1} = a^{-1}$, (4) $ab^{-1} = b$, (5) $a^{-1}b = a$, (6) $a^{-1}b = b^{-1}$, (7) $a^{-1}b^{-1} = a$, (7) $a^{-1}b^{-1} = b$.

Each of them implies $\operatorname{Cay}(\Gamma, S) \cong \operatorname{Cay}(Z_n, \{1, 2, -1, -2\})$ with $n \geq 5$. If $G[X] = K_3$. Then $\lambda' = (4-2)3 = 6$. But in this case every set of edges incident with two ends of some edges of K_3 is a RC, which contradicts the fact that X is minimal.

Case 2. |S| = 3.

Subcase 2.1. S contains no element of order at least 3. Then $\operatorname{Cay}(\Gamma, S) \cong Q_3$, which contains no induced K_3 .

Subcase 2.2. S contains one element of order at least 3. Since $S = S^{-1}$, let $S = \{a, b, b^{-1}\}$ with $o(b) \ge 3$. By (*), we have $ab^{-1} = b$ or $ab = b^{-1}$, which implies $a^{-1} = a = b^2$ and

 $G \cong K_4$, hence $G[X] \neq K_3$.

By Case 1 and Case 2, Proposition 2.3 is proved.

Proposition 2.4. Let $G = \text{Cay}(\Gamma, S)$ be a connected Abelian Cayley graph, and X a super atom of G. If $|X| \ge 3$, then there exists some $x \in S$ such that the induced subgraph G[X] contains at least two x-edges.

Proof (By contradiction). Assume that for any $x \in S$ there is at most an x-edge in G[X]. Then G[X] has at most |S| edges, thus

$$\lambda' = \delta(X) = |S||X| - 2|S| = (|X| - 2)|S|.$$

If $|X| \ge 4$, then $\delta(X) \ge 2|S|$.

If |X| = 3 and $3 \le |S| \le 4$, by Proposition 2.3, $\delta(X) \ge 2(|S| - 1) + |S| - 2 > 2|S| - 2$. If |X| = 3 and |S| > 4, then G[X] has at most 3 edges, thus

$$\delta_G(X) \ge 3(|S| - 2) > 2|S| - 2.$$

All contradict Proposition 1.1 which asserts $\lambda' \leq \xi = 2|S| - 2$.

Proposition 2.5. Let $G = \text{Cay}(\Gamma, S)$ be a connected Abelian Cayley graph, X a super atom of $\text{Cay}(\Gamma, S)$ and $|X| \leq n/2$. For any $x \in S$, if there are at least two x-edges in G[X], then Xx = X.

Proof. Let Xx = X'. Since G is vertex symmetric, X' is also a super atom and $|X'| = |X| \le n/2$, $|V - (X \cap X')| \ge n/2 \ge 2$. Since there are at least two x-edges in G[X], then

 $|X \cap X^{'}| \ge 2; \ 2 \le |X \cup X^{'}| = |X| + |X^{'}| - |X \cap X^{'}| \le n - 2 \ \text{and} \ |V - (X \cup X^{'})| \ge 2.$

Thus $\delta_G(X \cap X') \ge \lambda + \delta > \lambda'$ if $G[X \cap X']$ or $G[V - (X \cap X')]$ has a trivial component K_1 ; $\delta_G(X \cap X') \ge \lambda'$ otherwise.

Similarly, $\delta_G(X \cup X') \geq \delta + \lambda > \lambda'$ if $G[V - (X \cup X')]$ has a trivial component K_1 ; $\delta_G(X \cup X') \geq \lambda'$ otherwise.

Therefore, if $G[X \cap X']$ or $G[V - (X \cap X')]$ or $G[V - (X \cup X')]$ has a trivial component K_1 , then

$$\delta_{G}(X \cap X') + \delta_{G}(X \cup X') > \lambda' + \lambda' = \delta_{G}(X) + \delta_{G}(X'),$$

which contradicts Proposition 2.2. So each of the three induced subgraphs $G[X \cap X']$ $G[V - (X \cap X')]$ and $G[V - (X \cup X')]$, has no trivial component K_1 . Hence $\delta_G(X \cup X') \ge \lambda'$ and $\delta_G(X \cap X') \ge \lambda'$. Using Proposition 2.2 again, we have

$$\lambda^{'} + \lambda^{'} \leq \delta_G(X \cap X^{'}) + \delta_G(X \cup X^{'}) \leq \delta_G(X) + \delta_G(X^{'}) = \lambda^{'} + \lambda^{'}.$$

Thus $\delta_G(X \cap X') = \lambda'$ and $\delta_G(X \cup X') = \lambda'$. Since X is minimal, we have $X \cap X' = X$, i.e., X' = X, the proposition is proved.

Proposition 2.5 can be strengthened as follows:

Proposition 2.6. Let $G = \text{Cay}(\Gamma, S)$, and X be defined as in Proposition 2.5. If for some $x \in S$ there is an x-edge in G[X], then Xx = X.

Proof. By Propositions 2.4 and 2.5, there exists some $x' \in S$ such that Xx' = X. Suppose $\{g, gx\}$ is an x-edge of G[X]. Since both gx' and gxx' are in X, the x-edge $\{gx', gx'x\}$ is also in G[X], and $\{gx', gx'x\} \neq \{g, gx\}$. By Proposition 2.3, Xx = X.

Key Lemma. Let $G = \text{Cay}(\Gamma, S)$ be a connected Abelian Cayley graph and X a super atom of G with $|X| \leq |\Gamma|/2$. If |X| = 2, then $G[X] \cong K_2$. If $|X| \geq 3$, there exists some subset $S' \subseteq S$ such that the induced subgraph G[X] is isomorphic to a connected Abelian Cayley graph of order $|X| = |\langle S' \rangle|$ with generating set $S' \subseteq S$, where $\langle S' \rangle$ denotes the subgraph of Γ generated by S'.

Proof. By the definition of RC, we know that G[X] is connected and $|X| \ge 2$. If |X| = 2, then $G[X] \cong K_2$. Now assume that $|X| \ge 3$ and, without loss of generality $1 \in X$.

Let $S' = \{x \in S : \text{there exists at least one } x\text{-edge in } G[X]\}$. Consider S' and X as subsets of Γ and let $\langle S' \rangle$ be the subgraph of Γ generated by S'. Since $1 \in X$, we have $\langle T \rangle \subseteq X$ by Proposition 2.5.

Now we prove that $X \subseteq \langle S' \rangle$. For any $g \in X$, as G[X] is connected, there is a path joining e and g which consists of a sequence of x-edges for $x \in S'$, thus $g \in \langle S' \rangle$. Since $\langle S' \rangle \subseteq X$, we have $\langle S' \rangle = X$. Therefore X is a subgroup of Γ and thus G[X] is isomorphic to a conected Abelian Cayley graph $\operatorname{Cay}(\langle S' \rangle, S')$ with $S' \subseteq S$ and $|\langle S' \rangle| = |X|$.

§3. Main results

Theorem 3.1. Let $G = Cay(\Gamma, S)$ be a connected Abelian Cayley graph. Then

(1)
$$\lambda'(G) = \begin{cases} |\Gamma|/2, & \text{if } S \text{ contains exactly one element } x \text{ of order} \\ & \text{such that } \langle S - x \rangle \neq \Gamma \text{ and } |\Gamma| \leq 4|S| - 4, \\ 2|S| - 2, & \text{otherwise.} \end{cases}$$

(2) If $G \neq K_m \times K_2$, then every cutset of size $i, |S| \leq i \leq \lambda' - 1$, isolates exactly one vertex, and

$$N_i = \left(\begin{array}{c} |E| - |S| \\ i - |S| \end{array} \right) |\Gamma|.$$

Proof. Let X be a super atom of G with $|X| \leq |\Gamma|/2$. By the key lemma, G[X] is isomorphic to K_2 or a connected Abelian Cayley graph $\operatorname{Cay}(\langle S' \rangle, S')$ with $|\langle S' \rangle| = |X|$ and $S' \subseteq S$. If $G[X] \cong K_2$, then $\lambda'(G) = \delta(X) = 2|S| - 2$. Now assume that G[X] is isomorphic to a connected Abelian Cayley graph $\operatorname{Cay}(\langle S' \rangle, S')$ of order |X|. Since G[X] is regular of degree |S'|, we have

$$\lambda' = \delta(X) = (|S| - |S'|)|X| \ge (|S| - |S'|(|S'| + 1).$$

It is easy to verify that for $1 \le |S'| \le |S| - 2$,

$$(|S| - |S'|)(|S'| + 1) \ge 2|S| - 2.$$

If every vertex of G[X] has degree |S| - 1, then G[X] is isomorphic to $\operatorname{Cay}(\langle S' \rangle, S')$ with |S'| = |S| - 1. This implies that there is some $x \in S - S'$ with o(x) = 2 and $\langle S - x \rangle \neq G$, in this case $\delta(X) = |\Gamma|/2$.

If there are at least two $x_1, x_2 \in S$ with $o(x_1) = o(x_2) = 2$ such that $\langle S - x_1 \rangle \neq \Gamma$ and $\langle S - x_2 \rangle \neq \Gamma$, then

$$|\langle S - x_1 \rangle| = |\Gamma|/2, \ |\langle S - x_2 \rangle| = |\Gamma|/2 \text{ and } \langle S - x_1 - x_2 \rangle \neq \langle S - x_1 \rangle$$

(Otherwise x_2 can be expressed as the product of elements of $S - x_1 - x_2$, this implies that $\langle S - x_2 \rangle = \Gamma$, contradicting the assumption). So $|\langle S - x_1 \rangle| = 2|\langle S - x_1 - x_2 \rangle|$. As $|\langle S - x_1 - x_2 \rangle| \ge |S| - 1$, we have $|\Gamma|/2 \ge 2|S| - 2$.

The above discussion leads to $\lambda'(G) \ge \min\{2|S|-2, |\Gamma|/2\}$ and $\lambda'(G) = |\Gamma|/2$ iff there is exactly one element $x \in S$ with o(x) = 2 and $\langle S - x \rangle \ne \Gamma$.

 $\mathcal{2}$

On the other hand, by Proposition 1.1 and the fact that if there is some $x \in S$ with o(x) = 2, and $\langle S - x \rangle \neq \Gamma$, then the set of the $|\Gamma|/2$ edges between $\langle S - x \rangle$ and $x \langle S - x \rangle$ is a RC, we have $\lambda' \leq \min \{2|S|-2, |\Gamma|/2\}$. Thus conclusion (1) is proved. The conclusion (2) follows immediately from (1) and the definition of λ' .

Corollary 3.1. A connected Abelian Cayley graph $G = \text{Cay}(\Gamma, S)$ is optimal super- λ unless it is a cycle C_n or $K_m \times K_2$ for some $m \ge 2$ or there is exactly one element $x \in S$ with o(x) = 2 such that $\langle S - x \rangle \ne \Gamma$ and $|\Gamma| \le 4|S| - 4$.

Now we consider the case when $\operatorname{Cay}(\Gamma, S)$ is a circulant, i.e., $\Gamma = Z_n$ and $0 \notin S$, S = -S. From Theorem 3.1 we have

Corollary 3.2. Let $H = \text{Cay}(Z_n, \{a_1, a_2, \dots, a_k, n - a_k, \dots, n - a_2, n - a_1\})$, with $k \ge 2$ and $a_k < n/2$, and let U be a cutset of size i with $2k \le i \le 4k - 3$. Then U isolates exactly one vertex and

$$N_i(H) = \binom{nk - 2k}{i - 2k} n.$$

A detailed report for related results of circulants see our recent work [7].

Notice that a connected Abelian Cayley graph $\operatorname{Cay}(\Gamma, S)$ is not super- λ iff $\lambda' = |S|$ and there exists at least one RC, say U, with $|U| = \lambda'$ such that $\operatorname{Cay}(\Gamma, S) - U$ is disconnected. So if $\lambda' = |S| = 2|S| - 2$ then |S| = 2, which implies $\operatorname{Cay}(\Gamma, S) \cong C_n$. $\lambda' = |S| = |\Gamma|/2$ iff there exists exactly one element x of order 2 such that $\langle S - x \rangle \neq \Gamma$ and $|\Gamma| \leq 4|S| - 4$. $|\Gamma|/2 = |S|$ iff $\operatorname{Cay}(\Gamma, S) \cong K_m \times K_2$. Thus we have:

Corollary 3.3.^[6] A connected Abelian Cayley graph that is not super- λ is either a cycle C_n or is isomorphic to $K_m \times K_2$ for some $m \ge 2$.

Corollary 3.4.^[10] The generalized hypercube $\operatorname{Cay}(Z_r^n, \{(1, 0, \dots, 0), \dots, (0, 0, \dots, 1)\}$ is optimal super- λ unless n = r = 2.

Corollary 3.5. The mesh $C_n \times C_k$ is optimal super- λ unless n = k = 2.

References

- [1] Ball, M. O., Complexity of network reliability computation, Networks, 10(1980), 153-165.
- [2] Bauer, D., Boesch, F., Suffel, C. & Tindell, R., Connectivity extremal problems and the design of reliable probabilistic networks, in The Theory and Application of Graphs, Wiley, New York, 1981, 45–54.
- [3] Boesch, F. & Wang, J., Super line connectivity properties of circulant graphs, SIAM J. Alg. Disc. Meth., 7(1986), 89–98.
- [4] Esfahanian, A. H., Generalized measure of fault tolerance with application to n-cube, IEEE Trans. Comput., 38(1989), 1586–1590.
- [5] Esfahanian, A. H. & Hakimi, S. L., On computing a conditional edge connectivity of a graph, Inform. Process. Lett., 27(1988), 195–199.
- [6] Hamidoune, Y. & Tindell, R., Vertex transitive and super line connectedness, SIAM J. Disc. Math., 3(1990), 524–530.
- [7] Li, Q. L. & Li, Q., Reliability analysis of circulant graphs, Networks, **31**(1998), 61–65.
- [8] Lovasz, L., Combinatorial problems and exercises, Northholland Publishing Company, 1979.
- [9] Mader, W., Minimale *n*-fach kantenzusammenhangende graphen, Math Ann., **191**(1971), 21–28.
- [10] Yang, C. S., Wang, J. F., Lee, J. & Boesch, F.T., Reliability properties of hypercube networks, Comput. Math. Appl., 14(1987), 541–548.