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Abstract

Let X be a complex nonsingular projective threefold of general type. It is shown that the
dimension of the image of X through m-canonical maps is at least two for every m > 3.
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§1. Introduction and the Main Theorem

Let X be a complex nonsingular minimal projective threefold of general type. The nature
of pluricanonical maps of X is very important to the classification theory. It is well-known
from [10] that ®|,,,x | is a birational map for m > 7. In [3], it is proved that 6-canonical
map of X is a birational map onto its image. In this paper, we mainly study the following
problem:

Problem. What is the greatest positive integer mq such that |moKx| is composed of a
pencil of surfaces for some X, i.e., dAim®|p, x,|(X) =17

Benvenistel!l proved that mg < 3. We can easily see that mg > 1 (cf. [4]). Our result in
this paper is that mg < 2.

Main Theorem Let X be a nonsingular minimal projective threefold of gemeral type.
Then dim®,, x, ((X) > 2 for m > 3.

Throughout this paper, all our arguments proceed over the the complex number field C.
Most terms and notations are standard except the following which we are in favor of:

:= — definition;

~lin — linear equivalence;

~num — numerical equivalence.

§2. Preparation

We will use the vanishing theorem in the following form.
Proposition 2.1 (Theorem 1.2 of [6]). Let X be a nonsingular complete variety, D €
Div(X) ® Q. Assume the following two conditions:
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(1) D is nef and big;
(2) the fractional part of D has the support with only normal crossings.
Then HY(X,Ox([D] + Kx) = 0 for i > 0, where [D] is the minimum integral divisor
with [D] — D > 0.
Let X be a nonsingular projective threefold. For a divisor D € Div(X), we have
x(Ox(D)) = D*/6 — Kx - D*/4+ D - (KX + ¢2)/12 + x(Ox)
by Riemann-Roch theorem. The calculation shows that
X(Ox (D)) +x(Ox(~D)) = —Kx - D*/2 + 2x(Ox) € Z,
therefore Kx - D? is an even integer, especially K3 is even.
If Kx is nef and big, then we obtain by Kawamata-Viehweg’s vanishing theorem
p(n) == h(X, Ox (nKx)) = (2n — 1)[n(n - 1)K% /12 — x(Ox)], (2.1)
for n > 2.
Let X be a nonsingular projective threefold, f : X — C be a fibration onto a nonsingular
curve C. From the spectral sequence:
EY%:= HP(C,Rf.wx) = E" := H"(X,wx),

we get by direct calculation

h*(Ox) = W' (C, fuwx) + h°(C, R fuwx), (2.2)
4(X) == 1 (Ox) = b+ h'(C. R fuwx). (2.3)

Therefore we obtain
x(Ox) = x(Or)x(Oc) + Az — Ay, (2.4)

where we set Ay := degf.wx/c and Ay := degR' f,wy,c. We can also refer to Corollary
3.2 of [9] for the above formula.

For a nonsingular threefold X with nef and big canonical divisor K x, Miyaokal'! showed
that 3¢z — ¢ is pseudo-effective, therefore we get K% < —72x(Ox) by the Riemann-Roch
equality x(Ox) = —c2 - Kx/24. In particular, x(Ox) < 0.

Taking a combination of theorems of Kawamata and Kollar, we have the following Lemma.

Lemma 2.1. Let X, C' be nonsingular projective varieties and C be a curve, f: X — C
be an algebraic fiber space. Then

(1) f« [w?};nc] is semi-positive form >1; (2) Rif*wx/c s semipositive for i > 0.

Corollary 2.1. Under the same condition as in Lemma 2.1, we have AN; > 0 fori=1,2.

¢3. Proof of the Main Theorem

It has been shown in [10] that dim®,,k |(X) > 2 for m > 4. Therefore we have to study
the case when m = 3, i.e., the 3-canonical map.
Let X be a nonsingular projective threefold with nef and big canonical divisor Kx. From
(2.1), we have
1
p(3) = h7(X,3Kx) = 5| 5K% = x(Ox)| =2 10,

therefore dim® 35 |(X) > 1.
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Now suppose that [3K x| is composed of pencils, i.e., dim® 35 |(X) = 1; we hope to derive
a contradiction. Denote ¢3 1= @3 |, W3 1= P35, (X) C PPB3)~1. Take a succession of
blow-ups with nonsingular centers f3 : X’ — X according to Hironaka such that g3 := ¢30 f3

h
is a morphism. Suppose g3 : X’ o W3 is the Stein factorization. We have the
following commutative diagram:

,  hs
X — C

| -

X/—>W3

g3
5|

X
where C is a nonsingular curve. hs : X’ — C is a fibration with general fiber F3 being a

nonsingular projective surface of general type. Denote b := g(C), the genus of C'.

Proposition 3.1 (Theorem 7 of [10]). Let X be a nonsingular projective threefold with nef
and big canonical divisor Kx. Suppose that |3Kx| is composed of pencils. Then fi(Kx)?-
F3 = 1. In this case, F3 is a nonsingular projective surface of general type. Let mg : F3 —
F3 0 be the contraction onto the minimal model, K3 a canonical divisor on F3o. Then
K3 =1 and Op,(13(Ks30)|r,) = O, (5 (Kx)|R,)-

Theorem 3.1. Let X be a nonsingular projective threefold with nef and big canonical
divisor Kx . Suppose pg(X) > 2, then dimgs(X) > 2.

Proof. Suppose |[3K x| be composed of pencils, we shall derive a contradiction.

In this case, we have |Kx| C [3Kx|. Therefore ® g | generically factors through ¢s.
Take a common modification X’ of X such that both g, := ® x| o f and g3 := ¢3 0 f are
morphisms. We have the following commutative diagram:

X — C

H L

X ——— Wy cPpr®-1
gs

H [

X' ——— Wy C Pra(X)—1

g1

/|

X
We see that g1 = sg 0 g3. Suppose g3 = s3 o h is the Stein factorization, then we see that
g1 = (s0083)0h is just a Stein factorization of g;. Therefore we see that both ® g, | and ¢3
derive the same fibration h. Take F be a general fiber of h and H; be a general hyperplane
section of W; in PP~ for 4 = 1, 3.

|3K x| is composed of pencils, so is |Kx/|. Set Kx: ~yn g5 (H1) + Z1, where Z; is the

fixed part. We naturally have gi(H1) ~pum a1 F, where

ay = degWy - deg(so) - deg(s3) > py(X) — 1.
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Note that gi(H;) can be a disjoint union of fibers at least over a nonempty open Zariski
subset of C, we have the following exact sequence:

0= Ox/(Kx + f*(Kx)) = Ox/(Kx + f*(Kx) + g1 (H1))

— P Ok (Kp, + f*(Kx)

i=1

FL)_>O

We see that each F; is of the same kind as that in Proposition 3.1. Because f*(Kx) is nef
and big, we get by Kawamata-Viehweg’s vanishing theorem that H! (X', Kx/+f*(Kx)) = 0.
We now study the divisor G := Kx/ + f*(Kx) + gi(H1) and the system |G|. We obviously
have G < 3Kx/. ®|¢||r, means P rcp, + 1 (Kx)|r, |+ -6+ Pparcy, | according to Prposition 3.1.
From the exact sequence

0— HY (X', Ky — F) — HY (X', Kx/) = HY(Kp) — -+

we see that ¢ is an absolute inclusion and therefore py(F) > 0. Therefore by the results on
surface, we see ®jzx,.| is generically finite. Therefore we see that dim® g |(X) = 3. Then
® 3 ,| is generically finite, which is a contradiction. Thus the theorem is proved.

Proposition 3.2. Let X be a nonsingular projective threefold with nef and big canonical
divisor Kx. Suppose that |3K x| is composed of pencils and that py(X) < 1. Then b =1,
pg(X) =¢q(X)=1 and h*(Ox) = 0.

Proof. We use the first commutative diagram of this section and keep the same notations
there. Because

X(Ox) =1 —q¢(X) + h*(Ox) — py(X) < —1,
we have ¢(X) > 14+ h?(Ox) + (1 — pg(X)) > 1 > 0. On the other hand, we have ¢(X) =
q(X') = b+h'(R'hgxwx~) by (2.3). From Proposition 3.1, we know that K7 = 1, where Fy
is the minimal model of F. Thus we have ¢(F') = 0 by Bombieri’s theorem in [2]. Therefore
R'hz,wx: =0 and b= q(X) > 0, which means ¢3 is actually a morphism.

For the simplicity, we have X’ = X and a fibration hs : X — C. Denote the rela-
tive dualizing sheaf by wy/c = wx ® hgwal. Also h3*[w?§’c] = hg*w?és ® wg%. Let &
be the saturated subbundle of hg*[w?}?’] which is generated by all those global sections in
HO(h3,[w$?]). Because [3K x| is composed of pencils and ¢ factors through ks, we see that
&y is a rank one vector bundle. We have the following exact sequence

0— & — ha, [w$’] = & — 0.
Note that r = rk(hs, [wS?]) = h°(3KF) > 4. We have
h' (&) > h°(&1) > degéy + (r —1)(1 —b). (3.1)

3

We also have the following sequence hg*[w??‘;’c] — & @wd™? — 0. Because h3*[u}§70] is

semipositive by Lemma 2.1, we have deg€; > 6(r — 1)(b — 1). Thus, according to (3.1), we
have

ht (&) > (&) > 5(r — 1)(b —1). (3.2)
If h' (&) > 0, then, by Clifford’s theorem,
deg& > 2h°(&) — 2 > h°(&) (3.3)
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because deg€y > 0. Because h°(Ey) — h!(Ey) = degEy —b+1, we get h'(Ey) < b—1 by (3.3).
Combining the above formulae, we obtain

5(r=1)(b—1) < h°(&1) < B (&) <b -1,

which is impossible. Thus h!(&) = h%(&) = 0 and b = 1 by (3.2). Therefore we have
q(X) = py(X) =1, B*(Ox) = 0 and x(Ox) = 1.

Theorem 3.2. Let X be a nonsingular projective threefold with nef and big canonical
dwisor Kx . Suppose py(X) < 1. Then |3Kx| can not be composed of pencils.

Proof. Suppose [3K x| is composed of pencils, we should derive a contracdiction.

From Proposition 3.1, we know that the minimal model Fyy of F' is a surface of general
type with ¢f = 1. On the other hand, p,(F) > 0. We easily obtain two cases: (1) py(F) =2
and (2) py(F) = 1.

Case 1. py(F) = 2. We first study |[2Kx|. According to (2.1), we have p(2) = 1 K% —
3x(Ox) > 4. Therefore ¢ := @3k | is a well-defined rational map. We have [2K x| C
|3K x|, then |2K x| is also composed of pencils and ¢o generically factors through ¢5. We
have the following commutative diagram:

h3
X —— C
H [
X —— W3y
@3
H [
X Wy = ¢o(X) c PP)-1

where we note that ss 2 is a well-defined map except finite points on W5. We can choose
a general hyperplane section Hy of Wy, then My := h3s3sj o(Hz) is just the moving part
of |2K x|. Because hg is a fibration, we see that |Mz| has no base points. Therefore ¢o is
actually a morphism. Note that ¢o = (s3.2 0 s3) 0 hg is just a Stein factorization of ¢o. We
set

az
2K x ~iin 05(Ha) + Zo ~in D Fi+ Za,
i=1
where F!s are fibers of hs. Because ¢3(Hs3) can be a disjoint union of fibers at least over a
nonempty Zariski open subset of W3, we can have the following exact sequence:

as
0 — Ox(Kx) = Ox(Kx + ¢3(Hz2)) = €D Or,(Kr,) — 0.
i=1
Because b = 1, we easily see az = p(2) by Riemann-Roch equality. Because h?(Ox) = 0, we
have the following surjective map:

az
H(X, Kx + ¢5(Hz)) — @) HO(F;, Kr,) — 0.
i=1
This means that @5, ¢z (m,) can generically separate distinct fibers of h3 and that

P kx+o3(H)IF = Pliy|
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which is exactly a canonical map of pencils. Therefore dim® g 44 (r1,)](X) = 2. And then
dimeo(X) > 2, which is a contradiction.

Case 2. p,(F) = 1. In this case, the above method fails to be effective. From the
exact sequence in Case 1, we have h®(X,Kx + ¢3(H2)) = 1 + a2 = 1 + p(2). Denote
G1 := Kx + ¢5(Hz). We obviously have |G| C |3Kx|. Therefore |G;] is also composed of
pencils. Using the same argument as in Case 1, we can see that ® g,| is also a morphism

1+as _ —
and that Gy = > F; + Z, where Z is the fixed part of |G1]|. Thus, from the following
i=1
relation
1+as o
Kx+¢5(Hy)=CGr=> F,+Z
i=1

we should have Kx ~ijin Fj + Z for some fiber Fj of hs. Now let Gy := Kx + F), and
G3 := 2Kx + Fx. We have |G3| C |Gs| C |3Kx|. Therefore both |G2| and |G3| are also
a

composed of pencils. On the other hand, we can write Go = > F; + Z' by a similar
i=1
argument, where F; is a general fiber of hgz for each . Using the following exact sequence

0— Ox(Kx)— Ox (KX + ZF'L) — @OE (Kr,) — 0,
im1 i—1

because h?(Ox) = 0, we see that ® g +@.— 2| can generically separate distinct fibers of hs,
s0 is ®|g,|. In what follows, we study ®|q,||r for a general fiber F' of hs.
We have the exact sequence

0— Ox(QKX + Fp — F) — Ox(Gg) — OF(QKF) — 0.

Because Kx + Fj, — F' is nef and big, we see by Kawamata-Viehweg’s vanishing theorem that
HY(X,2Kx + F, — F) = 0. Thus ®|q,|F = P2k, |, Which is a generically finite map onto
its image. Therefore we see that dim®q,|(X) = 3 and then dim¢3(X) = 3, which leads to
a contradiction.

Theorem 3.1 and Theorem 3.2 imply the main theorem.
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