THE ZEROS AND ORDER OF MEROMORPHIC SOLUTIONS OF $f^{(k)}+Bf=H(z)^{***}$

Chen Zongxuan* Yu Jiarong**

Abstract

Suppose that B is a rational function having a pole at ∞ of order n > 0 and that $H \neq 0$ is a meromorphic function satisfying $\sigma(H) = \beta \neq (n+k)/k$. If the differential equation $f^{(k)} + Bf = H(z)$ has a meromorphic solution f, then all meromorphic solutions f satisfy

$$\bar{\lambda}(f) = \lambda(f) = \sigma(f) = \max\{\beta, (n+k)/k\},\$$

except at most one exceptional meromorphic solution f_0 .

Keywords Linear differential equation, Meromorphic solution, Zero, Order
1991 MR Subject Classification 34A20, 30D35
Chinese Library Classification 0175.11, 0175.51

§1. Introduction and Results

Consider non-homogeneous linear differential equations of the form

$$f^{(k)} + Bf = H \quad (k \ge 2). \tag{1.1}$$

I. Laine proved in [7]

Theorem A. Let $B(z), P_0(z), P_1(z) \neq 0$ be polynomials such that deg $B = n \geq 1$, deg $P_0 = \beta < (n+k)/k$ and $H = P_1(z)e^{P_0(z)}$, then

(a) If deg $P_1 < n$, then all solutions of (1.1) satisfy

$$\lambda(f) = \bar{\lambda}(f) = \sigma(f) = (n+k)/k.$$
(1.2)

(b) If deg $P_1 \ge n$, then apart from one possible exception, all solutions satisfy (1.2). The possible exceptional solution is of the form $f_0 = Q \cdot \exp(P_0)$, where Q is a polynomial of degree deg $Q = \deg P_1 - n$.

Gao Shian had earlier addressed the case when k = 2 in Theorem A.

In this paper, we use the same notations as in [1], i.e., we use $\lambda(f)$ and $\bar{\lambda}(f)$ to denote respectively the exponents of convergence of the zero-sequence and the sequence of distinct zeros of f(z) and $\lambda(1/f)$ and $\bar{\lambda}(1/f)$ to denote respectively the exponents of convergence of the pole-sequence and the sequence of distinct poles of a meromorphic function $f(z), \sigma(f)$

- **Department of Mathematics, Wuhan University, Wuhan 430072, China.
- ***Project supported by the National Natural Science Foundation of China.

Manuscript received May 27, 1996.

^{*}Department of Mathematics, Jiangxi Normal University, Nanchang 330027, China.

to denote the order of growth of f(z). We use the standard notations of the Nevanlinna's theory (e. g. see [5]).

In [2], Chen Zongxuan proved

Theorem B. Let B be a rational function having a pole at ∞ of order n > 0, H(z) be a transcendental meromorphic function satisfying $\sigma(H) = \beta < (n+k)/k$. If all solutions of (1.1) are meromorphic functions, then apart from one possible exception f_0 , all solutions satisfy (1.2) and $\lambda(1/f) = \lambda(1/H)$. The possible exceptional solution f_0 satisfies $\beta \le \sigma(f_0) < (n+k)/k$.

Theorem C. Let B be a rational function having a pole at ∞ of order n > 0, H(z) be a meromorphic function satisfying $(n + k)/k < \sigma(H) = \beta < \infty$. If all solutions of (1.1) are meromorphic functions, then

(a) $\sigma(f) = \beta$, $\lambda(1/f) = \lambda(1/H)$;

(b) If $\beta = \lambda(H) > \lambda(1/H)$, then $\lambda(f) = \beta$;

(c) If $\beta > \max{\lambda(H), \lambda(1/H)}$, then apart from one possible exception f_0 having $\lambda(f_0) < \beta$, all solutions satisfy

$$\bar{\lambda}(f) = \lambda(f) = \sigma(f) = \beta.$$
(1.3)

By the fundamental theory of the differential equation with complex coefficients, we know that all solutions of linear differential equation with entire coefficients are entire functions. But a solution of linear differential equation with meromorphic coefficients is not perhaps a meromorphic function. For example, $f = \exp\{\frac{1}{2}\}$ is a solution of

$$f'' - \left(\frac{1}{z^4} + \frac{2}{z^3}\right)f = 0,$$

but $\exp\{\frac{1}{z}\}$ is not a meromorphic function. Therefore in Theorems B and C, the condition that all solutions of (1.1) are meromorphic functions is very rigorous. In this paper, we shall subtract this condition in Theorems B and C, generalize Theorems B and C, and obtain the precise estimate of the order of exceptional solution f_0 . We shall prove the following theorems.

Theorem 1.1. Suppose that B is a rational function having a pole at ∞ of order n > 0, $H \not\equiv 0$ is a meromorphic function satisfying $\sigma(H) = \beta$. If (1.1) has a meromorphic solution f, then

(a) If $\beta < (n+k)/k$, then all meromorphic solutions f of (1.1) satisfy (1.2) with at most one possible exceptional meromorphic solution f_0 . The possible exceptional solution f_0 satisfies $\sigma(f_0) = \beta$.

(b) If $\beta = (n+k)/k$, then all meromorphic solutions f of (1.1) satisfy $\sigma(f) = (n+k)/k$ and

$$\max\{\lambda(f), \lambda(1/f)\} \ge \max\{\lambda(H), \lambda(1/H)\}.$$
(1.4)

Theorem 1.2. Suppose that B is a rational function having a pole at ∞ of order n > 0, H is a meromorphic function satisfying $(n+k)/k < \sigma(H) = \beta < \infty$. If (1.1) has a meromorphic solution f, then

- (a) $\sigma(f) = \beta;$
- (b) If $\beta = \lambda(H) > \lambda(1/H)$, then $\lambda(f) = \beta$.

435

(c) If $\beta > \max{\lambda(H), \lambda(1/H)}$, then all meromorphic solutions f of (1.1) satisfy (1.3) with at most one possible exceptional meromorphic solution f_0 . The possible exceptional solution f_0 satisfies (1.4).

\S 2. Lemmas and Preliminaries

Theorem D (Borel, see Theorem 5.13 in [8]). Suppose that Q(z) is canonical product formed by $\{z_n; n = 1, 2, \dots\}$ $(z_n \neq 0)$ and $\lambda(Q) = \beta < \infty$. Set $O_n = \{z : |z - z_n| < 0\}$ $|z_n|^{-\alpha}$ $\{\alpha(>\beta) \text{ is a constant}\}, \text{ then for any given } \epsilon > 0, |Q(z)| \ge \exp\{-|z|^{\beta+\epsilon}\} \text{ holds for a spectral operator } \{\alpha(>\beta) \in \mathbb{C}\}$ $z \notin \bigcup_{n=1}^{\infty} O_n.$ **Theorem E** (See [6, p.19]). Suppose that w(z) is a finite order entire function, $\mu(r)$ is

the maximum term of the power series of w(z), then $\lim_{n \to \infty} \log M(r, w) / \log \mu(r) = 1$.

Lemma 2.1. Suppose that H(z) is a meromorphic function, $\sigma(H) = \beta < \infty$. Then for any given $\epsilon > 0$, there is a set $E_1 \subset (1,\infty)$ that has finite linear measure and finite logarithmic measure such that $|H(z)| \leq \exp\{r^{\beta+\epsilon}\}$ holds for $|z| = r \notin [0,1] \cup E_1$, and $r \to \infty$.

Proof. If H has only finitely many poles, then Lemma 2.1 holds obviously. Now assume that H(z) has infinitely many poles. Set $H(z) = h(z)/[z^{k_1} \cdot Q(z)]$, where k_1 is nonnegative integer, h(z) is an entire function, Q(z) is a canonical product formed by the nonzero poles $\{z_j : j = 1, 2, \dots; |z_j| = r_j, \ 0 < r_1 \le r_2 < \dots \}$ of H(z). Hence $\sigma(h) \le \sigma(H) = \beta, \ \sigma(Q) = \beta$ $\lambda(Q) \leq \beta.$

For any given $\epsilon > 0$, set $O_j = \{z : |z - z_j| \le r_j^{-(\beta + \epsilon/2)}\}$ $(j = 1, 2, \cdots)$ and $O = \bigcup_{j=1}^{\infty} O_j$. Set

$$E_1 = \bigcup_{j=1}^{\infty} (r_j - r_j^{-(\beta + \epsilon/2)}, r_j + r_j^{-(\beta + \epsilon/2)}).$$

Since

$$\sum_{j=1}^{\infty} 1/r_j^{\beta+\epsilon/2} = d < \infty, \tag{2.1}$$

we see that the linear measure of E_1 , $mE_1 = 2d < \infty$. For $|z| = r \notin E_1 \cup [0, 1]$, we have by Theorem D, $|Q(z)| \ge \exp\{-r^{\beta+\epsilon/2}\}$. Hence

$$|H(z)| \le \exp\{2r^{\beta+\epsilon/2}\}/r^{k_1} \le \exp\{r^{\beta+\epsilon}\}$$

holds for $|z| = r \notin E_1 \cup [0, 1], r \to \infty$.

Now we prove logarithmic measure of E_1 , $\lim E_1 < \infty$. From

$$\ln E_1 = \sum_{j=1}^{\infty} [\log(r_j + r_j^{-(\beta + \epsilon/2)}) - \log(r_j - r_j^{-(\beta + \epsilon/2)})] = \sum_{j=1}^{\infty} \log\left(1 + \frac{2r_j^{-(\beta + \epsilon/2)}}{r_j - r_j^{-(\beta + \epsilon/2)}}\right),$$

and for sufficiently large r_i

$$\log\left(1 + \frac{2r_j^{-(\beta + \epsilon/2)}}{r_j - r_j^{-(\beta + \epsilon/2)}}\right) \le \frac{2r_j^{-(\beta + \epsilon/2)}}{r_j - r_j^{-(\beta + \epsilon/2)}} \le 2r_j^{-(\beta + \epsilon/2)},$$

we have $\lim E_1 \leq \infty$ by (2.1).

Lemma 2.2. Suppose that g(z) is a transcendental entire function, $\sigma(g) = \alpha < \infty$. Then there is a set $E_2 \subset (1, \infty)$ that has infinite logarithmic measure such that

$$\lim_{\substack{r \to \infty \\ r \in E_2}} \frac{\log \log M(r,g)}{\log r} = \lim_{\substack{r \to \infty \\ r \in E_2}} \frac{\log \nu_g(r)}{\log r} = \alpha$$

where $\nu_g(r)$ denotes the centralindex of g(z).

Proof. By $\sigma(g) = \alpha$, there exists $\{r_n\} (r_n \to \infty)$, such that

$$\lim_{r_n \to \infty} \frac{\log \log M(r_n, g)}{\log r_n} = \alpha.$$
(2.2)

Set $E_2 \subset (1, +\infty)$. E_2 has the following properties: (a) If the sequence $\{r_n\}$ satisfies (2.2), then $\{r_n\} \subset E_2$. (b) If a sequence $\{r_n\} \subset E_2$ $(r_n \to \infty)$, then (2.2) holds for $\{r_n\}$. Now we affirm that the logarithmic measure of E_2 , $\lim E_2 = \infty$. In fact, if $\lim E_2 = \delta < \infty$, then by the definition of E_2 , we have

$$\overline{\lim_{\substack{r \to \infty \\ r \in (1,\infty) - E_2}}} \frac{\log \log M(r,g)}{\log r} = \alpha_1 < \alpha.$$
(2.3)

Now for a given $\{r'_n\} \subset (1,\infty), r'_n \to \infty$, there exists a point $r''_n \in [r'_n, (\delta+1)r'_n] - E_2$. From

$$\frac{\log\log M(r''_n,g)}{\log r''_n} \geq \frac{\log\log M(r'_n,g)}{\log[(\delta+1)r'_n]} = \frac{\log\log M(r'_n,g)}{\log r'_n + \log(\delta+1)},$$

we have

$$\frac{\lim_{r'_n \to \infty} \frac{\log \log M(r'_n, g)}{\log r'_n} = \lim_{r'_n \to \infty} \frac{\log \log M(r'_n, g)}{\log r'_n + \log(\delta + 1)} \\
\leq \lim_{r''_n \to \infty} \frac{\log \log M(r''_n, g)}{\log r''_n} \\
\leq \lim_{\substack{r \to \infty \\ r \in (1, +\infty) - E_2}} \frac{\log \log M(r, g)}{\log r}.$$

Since $\{r'_n\}$ is arbitrary, we have $\alpha \leq \alpha_1$. This is a contradiction, hence $\lim E_2 = \infty$.

By $\sigma(g) = \alpha < \infty$ and Theorem E, we have

$$\lim_{r \to \infty} \frac{\log M(r,g)}{\log \mu(r)} = 1, \tag{2.4}$$

where $\mu(r)$ is the maximum term of the power series of g(z), $\mu(r) = |a_{\nu_g(r)}| r^{\nu_g(r)}$. By (2.4), for sufficiently large r,

$$\log M(r,g) \le 2\log \mu(r) \le 2\log^+ |a_{\nu_g}| + 2\nu_g(r) \cdot \log r.$$

From

$$\frac{\log\log M(r,g)}{\log r} \le \frac{\log \nu_g(r)}{\log r} + \frac{\log^+\log^+|a_{\nu_g}| + 2\log 2 + \log\log r}{\log r}$$

we have

$$\alpha = \lim_{\substack{r \to \infty \\ r \in E_2}} \frac{\log \log M(r,g)}{\log r} = \lim_{\substack{r \to \infty \\ r \in E_2}} \frac{\log \log M(r,g)}{\log r} \le \lim_{\substack{r \to \infty \\ r \in E_2}} \frac{\log \nu_g(r)}{\log r} \le \lim_{\substack{r \to \infty \\ r \in (0,\infty)}} \frac{\log \nu_g(r)}{\log r} = \alpha$$

i.e.,

$$\lim_{\substack{r \to \infty \\ r \in E_2}} \frac{\log \nu_g(r)}{\log r} = \alpha$$

Lemma 2.3. Suppose that g(z) is an entire function with $\sigma(g) = \infty$. Then there is a set $E_2 \subset (1, \infty)$ that has infinite logarithmic measure such that

$$\lim_{\substack{r \to \infty \\ r \in E_2}} \frac{\log \nu_g(r)}{\log r} = \infty$$

Proof. Using the same proof as in the proof of the upper half part of Lemma 2.2, we can prove Lemma 2.3.

Lemma 2.4.^[2] Suppose that B is a rational function having a pole at ∞ of order n > 0. If $f \neq 0$ is a meromorphic solution of the homogeneous equation

$$f^{(k)} + Bf = 0, (2.5)$$

then $\sigma(f) = (n+k)/k$.

Lemma 2.5.^[4] Suppose that u(z) is a meromorphic function with $\sigma(u) = \beta < \infty$, $\epsilon > 0$ is a given constant. Then there exists a set $E_3 \subset (1, \infty)$ that has finite logarithmic measure such that

$$\left|\frac{u^{(j)}(z)}{u(z)}\right| \le r^{j(\beta-1+\epsilon)} \quad (j=1,\cdots,k)$$

$$(2.6)$$

hold for all z satisfying $|z| = r \notin [0,1] \cup E_3$.

Lemma 2.6. Suppose that u(z) is a meromorphic function with $\sigma(u) = \beta < \infty$, m is integer, $\epsilon > 0$ is a given constant. Then there exists a set $E_3 \subset (1, \infty)$ that has finite logarithmic measure, such that for all z satisfying $|z| = r \notin [0, 1] \cup E_3$, we have

$$|u(z) \cdot (u^{-1}(z))^{(m)}| \le r^{m(\beta - 1 + \epsilon)}.$$
(2.7)

Proof. Firstly we use induction to prove

$$u\left(\frac{1}{u}\right)^{(m)} = \sum_{(j_1,\cdots,j_m)} \alpha_{(j_1\cdots j_m)} \left(\frac{u'}{u}\right)^{j_1} \cdots \left(\frac{u^{(m)}}{u}\right)^{j_m},\tag{2.8}$$

where $\alpha_{(j_1\cdots j_m)}$ is a constant, j_1, \cdots, j_m satisfying $1 \cdot j_1 + 2 \cdot j_2 + \cdots + m \cdot j_m = m$. For n = 1, (2.8) holds obviously. For n = m, assume that (2.8) holds. So, we have for n = m + 1,

$$\begin{split} \left(\frac{1}{u}\right)^{(m+1)} &= \left[\left(\frac{1}{u}\right)^{(m)}\right]' = \left[\frac{1}{u}\sum_{(j_{1}\cdots j_{m})}a_{(j_{1}\cdots j_{m})}\left(\frac{u'}{u}\right)^{j_{1}}\cdots\left(\frac{u^{(m)}}{u}\right)^{j_{m}}\right]' \\ &= -\frac{u'}{u^{2}}\sum_{(j_{1}\cdots j_{m})}a_{(j_{1}\cdots j_{m})}\left(\frac{u'}{u}\right)^{j_{1}}\cdots\left(\frac{u^{(m)}}{u}\right)^{j_{m}} \\ &+ \frac{1}{u}\sum_{(j_{1}\cdots j_{m})}a_{(j_{1}\cdots j_{m})}\left\{\sum_{i=1}^{m}\left(\frac{u'}{u}\right)^{j_{1}}\cdots\left(\frac{u^{(d-1)}}{u}\right)^{j_{d}-1} \\ &\cdot \left[j_{d}\left(\frac{u^{(d)}}{u}\right)^{j_{d}-1}\left(\frac{u^{(d+1)}}{u}\right) - j_{d}\left(\frac{u^{(d)}}{u}\right)^{j_{d}}\left(\frac{u'}{u}\right)\right] \cdot \left(\frac{u^{(d+1)}}{u}\right)^{j_{d+1}}\cdots\left(\frac{u^{(m)}}{u}\right)^{j_{m}} \right\} \\ &= \frac{1}{u}\sum_{(j_{1}\cdots j_{m})}a_{(j_{1}\cdots j_{m})}\left(\frac{u'}{u}\right)^{j_{1}+1}\cdots\left(\frac{u^{(m)}}{u}\right)^{j_{m}} + \frac{1}{u}\sum_{(j_{1}\cdots j_{m})}a_{(j_{1}\cdots j_{m})} \\ &\cdot \left\{\sum_{i=1}^{m}\left[-j_{d}\left(\frac{u'}{u}\right)^{j_{1}+1}\left(\frac{u''}{u}\right)^{j_{2}}\cdots\left(\frac{u^{(m)}}{u}\right)^{j_{m}} \\ &+ j_{d}\left(\frac{u'}{u}\right)^{j_{1}}\cdots\left(\frac{u^{(d)}}{u}\right)^{j_{d-1}}\left(\frac{u^{(d+1)}}{u}\right)^{j_{d+1}+1}\cdots\left(\frac{u^{(m)}}{u}\right)^{j_{m}}\right]\right\}, \end{split}$$

where the indexs satisfy $1 \cdot (j_1 + 1) + 2 \cdot j_2 + \dots + m \cdot j_m = m + 1$, or $1 \cdot j_1 + \dots + d \cdot (j_d - 1) + (d + 1) \cdot (j_{d+1} + 1) + \dots + m \cdot j_m = m + 1$. Therefore (2.8) holds.

Now by (2.8) and Lemma 2.5, it is easy to see that Lemma 2.6 holds.

Lemma 2.7. Suppose that $b_0, \dots b_{k-1}$, $H \neq 0$ are meromorphic functions, $\sigma(H) = \beta < \infty$, and that there are a set $E_3 \subset (1, +\infty)$ that has finite logarithmic measure and a constant number $C_1 > 0$ such that for $|z| = r \notin [0, 1] \cup E_3$,

$$|b_j(z)| \le r^{C_1} \quad (j = 0, \cdots, k - 1)$$
 (2.9)

hold. If an entire function g(z) is a solution of the equation

$$g^{(k)} + b_{k-1}g^{(k-1)} + \dots + b_0g = H,$$
(2.10)

then $\sigma(g) < \infty$.

Proof. Assume that $\sigma(g) = \infty$, $\mu(r)$ denotes the maximum term of the power series of g(z), and $\nu_g(r)$ denotes the centralindex of g(z). By Lemma 2.3, we know that there is a set $E_2 \subset (1, \infty)$ that has infinite logarithmic measure such that

$$\lim_{\substack{r \to \infty \\ r \in E_2}} \frac{\log \nu_g(r/2)}{\log(r/2)} = \infty.$$
(2.11)

Since $\nu_g(r)$ is a step function to r, we can assume that t_j $(j = 0, 1 \cdots, 0 = t_0 < t_1 < t_2 < \cdots)$ are discontinuous points of $\nu_g(r)$. As $t \in (t_j, t_{j+1})$, we have $\mu(t) = |a_{\nu_g(t)}| \cdot t^{\nu_g(t)}$, where the central index $\nu_g(t) = m$ is a fixed constant. Hence

$$\mu'(t) = m|a_m|t^{m-1} = \mu \cdot \nu_g(t)/t$$

holds for $t \in (t_j, t_{j+1})$. Since $\mu(t)$ is a continuous function, we have for r > 2

$$\log \mu(r) - \log \mu(1) = \int_{1}^{r} [\mu'(t)/\mu(t)] dt = \int_{1}^{r} [\nu(t)/t] dt > \int_{\frac{r}{2}}^{r} (\nu(t)/t) dt \ge \nu(r/2) \cdot \log 2.$$

By Cauchy's inequality, it is easy to see that $\mu(r) \leq M(r,g)$. So,

$$\nu(r/2) \cdot \log 2 \le \log M(r.g) - \log \mu(1).$$
(2.12)

For a given large α such that

$$\alpha > \max\{C_1, \beta\} + k, \tag{2.13}$$

by (2.11) and (2.12), we obtain

$$\nu(r) = (r/2) \ge (r/2)^{\alpha} = C_2 r^{\alpha}, \qquad (2.14)$$

$$M(r,g) \ge C_3 \exp\{C_4 r^\alpha\} \tag{2.15}$$

for $r \in E_2$, $r \to \infty$, where C_2, C_3, C_4 are positive constants.

By the Wiman-Valiron theory (see [6, 9, 10]) we have basic formulas

$$\frac{g^{(j)}(z)}{g(z)} = \left(\frac{\nu_g(r)}{z}\right)^j (1+o(1)) \quad (j=1,\cdots,k),$$
(2.16)

where |z| = r, |g(z)| = M(r,g), $r \notin E_4$, $\int_{E_4} \frac{dr}{r} < \infty$.

By Lemma 2.1, we have

$$|H(z)| \le \exp\{r^{\beta + \frac{1}{2}}\}$$
(2.17)

for $|z| = r \in [1, +\infty] - E_1$, $\int_{E_1} \frac{dr}{r} < \infty$.

Now, we take sufficiently large $|z| = r \in E_2 - (E_1 \cup E_3 \cup E_4)$, |g(z)| = M(r,g), and logarithmic measure $\lim [E_2 - (E_1 \cup E_3 \cup E_4) = \infty$. By (2.10) and (2.16), we have

$$\left(\frac{\nu_g(r)}{z}\right)^k (1+o(1)) + b_{k-1} \left(\frac{\nu_g(r)}{z}\right)^{k-1} (1+o(1)) + \dots + b_0 = \frac{H(z)}{g(z)},$$

$$\frac{\nu(r)}{z^k} (1+o(1))$$

$$= \frac{H(z)}{g(z)\nu^{k-1}(r)} - \frac{b_{k-1}}{z^{k-1}} (1+o(1)) - \frac{b_{k-2}}{z^{k-2}\nu(r)} (1+o(1)) - \dots - \frac{b_0}{\nu^{k-1}(r)}.$$

$$(2.18)$$

By (2.13)-(2.15), (2.17), we have

$$\frac{H(z)|}{|g(z)|} = \frac{|H(z)|}{M(r,g)} \le \frac{1}{C_3} \exp\{r^{\beta + \frac{1}{2}} - C_4 r^{\alpha}\} \to 0,$$
(2.19)

$$\left|\frac{b_j(z)}{z^j\nu^{k-1-j}(r)}\right| \to 0 \quad (j=0,\cdots,k-2)$$
 (2.20)

for $|z| = r \in E_2 - (E_1 \cup E_3 \cup E_4)$, $r \to \infty$. And (2.14) (2.19) and (2.20) give

$$\left|\frac{H(z)}{g(z) \cdot \nu^{k-1}(z)} - \frac{b_{k-1}}{z^{k-1}}(1+o(1)) - \frac{b_{k-2}}{z^{k-2}\nu(r)}(1+o(1)) - \dots - \frac{b_0}{\nu^{k-1}(r)}\right|$$

= $O\left(\frac{b_{k-1}}{z^{k-1}}\right) = O(r^{C_1-k+1}).$ (2.21)

On the other hand, by (2.14), we have

$$\left|\frac{\nu(r)}{z^k}(1+o(1))\right| \ge C_2 r^{\alpha-k} > r^{C_1}$$
(2.22)

for $r \in E_2$, $r \to \infty$. (2.21) contradicts (2.22) by (2.18). Therefore $\sigma(g) < \infty$.

Lemma 2.8. Suppose that B is a rational function having a pole at ∞ of order n > 0, and $H \neq 0$ is a meromorphic function with $\sigma(H) = \beta$. If (1.1) has a meromorphic solution f, then

(a) If $\beta < (n+k)/k$, then all meromorphic solutions f of (1.1) satisfy $\sigma(f) = (n+k)/k$, with at most one exceptional meromorphic solution f_0 with $\sigma(f_0) = \beta$.

(b) If $(n+k)/k \leq \beta < \infty$, then $\sigma(f) = \beta$.

Proof. By (1.1), we have $\sigma(f) \geq \beta$. By (1.1) and the fact that *B* has only finitely many poles, we know that if $|z| (< \infty)$ is sufficiently large, then either *f* and *H* are both analytic at *z*, or *f* has a pole at *z* of order m_1 if and only if *H* has a pole at *z* of order $m_1 + k$. So, $\overline{\lambda}(1/f) = \overline{\lambda}(1/H)$. By $n(r.f) \leq n(r,H) + O(1)$ and $n(r,H) \leq (k+1)n(r,f) + O(1)$, it follows that

$$\lambda(1/f) = \lambda(1/H). \tag{2.23}$$

Set $f(z) = g(z)/(z^{m_2}u(z)) = g(z)/u_1(z)$, where m_2 is nonnegative integer, g(z) is an entire function, u(z) is a canonical product (or polynomial) formed by the nonzero poles $\{z_j: j = 1, 2, \dots\}$ $(|z_j| = r_j, 0 < r_1 \le r_2 \le \dots)$ of f, $u_1(z) = z^{m_2}u(z)$, then $\lambda(u_1) = \sigma(u_1) = \lambda(1/f) = \lambda(1/H) \le \beta$.

(a) First we prove that if $\sigma(f) = \alpha > \beta$, then $\sigma(f) = (n+k)/k$. By $\sigma(f) > \beta$, we have $\sigma(g) = \sigma(f) = \alpha$. For any given ϵ $(0 < 2\epsilon < \min\{\alpha - \beta, ((n+k)/k) - \beta\})$, by Lemma 2.1, it follows that there is a set $E_1 \subset (1, +\infty)$ that has finite logarithmic measure, such that

$$|1/u_1(z)| \le \exp\{r^{\beta+\epsilon}\}$$
 (2.24)

holds for $|z| = r \notin [0,1] \cup E_1$, $r \to \infty$. By (2.23) and the fact that the poles of f can only occur at poles of H except at most finitely many poles, it follows that

$$|H(z)| \le \exp\{r^{\beta+\epsilon}\} \tag{2.25}$$

holds for $|z| = r \notin [0,1] \cup E_1$, $r \to \infty$. Substituting $f(z) = g(z)/u_1(z)$ into (1.1), we have

$$\frac{g^{(k)}}{g} + C_k^1 u_1(u_1^{-1})' \frac{g^{(k-1)}}{g} + \dots + C_k^{k-1} u_1(u_1^{-1})^{(k-1)} \frac{g'}{g} + u_1(u_1^{-1})^{(k)} + B = \frac{H \cdot u_1}{g}, \quad (2.26)$$

where C_k^j $(j = 1, \dots, k-1)$ are the usual notation of the binomial coefficients. By $\sigma(u_1) \leq \beta$ and Lemma 2.6, there is a set $E_3 \subset (1, +\infty)$ that has finite logarithmic measure, such that for $|z| = r \notin E_3 \cup [0, 1]$, for $j = 1, \dots, k$, we have

$$|u_1(z)(u_1^{-1}(z))^{(j)}| \le r^{j(\beta-1+\epsilon)}.$$
(2.27)

By $0 < 2\epsilon < [(n+k)/k] - \beta$, we have $k(\beta - 1 + \epsilon) < n$. So

$$|u_1(z)(u_1^{-1}(z))^{(k)} + B| = O(r^n).$$
(2.28)

By Lemma 2.7 and (2.26)–(2.28), we have $\sigma(g) = \alpha < \infty$.

By Lemma 2.2 and $\sigma(g) < \infty$, there is a set $E_2 \subset (1, +\infty)$ that has infinite logarithmic measure such that

$$\lim_{\substack{r \to \infty \\ r \in E_2}} \frac{\log \log M(r,g)}{\log r} = \lim_{\substack{r \to \infty \\ r \in E_2}} \frac{\log \nu_g(r)}{\log r} = \alpha.$$
(2.29)

By the Wiman-Valiron theory, there is a set $E_4 \subset (1, \infty)$ that has finite logarithmic measure, such that for $|z| = r \notin E_4$, |g(z)| = M(r, g), (2.16) holds. By (2.29), we have

$$M(r,g) \ge \exp\{r^{\alpha - \epsilon}\}$$
(2.30)

for $|z| = r \in E_2 - (E_1 \cup E_3 \cup E_4)$ and sufficiently large r. By (2.25),(2.30), $|u_1(z)| \leq \exp\{r^{\beta+\epsilon}\}$ $(r \to \infty)$ and $\beta + \epsilon < \alpha - \epsilon$, we have for $r \to \infty$

$$\frac{u_1(z) \cdot H(z)}{g(z)} \Big| = \Big| \frac{u_1(z) \cdot H(z)}{M(r,g)} \Big| \le \exp\{2r^{\beta+\epsilon} - r^{\alpha-\epsilon}\} \to 0.$$
(2.31)

Now we take $|z| = r \in E_2 - (E_1 \cup E_3 \cup E_4)$, |g(z)| = M(r,g). Since the logarithmic measure of $E_2 - (E_1 \cup E_3 \cup E_4)$, $\lim [E_2 - (E_1 \cup E_3 \cup E_4)] = \infty$, by (2.16), (2.26)–(2.28) and (2.31), we obtain for $|z| = r \to \infty$

$$\left(\frac{\nu_g(r)}{z}\right)^k (1+o(1)) + O(r^{\beta-1+\epsilon}) \left(\frac{\nu_g(r)}{z}\right)^{k-1} (1+o(1)) + \cdots + O(r^{(k-1)(\beta-1+\epsilon)}) \left(\frac{\nu_g(r)}{z}\right) (1+o(1)) + O(r^n) = o(1).$$
(2.32)

For $r \in E_2 - (E_1 \cup E_3 \cup E_4)$, $r \to \infty$, we have by (2.29)

$$r_g(r) = r^{\alpha + o(1)}.$$
 (2.33)

By (2.33), and since ϵ is arbitrarily small, it is easy to see that the degrees of all terms of the left of (2.32) are respectively

$$k(\alpha - 1), (k - j)(\alpha - 1) + (\beta - 1)j \ (j = 1, \dots, k - 1), n.$$

By $\beta < \alpha$ and the Wiman-Valiron theory, we get $\alpha = (n+k)/k$, i.e., $\sigma(f) = \sigma(g) = (n+k)/k$. Now if f_0 and $f_1(f_1 \neq f_0)$ are both meromorphic solutions of (1.1), with $\sigma(f_0) = \sigma(f_1) = \beta$, then $\sigma(f_0 - f_1) < (n+k)/k$. But $f_0 - f_1 \neq 0$ is a meromorphic solution of the corresponding homogeneous equation (2.5) of (1.1). This contradicts Lemma 2.4. Therefore, the equation (1.1) has at most one exceptional meromorphic solution f_0 with $\sigma(f_0) = \beta$.

(b) Since $\sigma(f) \ge \beta \ge (n+k)/k$, we need only to prove that $\sigma(f) = \alpha > \beta$ fails.

Assume that $\alpha > \beta$. Using the same reasoning as in (a), for any given ϵ ($0 < \epsilon < \alpha - \beta$), we easily see that (2.24)–(2.27) hold. By $\beta \ge (n+k)/k$ and (2.27), it follows that

$$|u_1(z)(u_1^{-1}(z))^{(k)} + B| = \{r^{k(\beta - 1 + \epsilon)}\}$$
(2.28)

holds for $|z| = r \in (1, +\infty) - E_3$, $r \to \infty$. And (2.26), (2.27), (2.28)' and Lemma 2.7 give $\sigma(g) = \alpha < \infty$. Continually using the same proof as in (a), we easily know that (2.29)–(2.33) hold. For $|z| = r \in E_2 - (E_1 \cup E_3 \cup E_4)$, it is easy to see that there is only one term $\left(\frac{\nu(r)}{z}\right)^k (1 + o(1))$ with the degree $k(\alpha - 1)$ being the highest one among all terms of (2.32). This is impossible. Therefore, $\sigma(f) = \beta$.

Lemma 2.9. Suppose that β is a positive integer and $\beta > 1$, A_{k-j} $(j = 1, \dots, k)$ are rational functions having a pole at ∞ of order $n_{k-j} = j(\beta - 1)$, and $U \neq 0$ is a meromorphic function with $\sigma(U) < \beta$. If the equation

$$h^{(k)} + A_{k-1}h^{(k-1)} + \dots + A_0h = U$$
(2.34)

has a meromorphic solution h, then all meromorphic solutions of (2.34) satisfy $\sigma(h) = \beta$ except at most one possible exceptional solution. The possible meromorphic one h_0 satisfies $\sigma(h_0) = \sigma(U)$.

If $h \not\equiv 0$ is a meromorphic solution of the equation

$$h^{(k)} + A_{k-1}h^{(k-1)} + \dots + A_0h = 0$$
(2.35)

that is the corresponding homogeneous differential equation of (2.34), then $\sigma(h) = \beta$.

Proof. Set $\sigma(U) = d$. Then $d < \beta$. By (2.34), $\sigma(h) = \alpha \ge d$ holds. Now assume that $\sigma(h) > d$. Set $h(z) = g(z)/u_1(z)$, where g(z) and $u_1(z)$ are defined in the same way as in the proof of Lemma 2.8. Using the same reasoning as in Lemma 2.8, we have $\sigma(u_1) \le d$ and

$$|u_1(z)| \le \exp\{r^{d+\epsilon}\} \ (r \to \infty).$$
 (2.36)

And there is a set $E_4 \subset (1, +\infty)$ that has finite logarithmic measure, such that (2.16) holds for $|z| = r \notin E_4[0, 1]$. For any given $\epsilon(0 < 2\epsilon < \min\{\alpha - d, \beta - d\})$, there is a set $E_1 \subset (1, +\infty)$ that has finite logarithmic measure such that for $|z| = r \notin E_1 \cup [0, 1]$, $r \to \infty$,

$$|U(z)| \le \exp\{r^{d+\epsilon}\} \tag{2.37}$$

holds. By (2.34) and the fact that for $m = 1, \dots, k$,

$$\frac{h^{(m)}}{h} = \sum_{j=0}^{m} C_m^j u_1(z) (u_1^{-1}(z))^{(j)} \frac{g^{(m-j)}}{g} = \frac{g^{(m)}}{g} + \sum_{j=1}^{m} C_m^j u_1(z) (u_1^{-1}(z))^{(j)} \frac{g^{(m-j)}}{g}, \quad (2.38)$$

where C_m^j $(m = 1, \dots, k; j = 0, \dots, m)$ are the binomial coefficients, we obtain

$$\frac{g^{(k)}}{g} + \sum_{j=1}^{k} [C_k^j u_1(u_1^{-1})^{(j)} + A_{k-1} C_{k-1}^{j-1} u_1(u_1^{-1})^{(j-1)} + \cdots + A_{k-j+1} C_{k-j+1}^1 u_1(u_1^{-1})' + A_{k-j}] \frac{g^{(k-j)}}{g} = \frac{U u_1}{g}.$$
(2.39)

By Lemma 2.6 and the hypotheses, there is a set $E_3 \subset (1, +\infty)$ that has finite logarithmic

measure such that for $|z| = r \notin [0,1] \cup E_3$ we have

$$|C_k^j u_1(z)(u_1^{-1}(z))^{(j)}| \le r^{j(d-1+\epsilon)},$$

$$|A_{k-1}(z)C_{k-1}^{j-1}u_1(z)(u_1^{-1}(z))^{(j-1)}| \le r^{(j-1)(d-1+\epsilon)+1(\beta-1)},$$

$$\dots \dots \dots$$

$$|A_{k-j+1}(z)C_{k-j+1}^1u_1(z)(u_1^{-1}(z))'| \le r^{1\cdot(d-1+\epsilon)+(j-1)(\beta-1)}.$$

Since $A_{k-j}(z) = a_{k-j} z^{j(\beta-1)}(1+o(1))$ $(a_{k-j} \neq 0$, is a constant) and $\beta > d+\epsilon$, we have

$$C_{k}^{j}u_{1}(z)(u_{1}^{-1}(z))^{(j)} + \dots + A_{k-j+1}(z)C_{k-j+1}^{1}u_{1}(z)(u_{1}^{-1}(z))' + A_{k-j}(z)$$

= $a_{k-j}z^{j(\beta-1)}(1+o(1))$ (2.40)

for $|z| = r \in (1, +\infty) - E_3$, $r \to \infty$. By (2.39), (2.40) and Lemma 2.7, we know that $\sigma(g) = \alpha < \infty$. By Lemma 2.2, there is a set $E_2 \subset (1, +\infty)$ that has infinite logarithmic measure, such that

$$\lim_{\substack{r \to \infty \\ r \in E_2}} \frac{\log \log M(r,g)}{\log r} = \lim_{\substack{r \to \infty \\ r \in E_2}} \frac{\log \nu_g(r)}{\log r} = \alpha.$$
(2.41)

By (2.36), (2.37), (2.41), we have

$$M(r,g) \ge \exp\{r^{\alpha-\epsilon}\},\$$
$$\left|\frac{u_1(z) \cdot U(z)}{g(z)}\right| = \left|\frac{u_1(z)U(z)}{M(r,g)}\right| \le \exp\{2r^{d+\epsilon} - r^{\alpha-\epsilon}\} \to 0$$
(2.42)

for $|z| = r \in E_2 - (E_1 \cup E_3 \cup E_4)$, |g(z)| = M(r, g), $r \to \infty$. By (2.39), (2.40), (2.42) and (2.16), we have

$$\left(\frac{\nu_g(r)}{z}\right)^k (1+o(1)) + a_{k-1} z^{\beta-1} \left(\frac{\nu_g(r)}{z}\right)^{k-1} (1+o(1)) + \cdots + a_1 z^{(k-1)(\beta-1)} \left(\frac{\nu_g(r)}{z}\right) (1+o(1)) + a_0 z^{k(\beta-1)} (1+o(1)) = o(1)$$
(2.43)

for $|z| = r \in E_2 - (E_1 \cup E_3 \cup E_4)$, |g(z)| = M(r,g), $r \to \infty$. For $|z| = r \in E_2 - (E_1 \cup E_3 \cup E_4)$, $r \to \infty$, we have by (2.41)

$$\nu_{q}(r) = r^{\alpha + o(1)}.$$
(2.44)

By (2.44), and since ϵ is arbitrarily small, we know that the degrees of all terms of the left of (2.43) are respectively

$$k(\alpha - 1), (k - j)(\alpha - 1) + (\beta - 1)j \ (j = 1, \dots, k).$$

By the Wiman-Valiron theory, we get $\alpha = \beta$, i.e., $\sigma(h) = \sigma(g) = \beta$.

Using the same manner as above, we can prove that if $h(z) \neq 0$ is a meromorphic solution of the corresponding homogeneous equation (2.35) of (2.34), then $\sigma(h) = \beta$.

If h_0 and h_1 $(h_1 \neq h_0)$ are both meromorphic solutions of (2.34) with $\sigma(h_0) = \sigma(h_1) = \sigma(U) = d < \beta$, then $\sigma(h_1 - h_0) < \beta$. But $h_1 - h_0 \neq 0$ is a meromorphic solution of the corresponding homogeneous equation (2.35) of (2.34). By the above proof, we have $\sigma(h_1 - h_0) = \beta$. This is a contradiction. Therefore (2.34) has at most one exceptional meromorphic solution h_0 with $\sigma(h_0) = \sigma(U)$.

Lemma 2.10. Suppose that B is a rational function and $H \not\equiv 0$ is a meromorphic

function with $\sigma(H) = \beta < \infty$. If f(z) is a meromorphic solution of (1.1), then

$$\max\{\lambda(f), \lambda(1/f)\} \ge \max\{\lambda(H), \lambda(1/H)\}.$$
(2.45)

Proof. Set $f = \frac{g}{u_1}$, where g and u_1 are defined in the same way as in the proof of Lemma 2.8. Using the same proof as in Lemma 2.8, we can prove that (2.26)-(2.28) hold. By Lemma 2.7, we know that $\sigma(g) < \infty$. hence $\sigma(f) < \infty$.

Now f and H can be written as

$$f(z) = z^{m_1} \frac{h_1(z)}{u_1(z)} e^{P_1(z)}, \quad H(z) = z^{m_2} \frac{h_2(z)}{u_2(z)} e^{P_2(z)}, \tag{2.46}$$

where m_1, m_2 are integers, $h_1(z)$ and $h_2(z)$ are canonical products (or polynomials) formed respectively by the nonzero zeros of f and H, u_1 and u_2 are canonical products (or polynomials) formed respectively by the nonzero poles of f and H, P_1 and P_2 are polynomials with deg $P_1 \leq \sigma(f)$, deg $P_2 \leq \sigma(H)$. Substituting (2.46) into (1.1), we obtain

$$F(h_1, u_1) = z^{m_2} \frac{h_2}{u_2} e^{P_2 - P_1}, \qquad (2.47)$$

where F is a rational function in h_1, u_1 . and $h_1^{(j)}, u_1^{(j)}$ $(j = 1, \dots, k)$, with polynomial coefficients. (2.47) gives

$$\max\{\sigma(h_1), \sigma(u_1)\} \ge \sigma(F) = \sigma\left(z^{m_2} \frac{h_2}{u_2} e^{P_2 - P_1}\right) \ge \max\{\sigma(h_2), \sigma(u_2)\}.$$

So (2.45) holds.

Lemma 2.11.^[2] Suppose that B_0, \dots, B_{k-1} are rational functions and $H \neq 0$ is a meromorphic function. If f(z) is a meromorphic solution of the equation

$$f^{(k)} + B_{k-1}f^{(k-1)} + \dots + B_0f = H,$$

and $\sigma(H) < \sigma(f) < \infty$, then $\overline{\lambda}(f) = \lambda(f) = \sigma(f)$.

§3. Proof of Theorems

Proof of Theorem 1.1. (a) By Lemma 2.8, we know that all meromorphic solutions f of (1.1) satisfy $\sigma(f) = (n + k)/k$, with at most one possible exceptional meromorphic solution f_0 with $\sigma(f_0) = \beta$. By Lemma 2.11, the meromorphic solutions f satisfying $\sigma(f) = (n + k)/k > \beta$ satisfy

$$\bar{\lambda}(f) = \lambda(f) = \sigma(f) = (n+k)/k.$$

(b) By Lemma 2.8 and Lemma 2.10, it follows that (b) holds.

Proof of Theorem 1.2. (a) From Lemma 2.8, $\sigma(f) = \beta$ holds.

(b) If $\beta = \lambda(H) > \lambda(1/H)$, by Lemma 2.10 and (2.23) in proof of Lemma 2.8, it is easy to see that $\lambda(f) = \beta$.

(c) If $\beta > \max{\lambda(H), \lambda(1/H)}$, then set $H = Ue^p$, where $U = z^s \frac{V_1}{V_2}(s \text{ is an integer}, V_1 \text{ and } V_2$ are canonical products (or polynomials) formed respectively by the nonzero zeros and nonzero poles of H,

$$\sigma(U) = \max\{\lambda(H), \lambda(1/H)\} < \beta,$$

and P is a polynomial with deg $P = \beta$. Now set $f = h \cdot e^p$. Then f(z) and h(z) have the same zeros and poles. Substituting $f = he^p$, $H = Ue^p$ into (1.1), we have

$$h^{(k)} + A_{k-1}h^{(k-1)} + \dots + A_0h = U, (3.1)$$

where A_{k-j} $(j = 1, \dots, k)$ are rational functions. To work out the order of pole at ∞ of A_{k-j} , by induction, we have for $m \ge 2$ (see [7]),

$$f^{(m)} = \{h^{(m)} + mP'h^{(m-1)} + \sum_{j=2}^{m} [C_m^j(P')^j + H_{j-1}(P')h^{(m-j)}\}e^p,$$
(3.2)

where $H_{j-1}(P')$ are differential polynomials in P' and its derivatives of total degree j-1with constant coefficients. It is easy to see that the derivatives of $H_{j-1}(P')$ with respect to z are of the same form as $H_{j-1}(P')$. C_m^j are binomial coefficients. (3.2) and (1.1) give

$$A_{k-1} = kP', \quad A_{k-j} = C_k^j (P')^j + H_{j-1}(P') \quad (j = 2, \cdots, k-1),$$

$$A_0 = C_k^k (P')^k + H_{k-1}(P') + B.$$

Obviously, A_{k-j} $(j = 1, \dots, k-1)$ are polynomials and deg $A_{k-j} = j(\beta - 1)$. By $\beta > (n+k)/k$, the rational function A_0 has a pole at ∞ of order $k(\beta - 1)$. By Lemma 2.9, all meromorphic solutions of (3.1) satisfy $\sigma(h) = \beta > \sigma(U)$, except at most one possible exceptional one. The possible meromorphic one h_0 satisfies $\sigma(h_0) = \sigma(U)$. By Lemma 2.11, it follows that $\bar{\lambda}(h) = \lambda(h) = \sigma(h) = \beta$. Therefore, (1,1) has at most one possible exceptional solution $f_0 = h_0 e^p$, f_0 satisfies (1.4) by Lemma 2.10. All other meromorphic solutions $f = he^p$ of (1.1) satisfy (1.3).

§4. Examples for the Exceptional Solution

Example 4.1. The equation

$$f'' + (z^2 + 1/z^2)f = (2z^2 + \cos^2 z)/(z^2 \cos^3 z)$$

satisfies the hypotheses of Theorem 1.1(a), and has solution $f_0(z) = \sec z$, such that $\sigma(f_0) = \sigma(H) = 1 < (n+2)/2$.

Example 4.2. The equation

$$f'' - (4z + 2/z^2)f = (4z^2 - 2 - 2/z - 2/z^2)\exp(z^2)$$

satisfies the hypotheses of Theorem 1.2(c), and has solution $f_0 = ((1/z) + 1)\exp(z^2)$, such that $\lambda(f_0) = \lambda(1/f_0) = 0$, $\sigma(f_0) = 2$.

References

- [1] Bank, S. & Laine, I., On the oscillation theory of f'' + Af = 0 where A is entire, Trans. Amer. Math., **273**(1982), 351–361.
- [2] Chen Zongxuan, The complex oscillation of solutions of a class differential equations with meromorphic coefficient (in Chinese), Chin. Ann. of Math., 14:5(1993), 584-594.
- [3] Gao Shian, On the complex oscillation of solutions of non-homogeneous linear differential equations with polynomial coefficients, Comment. Math. Univ. Sancti Pauli., 38(1989), 11–20.
- [4] Gundersen, G., Estimates for the logarithmic derivative of a meromorphic function, plus similar estimates, J. London Math., 37:2(1988), 88–104.
- [5] Hayman, W., Meromorphic functions, Clarendon Press, Oxford, 1964.
- [6] He Yuzan & Xiao Xiuzhi, Algebroid functions and ordinary differential equations, Science Press, 1988 (in Chinese).
- [7] Laine, I., A note on the complex oscillation theory of non-homogeneous linear differential equations, *Results in Math.*, 18(1990), 282–285.
- [8] Li Ruifu, Dai Chongji & Song Guodong, The continuation of theory of functions of a complex variable, Higher Education Press, 1986(in Chinese).
- [9] Valiron, G., Lectures on the general theory of integral functions, Clelsea, New York, 1949.
- [10] Valiron, G., Functions analytiques, Presses Universitaires de France, Paris, 1954.