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Abstract

In [21], generalized restricted Lie algebras, defined over a field F of positive characteristic p,
were introduced. In this note their cohomology, especially the so-called generalized restricted

cohomology is studies. Some reduction properties are obtained. For graded Cartan type Lie
algebras the author determines the first Lie-cohomology groups and the first generalized re-
stricted cohomology groups with the coefficients in the highest weight modules from which all

irreducible generalized restricted modules are derived.
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§0. Introduction

This paper is aimed at developing the cohomology theory of modular Lie algebras and

then determining the first cohomology groups of Cartan type Lie algebras.

As generalization of the concept of restricted Lie algebras, a generalized restricted Lie

algebra (GR Lie algebra) was introduced in [21], which is associated with a basis and a

mapping of the basis into the Lie algebra satisfying the generalized-restrictedness conditions.

Generalized restricted representations (GR representations) were then introduced, which can

be reduced to the representations of a finite-dimensional associative algebra whenever the

Lie algebra is finite-dimensional. Furthermore any irreducible GR representation of a GR Lie

algebra over an algebraically closed field coincides with a representation of the generalized

restricted enveloping algebra or of the generalized reduced enveloping algebra which is finite-

dimensional.

Any graded Cartan type Lie algebra is a GR Lie algebra associated with its standard

basis (see [21, 2.13]). Hence we can employ the idea of generalized restrictedness to study

its irreducible modules (in the situation of the graded modules, their determination was

solved mainly by G. Shen, and N. Hu).

The cohomology theory of modular Lie algebras has received considerable attention during

the past decade. Especially, for the cohomology of restricted Lie algebras, more precise

information has been obtained (see [6–9, 12]). In this paper we extend some standard results
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of the restricted Lie algebra case to the situation of GR Lie algebras, and then apply them

to determine two classes of the first cohomology groups of graded Cartan type Lie algebras.

These results here are more extensive than the corresponding ones in [4, 5]. Our discussion

appeals to the methods, developed in [8] and [9], of exploiting the theory of Frobenius

extentions (in the sense of [15]). In addition, any GR Lie algebra L uniquely corresponds

with a restricted Lie algebra P (L), called the primitive p-envelope, such that the GR L-

module category coincides with the restricted P (L)-module category (to see Proposition

2.5). Thus we establish the relationship between various cohomology groups and can transfer

the results from one to another.

In the first two sections, we will introduce some basic results about GR Lie algebras

and the Frobenius extension for GR Lie algebras. In the third section, we will generally

discuss the ordinary and generalized restricted cohomology of GR Lie algebras and obtain

the cohomology reduction theorems. Finally, as an application we will determine the first

ordinary and generalized restricted cohomology groups respectively for graded Cartan type

Lie algebras with the coefficients in the Verma modules Zps(λ) in the concluding section.

§1. Generalized Restricted Lie Algebras

Throughout this paper F always denotes a field of prime characteristic p.

1.1. Let L be a Lie algebra over F , E = (ei)i∈I an ordered basis of L and s = (si)i∈I ,

si ∈ N. If there is a mapping φs : E → L, ei 7→ eφs

i such that

adeφs

i = (adei)
psi

, ∀i ∈ I,

then L is called a generalized restricted Lie algebra (GR Lie algebra) associated with E and

φs.

If L′ is a subalgebra of L with a basis E′ ⊂ E and eφs

i ∈ L′, ∀ei ∈ E′, then L′ is said to

be a GR subalgebra of L.

Let L be a GR Lie algebra associated with {E,φs} and ρ : L → gl(V ) a representation

of L. Call ρ a generalized restricted representation (GR representation) associated with

{E,φs} if ρ satisfies the additional condition

ρ(eφs

i ) = (ρ(ei))
psi

, ∀i ∈ I.

In this case, V is called a GR L-module.

1.2. For a GR Lie algebra L with respect to {E,φs}, let U(L) be the universal enveloping

algebra of L. Put Aps(L,E) = U(L)/I(E), where I(E) is the ideal of U(L) generated by

ep
si

i − eφs

i , i ∈ I. Owing to Jacobson’s refinement of the PBW theorem (see [17, p.58]), the

monomials

e
αi1
i1

· · · eαik
ik

, i1 < i2 < · · · < ik, 0 6 αik < psik ,

constitute a basis of Aps(L,E). When L is of l dimension, Aps(L,E) has a basis of a finite

number of elements

eα = eα1 · · · eαl , 0 6 α 6 τ :=
l∑

i=1

(psi − 1)ϵi,

where ϵi = (δi1, · · · , δil) and a partial ordering on Nl is defined via

α 6 β :⇐⇒ αi 6 βi, 1 6 i 6 l.
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Put |α| :=
∑

16i6l

αi. Obviously, GR L-modules are precisely the unitary Aps(L,E)-modules.

1.3. If F is algebraically closed and L is a finite-dimensional GR Lie algebra over F , then

any irreducible representation ρ : L → gl(V ) is precisely an irreducible unitary representa-

tion of Aps(L,Eκ) for some mapping κ of E to F (called a character of E) satisfying

ρ(ei)
psi − ρ(eφs

i ) = κ(ei), ∀ei ∈ E, (1.3.1)

where Aps(L,Eκ) := U(L)/I(Eκ), I(Eκ) is the ideal of U(L) generated by {ep
si

i − eφs

i −
κ(ei) · 1

∣∣ ei ∈ E}.
An L-module V satisfying (1.3.1) is called a κ-reduced module, and Aps(L,Eκ) is called a

κ-reduced enveloping algebra. When κ is a zero mapping, ρ is exactly GR representation. In

the following, Aps(L,E) and Aps(L,Eκ) will be often simply written as A and Aκ respectively

if the context is clear.

1.4. Restricted Lie algebras are special examples of GR Lie algebras for which E may be

an arbitrary basis and φs is taken to be the si-th powers (with a fixed order) of the basis

elements of the p-mapping.

Conversely, by a Jacobson’s result (see [17, (2.3), p.71]) a GR Lie algebra associated with

E and φ1, 1 = (1, 1, · · · , 1), is definitely restricted under the unique restricted mapping

[p] : L → L with [p]
∣∣
E
= φ1.

1.5. In the rest of the section, let L be one of graded Lie algebras of Cartan type

X(m : n)(2), X ∈ {W,S,H,K} (see [23]). Then the zero-grade part L[0] is isomorphic to

gl(m), sl(m), sp(m − 1) or sp(m − 1) ⊕ FDK(xϵm) for X = W,S,H or K respectively (see

[17, Chapter 4]). Let h be the standard Cartan subalgebra of g := L[0], n
+ (resp. n−) the

sum of positive (resp. negative) root spaces of g,

N+ := n
⊕∑

i>0

L[i], B := h
⊕

N+, N− := n−
⊕∑

i<0

L[i], B− := h⊕N−.

A standard basis E = E−∪E0∪E+ was naturally given in [21] where E0 (resp. E−, E+)

is a basis of h (resp. N−, N+). The notations concerning graded Lie algebras of Cartan

type will follow [23] or [17]. Note that L0 is restricted under the p-mapping: D 7→ D[p] (see

[2]). We have the following result.

Proposition 1.5.1. Let s = (s1, · · · , sl) be an l-tuple of positive integers with si > ni,

i = 1, 2, · · · ,m. Then L is a GR Lie algebra associated with a standard basis E and φs

defined by

eφs

i =


0, ei ∈ E− ∩ L−,

ei, ei ∈ E0,

e
[p]si

i , ei ∈ E+ or E− ∩ L[0],

where D[p], for D ∈ L0 =
∑
i>0

L[i], denotes the usual p-th power of the derivation D.

Remark 1.5.1. The minimal s such that (L,E, φs) becomes a GR Lie algebra admits

si =

{
ni, 1 6 i 6 m,

1, otherwise.

1.6. As N−, h, N+ and B are GR Lie algebras associated with E−, E0, E+, E+ ∪ E0

respectively, by Jacobson’s refinement of the PBW theorem

A := Aps(L,E) = A−A0A+, B := Aps(B,E0 ∪ E+) = A0A+,
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where A0 := Aps(h, E0) and A± := Aps(N±, E±).

Let F be a perfect field. Denote by Xps(E0) the set of all mappings of E0 to F which send

ei ∈ E0 into the finite field Fpsi . Then any λ ∈ Xps(E0) can be uniquely extended to an

algebra homomorphism A0 → F (still denoted by λ). These λ constitute Alg-Hom(A0, F )

and determine all irreducible A0-modules which are 1-dimensional. Thus any λ ∈ Xps(E0)

can uniquely determine a 1-diminsional B-module Fλ on which the action of the augmen-

tation ideal of A+ is trivial. Set Zps(λ) = A ⊗B Fλ, which has a unique maximal proper

A-submodule and a unique irreducible quotient Mps(λ).

Theorem 1.6.1.[21] The assignment λ → Mps(λ) is a one-to-one correspondence between

the elements of Xps(E0) and the isomorphism classes of the irreducible A-modules.

§2. Frobenius Extensions for GR Lie
Algebras and Primitive p-Envelops

In this section, L is always assumed to be a finite-dimensional GR Lie algebra associated

with {E,φs}. For a GR subalgebra (L′, E′) of (L,E), by the argument of [7] we will know

that Aps(L,E) : Aps(L′, E′) is a Frobenius extension. At first, we give the definition of

Frobenius extensions.

2.1. Definition 2.1.1. Let A be an associative F -algebra and C a subalgebra of A. The

extension A : C is called a θ-Frobenius extension if the following two statements hold.

(i) A is a finitely generated projective (left) C-module.

(ii) There exists an (A,C)-bimodule isomorphism of A onto HomC(A, θC) where for a

(left) C-module V , θV denotes the new (left) C-module with induced action c · v = θ(c)v.

Thus there is a natural isomorphism of (left) A-modules (see [15, (18), p.91]).

θV : A⊗C V ∼= HomC(A, θV ) (2.1.1)

for any (left) C-module V .

2.2. In the Hopf algebra U(L), I(E) is obviously a coideal. In addition, the supplemen-

tation mapping ϵ satisfies the condition ϵ(I(E)) = 0, and the canonical antipode mapping

S of U(L) preserves I(E) since

S(eφs

i − e
e
si
i

i ) = −eφs

i − (−1)p
si
ep

si

i = −(eφs

i − pp
si
).

So the ideal I(E) is a Hopf ideal of U(L). According to [1, Theorem 4.21, p.174], Aps(L,E) =

U(L)/I(E) has a unique Hopf algebra structure such that the canonical projection π : U →
Aps(L,E) is a Hopf algebra morphism.

For the basis {eα = eα1
1 eα2

2 · · · eαl

l , 0 6 α 6 τ} of A := Aps(L,E), let χ be the projection

A → F along with the line Feτ . Via the Hopf algebra homomorphism π, it is not hard to

see that the comultiplication of A satisfies the identies

∆(eα) =
∑

06α′6α

(
α
α′

)
eα ⊗ eα−α′

, 0 6 α 6 τ. (2.2.1)
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Thereby for any element f of the dual algebra A#, we have

(χ#f)(eα) =
∑

06α′6α

(
α
α′

)
χ(eα

′
)f(eα−α′

)

=
∑

06α′6α

(
α
α′

)
δα′,τf(e

α−α′
)

= δα,τf(1) = χ(eα)f(1),

where δ is the Kronecker symbol. Consequently, χ is a nontrivial right integral of A# (see

[1, §3.3, p.144]). According to the theorem in [13, p.79], the finite-dimensional Hopf algebra

A is a Frobenius algebra, i.e. with the nondegenerate associative bilinear form given by

(x, y) = χ(xy).

2.3. Definition 2.3.1. Let A be a Frobenius algebra over F with nondegenerate asso-

ciative bilinear form ( , ) : A×A → F . An automorphism µ of A is called a Nakayama

automorphism if

(x, y) = (y, µ(x)), ∀x, y ∈ A.

Any derivation of L can be uniquely extended to a derivation of U(L). By

adx(eφs

i − ep
si

i ) = 0, ∀x ∈ L,

we have adx(I(E)) ⊂ I(E). Thus from [17, (4.1), p.215], it follows that in A,

[x, eα] ≡
( ∑

16i6l

αiaii(x)
)
eα +

∑
|α′|=|α|
α′ ̸=α

b(α′)eα
′
mod(A(|α|−1)),

where [x, ei] =
l∑

i=1

aij(x)ei ∈ L, and

A(|α|−1) = {eβ
∣∣ |β| 6 |α| − 1}.

It is readily seen that

χ([x, eα]) = −tr(adLx)χ(e
α), ∀x ∈ L.

Thus

χ(xeα) = χ([x, eα]) + χ(eαx) = χ(eα(x− tr(adLx) · 1)).

Let ν′(x) := x− tr(adLx) · 1. Then ν′ uniquely induces an automorphism ν of A. From the

above equalities we have

Proposition 2.3.1. For a finite-dimensional GR Lie algebra L associated with E,φs,

Aps(L,E) is a Frobenius algebra with Nakayama automorphism satisfying

ν(x) = x− tr(adLx) · 1, ∀x ∈ L.

2.4. Let L′ be a GR subalgebra of L with a basis E′ ⊂ E. Then the subalgebra

A′ := Aps(L′, E′) of A is generated by primitive elements as P (A′) ⊃ π(P (U(L′)), where

P (A) denotes the set of primitive elements for a Hopf algebra A. According to Proposition

2.3.1 and [7, (3.3), p.139], A : A′ is a free θ-Frobenius extension, where

θ(x) = ν(x) + tr(adP (A′)x) · 1, ∀x ∈ P (A′).

Combining with (2.1.1), we have
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Proposition 2.4.1. Let L′ be a GR subalgebra of L and V a GR L′-module. Then there

is a GR L-module isomorphism

A⊗A′ V ∼= HomA′(A, θV ).

2.5. For a GR Lie algebra (L,E, φs), set P (L) := P (Aps(L,E)). It is not difficult to

verify that

P (L) =
∑

06ti<si
ei∈E

Fep
ti

i

in view of the equalities (2.2.1). Note that in Aps(L,E), L (more precisely, the image of the

imbedding of L into U(L)/I(E)) is an ideal of P (L). Obviously, P (L) is a p-envelope of L,

which will be called the primitive p-envelope of L, and is of dimension
l∑

i=1

si if dimL = l.

Recall that the primitive p-envelope of a restricted Lie algebra is the Lie algebra itself.

More generally, for any GR Lie algebra, we have the following

Proposition 2.5.1. Let L be a GR Lie algebra associated with {E,φs}. Then

(i) P (L) is the unique restricted Lie algebras (up to isomorphism) such that its universal

restricted enveloping algebra is isomorphic to Aps(L,E).

(ii) The GR L-module category coincides with the restricted P (L)-module category.

Proof. As P (Aps(L,E)) ⊃ π(P (U(L))), Aps(L,E) is a primitively generated Hopf alge-

bra. According to [14, (6.11), p.246], Aps(L,E) ∼= V (P (L)), here and further V (L) denotes

the universal restricted envelope of a restricted Lie algebra L. The uniqueness also follows

from [14, (6.11)]. The second assertion follows directly from the first.

Thus we establish the relationship between GR Lie algebras and restricted Lie algebras.

And we especially obtain another description of θ via the restricted Lie algebra P (L) (see

[8, (1.5), p.155] or [9, (1.1), p.2868]), i.e. the Frobenius twist θ associated with the free

Frobenius extension V (P (L))(= A) : V (P (L′))(= A′) is induced by

θ(x) = x− tr(adP (L)/P (L′))1A′ , ∀x ∈ P (L′).

§3. Cohomology of GR Lie Algebras

3.1. Definition 3.1. Let L be a GR Lie algebra associated with {E,φs}, V a GR

L-module. Define the generalized restricted cohomology (GR cohomology) group of L with

coefficients in V by

Hn
ps(L, V ) := ExtnAps (L,E)(F, V ), ∀n ∈ N.

Owing to Proposition 2.5.1, we have the following fundamental lemma.

Lemma 3.1.1. Let L be a GR Lie algebra associated with {E,φs}. Then

H∗
ps(L, V ) = H∗

p (P (L), V ),

where H∗
p (L,−) denotes the restricted cohomology functor of a restricted Lie algebra L,

introduced first by Hochschild in [10].

3.2. According to [3, §XIII.8, p.282], the ordinary Lie cohomology groups of L with

coefficients in an L-module V coincide with Ext∗U(L)(F, V ), the corresponding cohomology

groups of the supplemented algebra (U(L), ϵ). ϵ induces a supplemention ϵ′ of A to F whose

kernel is the image A+ of U(L)+ := kerϵ.
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The canonical projection π allows us to regard any A-module as a U(L)-module. As

argumented in [10, p.561], there is a canonical imbedding homomorphism of H∗
ps(L, V ) into

H∗(L, V ) for a GR L-module V . Furthermore, in the following there is a description of

the first GR cohomology groups, whose proof is merely a modification of that of [10, (2.1),

p.563].

Proposition 3.2.1. Let V be any GR L-module. Then the canonical homomorphism

of H∗
ps(L, V ) into H∗(L, V ) maps H1

ps(L, V ) isomorphically onto that subspace of H1(L, V )

whose elements are represented by the Lie 1-cocycle f satisfying the relation

ep
si−1

i · f(ei) = f(eφs

i ), ∀ei ∈ E. (3.2.1)

Remark 3.2.1. With the aid of P (L), we give a more natural explanation of the above

proposition.

(i) As L is an ideal of P (L), we have the canonical restriction transformation Res :

H∗(P (L), V ) → H∗(L, V ). By Proposition 2.5.1, there is obviously a commutative diagram:

H∗
p (P (L), V ) −→ H∗(P (L), V )∥∥∥ y Res

H∗
ps(L, V ) −→ H∗(L, V ),

(3.2.2)

where H∗
p (P (L), V ) → H∗(P (L), V ) is the canonical imbedding homomorphism defined in

[10, p.561].

(ii) By Lemma 3.1.1, H1
ps(L, V ) = H1

p (P (L), V ). The latter, under the canonical imbed-

ding homomorphism of H∗
p (P (L), V ) into H∗(P (L), V ), is isomorphic to the subspace of

H1(P (L), V ) whose elements are represented by the Lie 1-cocycle g satisfying

xp−1 · g(x) = g(x{p}), ∀x ∈ P (L) (see [10, (2.1), p.563]). (3.2.3)

Here we denote by x{p} the p-th power of x in the associative algebra Aps(L,E) only on

the purpose of stressing its p-mapping property, but in other places, e.g. §2.5, we do not

distinguish between x{p} and xp whenever the context is clear. Note that g is linear, and

satisfies the relation

g([x, y]) = xg(y)− yg(x), ∀x, y ∈ P (L).

The condition (3.2.3) is equivalent to the following

e
pti−1(p−1)
i · g(ep

ti−1

i ) = g(ep
ti

i ), ∀ei ∈ E, ti ∈ {1, · · · , si}. (3.2.3′)

(iii) We will see that under the transformation Res, the subspace of H1(P (L), V ) with

elements represented by the Lie 1-cocycle g satisfying the relation (3.2.3) is exactly isomor-

phic to the subspace of H1(L, V ) with elements represented by the Lie 1-cocycle f satisfying

(1). In fact, fixed ei ∈ E, by induction we have

g(ep
si

i ) = e
(p−1)(psi−1+···+1)
i · g(ei) = ep

si−1
i · g(ei),

i.e. g(eφs

i ) = ep
si−1

i · g(ei). Thereby

g
∣∣
L
(eφs

i ) = ep
si−1

i · g
∣∣
L
(ei), ∀ei ∈ E.

Conversely, suppose the Lie 1-cocycle f satisfies the condition (3.2.1). Then it may be

uniquely extended to a Lie 1-cocycle g whose cohomology class belongs to H1(P (L), V ),
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such that

g(ep
ti

i ) = ep
ti−1

i · f(ei), ∀ei ∈ E, ti = 1, 2, · · · , si.

Obviously, g satisfies (3.2.3′) as well as (3.2.3). Note that under Res, the cohomology class of

g is mapped into that of g
∣∣
L
. Thereby, Proposition 3.2.1 precisely shows the commutativity

of the first cohomological diagram in (3.2.2).

3.3. Denote by Der(L, V ) the set of derivations from L to V . Let

Derps(L, V ) := {d ∈ Der(L, V )
∣∣ d(eφs

i ) = ep
si−1

i d(ei), ei ∈ E}

and

Ider(L, V ) := {d ∈ Der(L, V )
∣∣ ∃v ∈ V, s.t. d(x) = x · v, ∀x ∈ L}.

The latter is a subspace of the former as V is a GR module.

The above proposition shows that H1
ps(L, V ) = Derps(L, V )/Ider(L, V ). Especially if V

is a trivial L-module, H1
ps(L, V ) may be described as follows.

Corollary 3.3.1. For every trivial GR L-module V , there is a natural isomorphism:

H1
ps(L, V ) ∼= HomF (L/(L

(1) + ⟨Eφs⟩), V ),

where ⟨Eφs⟩ is the F -span of all eφs

i , ∀ei ∈ E.

Proof. The condition that V is a trivial module implies that Ider(L, V ) = 0. Thus

H1
ps(L, V ) ∼= Derps(L, V ). Furthermore, d(L(1) + ⟨Eφs⟩) = 0 for any d ∈ Derps(L, V );

thereby there is a linear mapping χV from Derps(L, V ) to HomF (L/(L
(1)+⟨Eφs⟩), V ) which

maps d into χV (d) such that

χV (d)x̄ := d(x), ∀x ∈ L.

Conversely, for any f ∈ HomF (L/(L
(1) + ⟨Eφs⟩), V ), let χ′

V (f)x = f(x̄) for any x ∈ L.

The triviality of V implies that χ′
V (f) belongs to Derps(L, V ). The fact that χ′

V is the

inverse of χV shows that χV is bijective. The naturality is easily checked.

The above corollory is an extension of [9, (2.7)], which is useful in §4.
3.4. In the sequel, L is assumed to be finite-dimensional. Let (L′, E′) be a GR subalgebra

of (L,E), V a GR L′-module, A′ := Aps(L′, E′), and θ as in §2. Note that A is a free (left)

A′-module. By [11, (12.3), p.164] and Proposition 2.4.1, we have the following important

reduction theorem similar to Shapiro’s Lemma for finite groups, whose variation in the

restricted Lie algebra case was obtained in [8].

Theorem 3.4.1. Hn
ps(L,A⊗A′ V ) ∼= Hn

ps(L′, θV ), n > 0.

3.5. We turn to a reduction result on the ordinary Lie cohomology with coefficients in

a GR module. Let (L′, E′) ⊂ (L,E) be a GR subalgebra with finite cobasis {ei1 , · · · , eir},
the notations θ,A and A′ are as in §2. Therefore, L = L′ + ⟨ei1 , · · · , eir ⟩, implied by the

definition of GR subalgebras. Let

zj := ep
sij

ij
− eφs

ij
⊂ C(U(L)), j = 1, 2, · · · , r,

and

O(L,L′) := algF (L
′ ∪ {z1, · · · zr}) ⊂ U(L).

Then

O(L,L′) ∼= F [z1, · · · , zr]⊗F U(L′).
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Let V be a GR L′-module. The action of A(L′) on V can be extended to O(L,L′) by letting

the polymonial algebras F [z1, · · · , zr] operate via its canonical supplementation. Further-

more, there exists a natural U(L)-module isomorphism

U(L)⊗O(L,L′) V ∼= A⊗A′ V (3.5.1)

defined by u ⊗ v 7→ π(u) ⊗ v. The verification of the above is the same as in [8, p.158].

According to Jacobson’s refinement of the PBW’s theorem, U(L) is a free O(L,L′)-module

with basis {eα : 0 6 α 6 τ}. By (3.5.1) and [8, 2.1], we have

Theorem 3.5.1. Hn(L,A⊗A′ V ) ∼=
⊕

i+j=n

Λi(L/L′)⊗F Hj(L′, θV ).

§4. Application: The Determination of the First
Cohomology Groups for Graded Cartan Type Lie Algebra

The cohomology of graded Lie algebras of Cartan type was first studied by Dzhumadil’daw.

In [5], he gave the structure of H1(W (1,n), Ut). Afterwards, based on the determination of

irreducible graded module of graded Cartan type Lie algebras (see [18–20]), Chiu, S. and

Shen, G. then determined in [4] the structures of the first cohomology groups forX = W,S,H

and small m with coefficients in a (universal) graded L-modules Ṽ0 associated to an irre-

ducible L[0]-module.

In this section, we shall apply the reduction theorems obtained in the above section to

determine the first cohomology groups H1
ps(L,Zps(λ)) and H1

ps(L,Zps(λ)) for

L = X(m : n)(2), X ∈ {W,S,H,K}.

Throughout this section, F is assumed to be algebraically closed.

4.1. Definition 4.1.1. A finite-dimensional GR Lie algebra L associated with (E,φs)

is said to be toral if L is abelian and eφs

i = ei for any ei ∈ E.

Special examples of toral GR Lie algebras are those abelian restricted Lie algebras with

non-singular p-mappings over an algebraically closed field, in the situation of which L pos-

seses a basis consisting of toral elements, i.e. with x[p] = x (see [17, (3.6), p.82]).

Let L be toral and ρ : L → gl(V ) a finite-dimensional GR representation of L. Then the

GR enveloping algebra A := Aps(L,E) is commutative. Moreover ρ(A) can be diagnolized

simultaneously because ρ(ei)
psi

= ρ(ei). Hence, A is semisimple. Consequently F , as an

A-module via the supplementation ϵ, is projective. We have Hn
ps(L, V ) = 0 for n > 0 and

any A-module V .

4.2. Call L′ ⊂ L a GR ideal if L′ is a GR subalgebra as well as an ideal. Let L′ be a GR

ideal of L and V a GR L′-module. Consider the natural action of L/L′ on H∗
ps(L′, V ).

Proposition 4.2.1. Let L′ be a GR ideal of a finite-dimensional GR Lie algebra L and

suppose L/L′ is toral. Then we have a natural isomorphism

H1
ps(L, V ) ∼= H1

ps(L′, V )L/L′

for a GR L′-module V .

Before giving the proof, we need a lemma. By the definition of GR ideals, L/L′ is also

a GR Lie algebra associated with (E
′′
, π′φ

∣∣
E′′ ), where E

′′
= E\E′, π′ is the canonical
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projection. Thus a GR L-module V admits a GR L/L′-module structure. Let

V L′
:= {v ∈ V

∣∣ L′v = 0},

which is an L submodule since L′ is an ideal.

Lemma 4.2.1. Let (L′, E′) be a GR ideal of a GR Lie algebra (L,E). If V is an injective

A-module, then V L′
is an injective A

′′
:= Aps(L/L′, E\E′)-module.

Proof. Let i : W ′ → W be an injective A
′′
-module homomorphism. Suppose f : W ′ →

V L′
is an A

′′
-module homomorphism. For our purpose, it is sufficient to find an A

′′
-module

homomorphism f̃ of W to V L′
such that the following diagram is commutative:

W ′ i� W

f
y ↙f̃

y
V L′ � V .

Notice that A
′′ ∼= A/AL′ and that an A

′′
-module (resp. an A

′′
-module homomorphism)

may be regarded as an A-module (resp. an A-module homomorphism). The condition that

V is an injective A-module implies that there is an A-module homomorphism f̃ : W → V

extending f . But

x′f̃(W ) = f̃(x′W ) = 0 for x′ ∈ L′,

so imf̃ ⊂ V L′
. Hence f̃ is an A′-module homomorphism of W to V L′

. The proof is

completed.

Proof of Proposition 4.2.1. Let L be the category of GR L-modules and L
′′

the

category of GR L/L′-modules. As HomA′(F, V ) = V L′
for any A-module V ,

G := HomA(F,−)

is a functor of L to L
′′
. Let

F := HomA′′ (F,−),

a functor of L
′′
to the abelian group category Ab. G and F are left exact, being Hom

functors. By the above lemma, G(V ) = V L′
is right F-acyclic. According to cohomology

five-term sequence (see [16, (11.2), p.304]), we have an exact sequence

0 → H1
ps(L/L′, V L′

) → H1
ps(L, V ) → H1

ps(L′, V )L/L′

→ H2
ps(L/L′, V L′

) → H2(L, V ).

As L/L′ is toral, the earlier argument in Section 4.1 shows that

H1
ps(L/L′, V L′

) = H2
ps(L/L′, V L′

) = 0.

We obtain the desired conclusion.

Remark 4.2.1. If (L,E, φs) is a finite-dimensional GR Lie algebra with s = (s, · · · , s),
i.e.

s1 = s2 = · · · = sl = s,

then there is a stronger result

Hn
ps(L, V ) ∼= Hn

ps(L′, V )L/L′
, ∀n ∈ N+,

where L′ is as in Proposition 4.2.1.
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Proof. As L′ is a GR ideal of L, it is readily verified that P (L′) is a p-ideal of P (L), and

that P (L)/P (L′) ∼= P (L/L′). Furthermore the condition s1 = s2 = · · · = sl implies that

P (L)/P (L′) ∼= P (L/L′)

is a torus. By [9, (3.8), p.2884], we have

Hn
ps(L, V ) = Hn

p (P (L), V ) ∼= Hn
p (P (L′), V )P (L)/P (L′)

= Hn
ps(L′, V )L/L′

, ∀n ∈ N+.

The final equality follows from the facts that

P (L)/P (L′) ∼= P (L/L′)

and ML = MP (L) for a GR Lie algebra L and a GR L-module M .

4.3. In the rest of this paper, let L = X(m : n)(2), X ∈ {W,S,H,K}. The notations

appearing in the following are the same as in Sections 1.6 and 1.7.

Theorem 4.3.1. H1
ps(L,Zps(λ)) ∼= (N+/((N+)(1) + ⟨(E+)φs⟩))h.

Proof. Applying Theorem 3.4.1 for L′ = B, we have

Hn
ps(L,Zps(λ)) ∼= Hn

ps(B, θ(Fλ)).

Since N+ is a GR ideal of B and B/N+ ∼= h is toral, the condition in Proposition 4.2.1 is

satisfied. Thereby

H1
ps(L,Zps(λ)) ∼= H1

ps(N+, θ(Fλ))
h.

Note that A+ = F⊕ Nilrad(A+) (see [21, Lemma 4.1]). Hence up to isomorphism, A+ admits

a unique irreducible (1-dimensional) module F via the canonical supplementation. As a GR

N+-module, θ(Fλ) is precisely the trivial N+-module F . (This fact can be also seen from

another viewpoint, pointed out by Shen, G. Y. According to the relation u
∣∣
θ(Fλ)

= λ(θ(u))

and the definition of the automomorphism θ, θ
∣∣
N+= id in view of the nilpotency of N+.

So θ(Fλ) coincides with Fλ, as well as F , because λ(N+) = 0). By Corollary 3.3.1, we have

H1
ps(N+, F ) ∼= N+/((N+)(1) + ⟨(E+)φs⟩).

The proof is completed.

Remark 4.3.1. If s1 = s2 = · · · = sl, according to Remark 4.2.1 and the above argument,

Hn
ps(L,Zps(λ)) ∼= Hn

ps(N+, F )h(= Hn
p (P (N+), F )h) for n ∈ N+,

which is independent of λ.

4.4. We finally compute the first ordinary Lie cohomology groups with coefficients in

Zps(λ). By Theorem 3.5.1, we have

Hn(L,Zps(λ)) ∼=
⊕

s+t=n

Λs(L/B)⊗F Ht(B, θ(Fλ)). (4.4.1)

θ(Fλ) determines a Lie algebra homomorphism

θ ◦ λ : B → F

and a B-module Fλ◦θ. Set

I := Ker(λ ◦ θ),

B
(1)
λ◦θ := {[x, y]− λ(θ(x))y + λ(θ(y))x

∣∣ x, y ∈ B}.
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Then B
(1)
λ◦θ ⊂ I. By [8, (3.4), p.165] and (1), we have

Proposition 4.4.1.

H1(L,Zps(λ) ∼=

{
I/B

(1)
λ◦θ, if λ(ei) ̸= trL(adei)− trP (B)(adei) for some ei ∈ E0,

L/B(1), otherwise.

Proof. It follows from the observation that when λ ◦ θ is zero, (4.4.1) implies that

H1(L,Zps(λ)) ∼= L/B ⊕ L/B(1) ∼= L/B(1).
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