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Abstract

Restricted edge connectivity λ
′
of a graph G is defined to be the minimum size |U | of a set

U of edges such that G−U is disconnected and G−U contains no trivial component K1. The

high order edge connectivity Ni, i ≥ 1, is the number of edge cutsets of size i. To determine all
Ni, i ≥ 1, for a general graph is NP -hard. In this paper, the authors evaluated the restricted

edge connectivity λ
′
and the high order edge connectivity Ni, 1 ≤ i ≤ λ

′ −1, for any connected

Abelian Cayley graphs explicitly.
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§1. Introduction

A graph G = (V,E) means a finite graph without loops and multiple edges with vertex set

V and edge set E, the classical edge connectivity λ(G) of G is the minimum size of a set U

of edges such that G−U is disconnected, and such a set U is called a cutset of G. Note that

in the above definition, absolutely no conditions or restrictions are imposed either on the

components of G−U or on the set U. Thus it would seem natural to generalize the concept

of edge connectivity by introducing some conditions or restrictions on the components of

G− U and/or the set U.

As a generalization of classical edge connectivity, Esfahanian and Hakimi in [5] proposed

the concept of restricted edge connectivity as follows:

Definiion 1.1. A set U of edges of a connected graph G is called a restricted cutset

(RC, in brevity) if G−U is disconnected and G−U contains no trivial component K1. The

restricted edge connectivity λ
′
(G) is the minimum size of RCs in G.

They also proved the following basic property:

Proposition 1.1. If G is a connected graph with at least four vertices and it is not a

star graph K1,m( from now on we make this assumption ), then λ
′
(G) is well defined and

λ(G) ≤ λ
′
(G) ≤ ξ(G),
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where ξ(G) = min{d(x) + d(y)− 2 : {x, y} ∈ E(G)}.
Recently, motivated by the reliability analysis of communication networks, the following

two concepts were proposed by Bauer, Boesch, Suffel, and Tinell[2].

Definition 1.2. The high order edge connectivity Ni(G) of a graph G is the number of

cutsets of size i.

Definition 1.3. A connected graph is said to be super-λ if every cutset of size λ isolates

a vertex with the minimum degree δ in G.

It is easy to see that a graph G is super -λ iff λ(G) = δ(G) and λ
′
(G) > λ(G). Thus the

qualitative property super-λ of G is quantified by λ
′
(G). By Proposition 1.1, we introduce

the following concept:

Definition 1.4. A super-λ graph G is said to be optimal super-λ if λ
′
(G) = ξ(G).

Now we turn to a special class of regular graphs known as Cayley graphs.

Let S be a subset generating a finite group Γ. The pair (Γ, S) determines a connected

Cayley digraph Cay(Γ, S), in which the vertices are the elements of Γ and the arcs are the

pairs (g, gx) with g ∈ Γ and x ∈ S. The arc (g, gx) is called an x-arc of the Cayley digraph.

If 1Γ /∈ S and S = S−1 (ie., x ∈ S ⇔ x−1 ∈ S), then Cay(Γ, S) is a loopless symmetric

digraph, which is considered as a graph, the edge {g, gx} = {g, gx−1} is called an x-edge or

x−1-edge.

Let Zn be the additive group of residue classes of numbers modulo n. By abuse of notation,

we identify the elements of Zn with the natural numbers 0, 1, 2, · · · , n− 1. A Cayley graph

of the form Cay(Zn, S) with 0 /∈ S and S = −S is called a circulant (graph). In [3],

Boesch and Wang showed that the only circulants that are not super-λ are the cycles Cn

and Cay(Z2m, {2, 4, · · · ,m− 1,m}) for some odd integer m > 1. They also proved:

Theorem A. Let H = Cay(Zn, {1, 2, · · · , k, n− 1, n− 2, · · · , n− k}), k < n/2, and let U

be a cutset of H of size i, 2k ≤ i ≤ 4k − 3, then U isolates exactly one vertex and

Ni(H) =

(
nk − 2k
i− 2k

)
n.

In [10] Yang, Wang, Lee and Boesch proved that the generalized hypercube Cay(Zn
r ,

{(1, 0, · · · , 0), · · · , (0, 0, · · · , 1)}) is super-λ unless n = r = 2. Recently, Hamidoune and

Tindell in [6] generalized both mentioned super-λ results as follows:

Theorem B. A connected Abelian Cayley graph that is not super- λ is either a cycle Cn

or is isomorphic to Km ×K2 for some m ≥ 2.

In the present work, we first prove a nice property of RCs of size λ
′
for any connected

Abelian Cayley graphs (the key lemma). Then by the key lemma, we evaluate the restricted

edge connectivity λ
′
and the high order edge connectivity Ni, λ ≤ i ≤ λ

′ − 1, for any

connected Abelian Cayley graph explicitly. In particular, we show that every connected

Abelian Cayley graph is optimal super- λ unless S contains exactly one element x of order

2, such that ⟨Γ−x⟩ ̸= Γ and |Γ| < 4|S|−4. We also prove that the conclusion of Theorem A

holds for every connected Abelian Cayley graphs Cay(Γ, S) whenever S contains no order 2

elements of Γ. As a corollary, the mesh Cn×Ck = Cay(Zn×Zk, {(0, 1), (0,−1), (1, 0), (−1, 0)}
is optimal super-λ.

Throughout this paper, G denotes a (simple) graph, Γ denotes a finite group, and Cay

(Γ, S) denotes the Cayley graph of a generating set S of Γ with 1Γ /∈ S and S = S−1.
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§2. Key Lemma

In order to state and prove the key lemma, we need some definitions and propositions.

Let G = (V,E) be a graph. For X ⊆ V, (X,V −X) denotes the set of edges with one end

in X and the other not in X. δ(X) denotes the number of edges in (X,V −X). X is called

a super fragment of G if (X,V −X) is a RC and δ(X) = λ
′
, and a minimal super fragment

is called a super atom.

Proposition 2.1[9] Every connected vertex–symmetric grpaph G has edge connectivity δ,

where δ is the minimum vertex degree of G.

Proposition 2.2.[8,Exercise 6.48] δG(X∩Y )+δG(X∪Y ) ≤ δG(X)+δG(Y ) for any X,Y ⊆
V (G).

Now we consider properties of RCs of a connected Abelian Cayley graphs.

Proposition 2.3. Let G = Cay(Γ, S) be a connected Abelian Cayley graph with 3 ≤
|S| ≤ 4. X is a super atom of G with |X| = 3. If for any x ∈ S there is at most one x-edge

in the induced subgraph G[X] of G on X, then G[X] ̸= K3.

Proof (By contradiction ). Suppose G[X] = K3. Then there exists three distinct elements

x1, x2, x3 in S such that gx1x2 = gx3 for some g ∈ X. This implies

x1x2 = x3. (∗)

There are two cases:

Case 1. |S| = 4.

Subcase 1.1. S contains no element of order greater than 2. Then G ∼= Q4 (4-cube),

which contains no induced K3.

Subcase 1.2. S contains one element of order at least 3. As S = S−1, let S = {a, b, c, c−1}
where o(c)(the order of c in Γ) ≥ 3. By (∗) one of the following 10 equations holds:

(1) ab = c, (2) ab = c−1, (3) ac = b, (4) ac = c−1,

(5) ac−1 = b, (6) ac−1 = c, (7) bc = a, (7) bc = c−1,

(9) bc−1 = a, (10) bc−1 = c.

And (1), (2), (5), (7), (9) each imply that o(c) = 2 or o(c−1) = 2, which contradicts the

hypothesis. (4), (6), (8), (10) each imply that o(c) = 4, thus Cay (Γ, S) ∼= K4 × K2, and

λ
′
(K4 ×K2) = 4. But if G[X] = K3, then δ(X) = (4 − 2)3 = 6 > 4, which contradicts the

definition of X.

Subcase 1.3. S contains two elements of order at least 3. Let S = {a, b, a−1, b−1} with

o(a) ≥ 3 and o(b) ≥ 3. By (*), one of the following 8 equations holds:

(1) ab = a−1, (2) ab = b−1, (3) ab−1 = a−1, (4) ab−1 = b,

(5) a−1b = a, (6) a−1b = b−1, (7) a−1b−1 = a, (7) a−1b−1 = b.

Each of them implies Cay(Γ, S) ∼= Cay(Zn, {1, 2,−1,−2}) with n ≥ 5. If G[X] = K3.

Then λ
′
= (4− 2)3 = 6. But in this case every set of edges incident with two ends of some

edges of K3 is a RC, which contradicts the fact that X is minimal.

Case 2. |S| = 3.

Subcase 2.1. S contains no element of order at least 3. Then Cay(Γ, S) ∼= Q3, which

contains no induced K3.

Subcase 2.2. S contains one element of order at least 3. Since S = S−1, let S = {a, b, b−1}
with o(b) ≥ 3. By (∗), we have ab−1 = b or ab = b−1, which implies a−1 = a = b2 and
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G ∼= K4, hence G[X] ̸= K3.

By Case 1 and Case 2, Proposition 2.3 is proved.

Proposition 2.4. Let G = Cay(Γ, S)be a connected Abelian Cayley graph, and X a super

atom of G. If |X| ≥ 3, then there exists some x ∈ S such that the induced subgraph G[X]

contains at least two x-edges.

Proof (By contradiction). Assume that for any x ∈ S there is at most an x-edge in G[X].

Then G[X] has at most |S| edges, thus

λ
′
= δ(X) = |S||X| − 2|S| = (|X| − 2)|S|.

If |X| ≥ 4, then δ(X) ≥ 2|S|.
If |X| = 3 and 3 ≤ |S| ≤ 4, by Proposition 2.3, δ(X) ≥ 2(|S| − 1) + |S| − 2 > 2|S| − 2.

If |X| = 3 and |S| > 4, then G[X] has at most 3 edges, thus

δG(X) ≥ 3(|S| − 2) > 2|S| − 2.

All contradict Proposition 1.1 which asserts λ
′ ≤ ξ = 2|S| − 2.

Proposition 2.5. Let G = Cay(Γ, S) be a connected Abelian Cayley graph, X a super

atom of Cay(Γ, S) and |X| ≤ n/2. For any x ∈ S, if there are at least two x-edges in G[X],

then Xx = X.

Proof. Let Xx = X
′
. Since G is vertex symmetric, X

′
is also a super atom and |X ′ | =

|X| ≤ n/2, |V − (X ∩X
′
)| ≥ n/2 ≥ 2. Since there are at least two x-edges in G[X], then

|X ∩X
′
| ≥ 2; 2 ≤ |X ∪X

′
| = |X|+ |X

′
| − |X ∩X

′
| ≤ n− 2 and |V − (X ∪X

′
)| ≥ 2.

Thus δG(X ∩X
′
) ≥ λ + δ > λ

′
if G[X ∩X

′
] or G[V − (X ∩X

′
)] has a trivial component

K1; δG(X ∩X
′
) ≥ λ

′
otherwise.

Similarly, δG(X ∪ X
′
) ≥ δ + λ > λ

′
if G[V − (X ∪ X

′
)] has a trivial component K1;

δG(X ∪X
′
) ≥ λ

′
otherwise.

Therefore, if G[X ∩X
′
] or G[V − (X ∩X

′
)] or G[V − (X ∪X

′
)] has a trivial component

K1, then

δG(X ∩X
′
) + δG(X ∪X

′
) > λ

′
+ λ

′
= δG(X) + δG(X

′
),

which contradicts Proposition 2.2. So each of the three induced subgraphs G[X ∩ X
′
]

G[V − (X ∩X
′
)] and G[V − (X ∪X

′
)], has no trivial component K1. Hence δG(X ∪X

′
) ≥ λ

′

and δG(X ∩X
′
) ≥ λ

′
. Using Proposition 2.2 again, we have

λ
′
+ λ

′
≤ δG(X ∩X

′
) + δG(X ∪X

′
) ≤ δG(X) + δG(X

′
) = λ

′
+ λ

′
.

Thus δG(X ∩X
′
) = λ

′
and δG(X ∪X

′
) = λ

′
. Since X is minimal, we have X ∩X

′
= X, i.e.,

X
′
= X, the proposition is proved.

Proposition 2.5 can be strengthened as follows:

Proposition 2.6. Let G = Cay(Γ, S), and X be defined as in Proposition 2.5. If for

some x ∈ S there is an x-edge in G[X], then Xx = X.

Proof. By Propositions 2.4 and 2.5, there exists some x
′ ∈ S such thatXx

′
= X. Suppose

{g, gx} is an x-edge of G[X]. Since both gx
′
and gxx

′
are in X, the x-edge {gx′

, gx
′
x} is

also in G[X], and {gx′
, gx

′
x} ≠ {g, gx}. By Proposition 2.3, Xx = X.

Key Lemma. Let G = Cay(Γ, S) be a connected Abelian Cayley graph and X a super

atom of G with |X| ≤ |Γ|/2. If |X| = 2, then G[X] ∼= K2. If |X| ≥ 3, there exists some subset
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S
′ ⊆ S such that the induced subgraph G[X] is isomorphic to a connected Abelian Cayley

graph of order |X| = |⟨S′⟩| with generating set S
′ ⊆ S, where ⟨S′⟩ denotes the subgraph of

Γ generated by S
′
.

Proof. By the definition of RC, we know that G[X] is connected and |X| ≥ 2. If |X| = 2,

then G[X] ∼= K2. Now assume that |X| ≥ 3 and, without loss of generality 1 ∈ X.

Let S
′
= {x ∈ S : there exists at least one x-edge in G[X]}. Consider S′

and X as subsets

of Γ and let ⟨S′⟩ be the subgraph of Γ generated by S
′
. Since 1 ∈ X, we have ⟨T ⟩ ⊆ X by

Proposition 2.5.

Now we prove that X ⊆ ⟨S′⟩. For any g ∈ X, as G[X] is connected, there is a path joining

e and g which consists of a sequence of x-edges for x ∈ S
′
, thus g ∈ ⟨S′⟩. Since ⟨S′⟩ ⊆ X, we

have ⟨S′⟩ = X. Therefore X is a subgroup of Γ and thus G[X] is isomorphic to a conected

Abelian Cayley graph Cay(⟨S′⟩, S′
) with S

′ ⊆ S and |⟨S′⟩| = |X|.

§3. Main results

Theorem 3.1. Let G = Cay(Γ, S) be a connected Abelian Cayley graph. Then

(1) λ
′
(G) =


|Γ|/2, if S contains exactly one element x of order 2

such that ⟨S − x⟩ ̸= Γ and |Γ| ≤ 4|S| − 4,

2|S| − 2, otherwise.

(2) If G ̸= Km ×K2, then every cutset of size i, |S| ≤ i ≤ λ
′ − 1, isolates exactly one

vertex, and

Ni =

(
|E| − |S|
i− |S|

)
|Γ|.

Proof. Let X be a super atom of G with |X| ≤ |Γ|/2. By the key lemma, G[X] is

isomorphic to K2 or a connected Abelian Cayley graph Cay(⟨S′⟩, S′
) with |⟨S′⟩| = |X| and

S
′ ⊆ S. If G[X] ∼= K2, then λ

′
(G) = δ(X) = 2|S| − 2. Now assume that G[X] is isomorphic

to a connected Abelian Cayley graph Cay(⟨S′⟩, S′
) of order |X|. Since G[X] is regular of

degree |S′ |, we have

λ
′
= δ(X) = (|S| − |S

′
|)|X| ≥ (|S| − |S

′
|(|S

′
|+ 1).

It is easy to verify that for 1 ≤ |S′ | ≤ |S| − 2,

(|S| − |S
′
|)(|S

′
|+ 1) ≥ 2|S| − 2.

If every vertex of G[X] has degree |S| − 1, then G[X] is isomorphic to Cay(⟨S′⟩, S′
) with

|S′ | = |S| − 1. This implies that there is some x ∈ S − S
′
with o(x) = 2 and ⟨S − x⟩ ̸= G,

in this case δ(X) = |Γ|/2.
If there are at least two x1, x2 ∈ S with o(x1) = o(x2) = 2 such that ⟨S − x1⟩ ≠ Γ and

⟨S − x2⟩ ̸= Γ, then

|⟨S − x1⟩| = |Γ|/2, |⟨S − x2⟩| = |Γ|/2 and ⟨S − x1 − x2⟩ ̸= ⟨S − x1⟩

(Otherwise x2 can be expressed as the product of elements of S − x1 − x2, this implies

that ⟨S − x2⟩ = Γ, contradicting the assumption). So |⟨S − x1⟩| = 2|⟨S − x1 − x2⟩|. As

|⟨S − x1 − x2⟩| ≥ |S| − 1, we have |Γ|/2 ≥ 2|S| − 2.

The above discussion leads to λ
′
(G) ≥ min{2|S| − 2, |Γ|/2} and λ

′
(G) = |Γ|/2 iff there is

exactly one element x ∈ S with o(x) = 2 and ⟨S − x⟩ ≠ Γ.
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On the other hand, by Proposition 1.1 and the fact that if there is some x ∈ S with

o(x) = 2, and ⟨S−x⟩ ̸= Γ, then the set of the |Γ|/2 edges between ⟨S−x⟩ and x⟨S−x⟩ is a
RC, we have λ

′ ≤ min {2|S| − 2, |Γ|/2}. Thus conclusion (1) is proved. The conclusion (2)

follows immediately from (1) and the definition of λ
′
.

Corollary 3.1. A connected Abelian Cayley graph G = Cay(Γ, S) is optimal super-λ

unless it is a cycle Cn or Km ×K2 for some m ≥ 2 or there is exactly one element x ∈ S

with o(x) = 2 such that ⟨S − x⟩ ̸= Γ and |Γ| ≤ 4|S| − 4.

Now we consider the case when Cay(Γ, S) is a circulant, i.e., Γ = Zn and 0 /∈ S, S = −S.

From Theorem 3.1 we have

Corollary 3.2. Let H = Cay(Zn, {a1, a2, · · · , ak, n−ak, · · · , n−a2, n−a1}), with k ≥ 2

and ak < n/2, and let U be a cutset of size i with 2k ≤ i ≤ 4k − 3. Then U isolates exactly

one vertex and

Ni(H) =

(
nk − 2k
i− 2k

)
n.

A detailed report for related results of circulants see our recent work [7].

Notice that a connected Abelian Cayley graph Cay(Γ, S) is not super-λ iff λ
′
= |S| and

there exists at least one RC, say U, with |U | = λ
′
such that Cay(Γ, S)− U is disconnected.

So if λ
′
= |S| = 2|S| − 2 then |S| = 2, which implies Cay(Γ, S) ∼= Cn. λ

′
= |S| = |Γ|/2

iff there exists exactly one element x of order 2 such that ⟨S − x⟩ ̸= Γ and |Γ| ≤ 4|S| − 4.

|Γ|/2 = |S| iff Cay(Γ, S) ∼= Km ×K2. Thus we have:

Corollary 3.3.[6] A connected Abelian Cayley graph that is not super-λ is either a cycle

Cn or is isomorphic to Km ×K2 for some m ≥ 2.

Corollary 3.4.[10] The generalized hypercube Cay(Zn
r , {(1, 0, · · · , 0), · · · , (0, 0, · · · , 1)}

is optimal super-λ unless n = r = 2.

Corollary 3.5. The mesh Cn × Ck is optimal super-λ unless n = k = 2.
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