Chin. Ann. of Math.
19B: 4(1998),409-414.

REFINED CONNECTIVITY PROPERTIES
OF ABELIAN CAYLEY GRAPHS***

L1 QIAOLIANG* LI QIao**

Abstract

Restricted edge connectivity X ofa graph G is defined to be the minimum size |U| of a set
U of edges such that G — U is disconnected and G — U contains no trivial component Kj. The
high order edge connectivity N;, i > 1, is the number of edge cutsets of size ¢. To determine all
N;, i > 1, for a general graph is N P-hard. In this paper, the authors evaluated the restricted
edge connectivity )" and the high order edge connectivity N;, 1 < i < P 1, for any connected
Abelian Cayley graphs explicitly.
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¢1. Introduction

A graph G = (V, E) means a finite graph without loops and multiple edges with vertex set
V and edge set F, the classical edge connectivity A(G) of G is the minimum size of a set U
of edges such that G — U is disconnected, and such a set U is called a cutset of G. Note that
in the above definition, absolutely no conditions or restrictions are imposed either on the
components of G — U or on the set U. Thus it would seem natural to generalize the concept
of edge connectivity by introducing some conditions or restrictions on the components of
G — U and/or the set U.

As a generalization of classical edge connectivity, Esfahanian and Hakimi in [5] proposed
the concept of restricted edge connectivity as follows:

Definiion 1.1. A set U of edges of a connected graph G is called a restricted cutset
(RC, in brevity) if G — U is disconnected and G — U contains no trivial component Ky. The
restricted edge connectivity )\,(G) is the minimum size of RC's in G.

They also proved the following basic property:

Proposition 1.1. If G is a connected graph with at least four vertices and it is not a
star graph Ky, ( from now on we make this assumption ), then X (G) is well defined and

AG) < N(G) <€(G),
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where £(G) = min{d(z) +d(y) — 2: {z,y} € E(G)}.

Recently, motivated by the reliability analysis of communication networks, the following
two concepts were proposed by Bauer, Boesch, Suffel, and Tinelll?.

Definition 1.2. The high order edge connectivity N;(G) of a graph G is the number of
cutsets of size 1.

Definition 1.3. A connected graph is said to be super-\ if every cutset of size X isolates
a vertex with the minimum degree § in G.

It is easy to see that a graph G is super -\ iff \(G) = 6(G) and A (G) > A(G). Thus the
qualitative property super-A of G is quantified by N (G). By Proposition 1.1, we introduce
the following concept:

Definition 1.4. A super-)\ graph G is said to be optimal super-X if X (G) =&£(G).

Now we turn to a special class of regular graphs known as Cayley graphs.

Let S be a subset generating a finite group I'. The pair (T',S) determines a connected
Cayley digraph Cay(T",S), in which the vertices are the elements of I and the arcs are the
pairs (g, gx) with g € T and x € S. The arc (g, gx) is called an z-arc of the Cayley digraph.

Ifilr ¢ Sand S = S~ (e, z € S & 271 € S), then Cay(T, S) is a loopless symmetric
digraph, which is considered as a graph, the edge {g,gx} = {g, gz ™'} is called an z-edge or
x~l-edge.

Let Z,, be the additive group of residue classes of numbers modulo n. By abuse of notation,
we identify the elements of Z,, with the natural numbers 0,1,2,--- ,n — 1. A Cayley graph
of the form Cay(Z,,S) with 0 ¢ S and S = —S is called a circulant (graph). In [3],
Boesch and Wang showed that the only circulants that are not super-\ are the cycles C,
and Cay(Zam,{2,4,--- ,m — 1,m}) for some odd integer m > 1. They also proved:

Theorem A. Let H = Cay(Z,,{1,2,--- ,k,n—1,n—=2,--- ,n—k}), k <n/2, and let U
be a cutset of H of size i, 2k <1i < 4k — 3, then U isolates exactly one vertex and

nk — 2k
N;(H) = ( i ok )n

In [10] Yang, Wang, Lee and Boesch proved that the generalized hypercube Cay(Z",
{(1,0,---,0), ---, (0,0,---,1)}) is super-A unless n = r = 2. Recently, Hamidoune and
Tindell in [6] generalized both mentioned super-A results as follows:

Theorem B. A connected Abelian Cayley graph that is not super- X is either a cycle C,
or is isomorphic to K,, X Ko for some m > 2.

In the present work, we first prove a nice property of RC's of size N for any connected
Abelian Cayley graphs (the key lemma). Then by the key lemma, we evaluate the restricted
edge connectivity A and the high order edge connectivity N;, A < i < N — 1, for any
connected Abelian Cayley graph explicitly. In particular, we show that every connected
Abelian Cayley graph is optimal super- A unless S contains exactly one element z of order
2, such that (I' —xz) # I' and |I'| < 4|S| —4. We also prove that the conclusion of Theorem A
holds for every connected Abelian Cayley graphs Cay(T",.S) whenever S contains no order 2
elements of . As a corollary, the mesh C,, xC}, = Cay(Z,, x Zx,{(0,1), (0, -1), (1,0),(—1,0)}
is optimal super-\.

Throughout this paper, G denotes a (simple) graph, I' denotes a finite group, and Cay
(T', S) denotes the Cayley graph of a generating set S of I' with 1r ¢ S and S = S~
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§2. Key Lemma

In order to state and prove the key lemma, we need some definitions and propositions.

Let G = (V, E) be a graph. For X C V, (X, V — X)) denotes the set of edges with one end
in X and the other not in X. 6(X) denotes the number of edges in (X,V — X). X is called
a super fragment of G if (X,V — X) is a RC and 6(X) = X', and a minimal super fragment
is called a super atom.

Proposition 2.1 Every connected vertex—symmetric grpaph G has edge connectivity 9,
where ¢ is the minimum vertex degree of G.

Proposition 2.2.[8:Fxercise 648] §5.(X NY) 4 5(XUY) < 6¢(X) +a(Y) for any X,Y C
V(G).

Now we consider properties of RCs of a connected Abelian Cayley graphs.

Proposition 2.3. Let G = Cay(I',S) be a connected Abelian Cayley graph with 3 <
|S| < 4. X is a super atom of G with |X| = 3. If for any x € S there is at most one x-edge
in the induced subgraph G[X] of G on X, then G[X] # K.

Proof (By contradiction ). Suppose G[X]| = K3. Then there exists three distinct elements
1, %2, x3 in S such that grizrs = grs for some g € X. This implies

Tr1To9 = X3. (*)

There are two cases:

Case 1. |S| =4.

Subcase 1.1. S contains no element of order greater than 2. Then G = Q4 (4-cube),
which contains no induced Kj.

Subcase 1.2. S contains one element of order at least 3. As S = S~ let S = {a,b,c,c™'}
where o(c)(the order of ¢ in ") > 3. By (*) one of the following 10 equations holds:

(1) ab=c, (2) ab = ¢4, (3) ac=b, (4) ac = c71,

(5) ac™! = b, (6) ac™! =c, (7) be = a, (7) be = ¢ 1,

(9) be™! = a, (10) be=! =c.

And (1), (2), (5), (7), (9) each imply that o(c) = 2 or o(c™!) = 2, which contradicts the
hypothesis. (4), (6), (8), (10) each imply that o(c) = 4, thus Cay (I, S) = K4 x Ks, and
N (K4 x Ky) = 4. But if G[X] = K3, then §(X) = (4 — 2)3 = 6 > 4, which contradicts the
definition of X.

Subcase 1.3. S contains two elements of order at least 3. Let S = {a, b, a= !, b=1} with
o(a) > 3 and o(b) > 3. By (*), one of the following 8 equations holds:

(1) ab=a"1, (2) ab=b"1, (3)ab~! =a™1, (4) ab=! = b,

(5) a='b = a, (6) a=tb=b"1, (7) a= b=t =a, (7) a= b=t =b.

Each of them implies Cay(T',S) = Cay(Z,,{1,2,—1,—-2}) with n > 5. If G[X]| = K.
Then \ = (4 —2)3 = 6. But in this case every set of edges incident with two ends of some
edges of K3 is a RC, which contradicts the fact that X is minimal.

Case 2. |S|=3.

Subcase 2.1. S contains no element of order at least 3. Then Cay(T,S) = @3, which
contains no induced Kj.

Subcase 2.2. S contains one element of order at least 3. Since S = S~1, let S = {a,b,b71}
with o(b) > 3. By (x), we have ab™! = b or ab = b~!, which implies ¢! = a = b2 and
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G = Ky, hence G[X]| # K.

By Case 1 and Case 2, Proposition 2.3 is proved.

Proposition 2.4. Let G = Cay(T, S)be a connected Abelian Cayley graph, and X a super
atom of G. If | X| > 3, then there exists some x € S such that the induced subgraph G[X]
contains at least two x-edges.

Proof (By contradiction). Assume that for any = € S there is at most an z-edge in G[X].
Then G[X] has at most |S| edges, thus

N =8(X) = |S|1X] - 2IS| = (|X] = 2)|S].

If | X| > 4, then §(X) > 2|S|.
If | X| =3 and 3 < |S| < 4, by Proposition 2.3, §(X) > 2(]S| — 1) +|S| — 2 > 2|S| — 2.
If | X| = 3 and |S| > 4, then G[X] has at most 3 edges, thus

5c(X) > 3(1S| — 2) > 2|S| — 2.

All contradict Proposition 1.1 which asserts A" < € = 2|S| — 2.

Proposition 2.5. Let G = Cay(T,S) be a connected Abelian Cayley graph, X a super
atom of Cay(T', S) and |X| < n/2. For any x € S, if there are at least two x-edges in G[X],
then Xz = X.

Proof. Let Xz = X'. Since @ is vertex symmetric, X is also a super atom and |X'| =
|X|<n/2,|V—(XNX")|>n/2>2. Since there are at least two z-edges in G[X], then

IXNX|>2 2<|XUX |=|X[+|X |- |XNX|<n—2 and |V - (XUX)|>2.

Thus (X NX') > A+6 >\ if GIXNX'] or GV — (X NX")] has a trivial component
Ki; 6g(X N X/) > )\ otherwise.

Similarly, dg(X UX') > 6+ X > X if G[V — (X U X')] has a trivial component K;;
5a(X UX") > )\ otherwise.

Therefore, if GIX N X'] or G[V — (X NX")] or G[V — (X UX")] has a trivial component
K, then

Se(XNX)+666(XUX) >N 4+ X =6a(X) +6a(X),

which contradicts Proposition 2.2. So each of the three induced subgraphs G[X N X']
GV —(XNX")] and G[V — (X UX")], has no trivial component K;. Hence dg(XUX') > X\
and dg(X N X') > X\". Using Proposition 2.2 again, we have

N+A <6a(XNX)+6c(XUX) <oa(X)+6a(X) =X +X.

Thus 0g(X NX') =\ and 6g(X UX') = X". Since X is minimal, we have X N X' = X, i.e.,
X' =X , the proposition is proved.

Proposition 2.5 can be strengthened as follows:

Proposition 2.6. Let G = Cay(T,S), and X be defined as in Proposition 2.5. If for
some x € S there is an x-edge in G[X], then Xz = X.

Proof. By Propositions 2.4 and 2.5, there exists some 2 € Ssuchthat Xz' = X. Suppose
{g, gz} is an z-edge of G[X]. Since both gz and gza’ are in X, the z-edge {g:v',gx,x} is
also in G[X], and {g:c,,gxla:} #{g, gz}. By Proposition 2.3, Xz = X.

Key Lemma. Let G = Cay(T',S) be a connected Abelian Cayley graph and X a super
atom of G with | X| < |T'|/2. If | X| = 2, then G[X] & Ks. If | X| > 3, there exists some subset
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S" C S such that the induced subgraph G[X] is isomorphic to a connected Abelian Cayley
graph of order | X| = |(S')| with generating set S C S, where (S') denotes the subgraph of
' generated by S'.

Proof. By the definition of RC, we know that G[X] is connected and | X| > 2. If | X| = 2,
then G[X] = K5. Now assume that |X| > 3 and, without loss of generality 1 € X.

Let S" = {x € S : there exists at least one z-edge in G[X]}. Consider " and X as subsets
of T and let (S") be the subgraph of I' generated by S". Since 1 € X, we have (T) C X by
Proposition 2.5.

Now we prove that X C (S'). For any g € X, as G[X] is connected, there is a path joining
e and g which consists of a sequence of z-edges for z € ', thus g € (S'). Since (S') C X, we
have (S') = X. Therefore X is a subgroup of I' and thus G[X] is isomorphic to a conected
Abelian Cayley graph Cay((S'),8") with S" C S and |(S")| = | X]|.

§3. Main results

Theorem 3.1. Let G = Cay(T', S) be a connected Abelian Cayley graph. Then
IT|/2, if S contains exactly one element x of order 2
(1) X(G)= such that (S —x) #T and || < 4|S| — 4,
2|S| =2, otherwise.
(2) If G # K, x Ko, then every cutset of size i,|S| < i < N — 1, isolates ezactly one

vertex, and
_ (EI=1S]
NZ(i—|S |T].

Proof. Let X be a super atom of G with |X| < |T'|/2. By the key lemma, G[X] is
isomorphic to Ky or a connected Abelian Cayley graph Cay((S'), ") with [(S)| = |X| and
§' C 5. If G[X] = Ko, then X' (G) = §(X) = 2|S| — 2. Now assume that G[X] is isomorphic
to a connected Abelian Cayley graph Cay((S'),S") of order |X|. Since G[X] is regular of
degree |S'|, we have

N =8(X) = (S| = ISDIX| = (1] = |S'1(1S" + 1).
It is easy to verify that for 1 < [S'| < |S| — 2,
(IS1= 18NS +1) > 25| - 2.
If every vertex of G[X] has degree |S| — 1, then G[X] is isomorphic to Cay((S'),S") with
|S"| = |S| — 1. This implies that there is some z € S — S~ with o(z) = 2 and (S — z) # G,
in this case 6(X) = |T'|/2.

If there are at least two 1,22 € S with o(z1) = o(z2) = 2 such that (S — z1) # I' and
(S —x9) #T, then

(S =z =[T1/2, |(S—w2)| =IT]/2 and (S =21 —22) # (S — 1)
(Otherwise zo can be expressed as the product of elements of S — x1 — 9, this implies
that (S — z3) = T, contradicting the assumption). So [(S — z1)| = 2|(S — 21 — z2)|. As
[(S — 21 —x9)| > |S| — 1, we have |T'|/2 > 2|S| — 2.

The above discussion leads to A (G) > min{2|S| — 2, |I'|/2} and X' (G) = |I|/2 iff there is
exactly one element x € S with o(z) =2 and (S — z) #T.
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On the other hand, by Proposition 1.1 and the fact that if there is some z € S with
o(z) =2, and (S —x) # T, then the set of the |I'|/2 edges between (S — z) and z(S —x) is a
RC, we have A" < min {2|S| — 2, |T|/2}. Thus conclusion (1) is proved. The conclusion (2)
follows immediately from (1) and the definition of X',

Corollary 3.1. A connected Abelian Cayley graph G = Cay(T, S) is optimal super-\
unless it is a cycle C,, or K., x Ky for some m > 2 or there is exactly one element x € S
with o(x) = 2 such that (S —x) # T and |T'| < 4|S| — 4.

Now we consider the case when Cay(T, S) is a circulant, i.e., ' = Z, and 0 ¢ S, S = —S.
From Theorem 3.1 we have

Corollary 3.2. Let H = Cay(Z,,{a1,a2, - ,ap,n—ag, -+ ,n—ag,n—ay}), with k > 2
and ap, < n/2, and let U be a cutset of size i with 2k < i < 4k — 3. Then U isolates exactly

one vertex and
nk — 2k

A detailed report for related results of circulants see our recent work [7].

Notice that a connected Abelian Cayley graph Cay(L, S) is not super-A iff A" = |S| and
there exists at least one RC, say U, with |U| = X" such that Cay(I', S) — U is disconnected.
So if A" = |S| = 2|S| — 2 then |S| = 2, which implies Cay(T',S) = C,,. A" = |S| = |I|/2
iff there exists exactly one element x of order 2 such that (S — ) # T' and |T'| < 4]5] — 4.
IT'|/2 = |S]| iff Cay(T",S) = K,;, X K. Thus we have:

Corollary 3.3.60 A connected Abelian Cayley graph that is not super-X is either a cycle
C,, or is isomorphic to K,, x Ky for some m > 2.

Corollary 3.4.1'% The generalized hypercube Cay(Z", {(1,0, ---,0), ---, (0,0, ---, 1)}
is optimal super-A unless n =r = 2.

Corollary 3.5. The mesh C,, x Cy is optimal super-\ unless n =k = 2.
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