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THE ZEROS AND ORDER OF MEROMORPHIC

SOLUTIONS OF f(k)+Bf=H(z)***

Chen Zongxuan* Yu Jiarong**

Abstract

Suppose that B is a rational function having a pole at ∞ of order n > 0 and that H ≡/ 0 is a

meromorphic function satisfying σ(H) = β ̸= (n+k)/k. If the differential equation f (k)+Bf =
H(z) has a meromorphic solution f , then all meromorphic solutions f satisfy

λ̄(f) = λ(f) = σ(f) = max{β, (n+ k)/k},

except at most one exceptional meromorphic solution f0.
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§1. Introduction and Results

Consider non-homogeneous linear differential equations of the form

f (k) +Bf = H (k ≥ 2). (1.1)

I. Laine proved in [7]

Theorem A. Let B(z), P0(z), P1(z) ≡/ 0 be polynomials such that degB = n ≥ 1, degP0 =

β < (n+ k)/k and H = P1(z)e
P0(z), then

(a) If degP1 < n, then all solutions of (1.1) satisfy

λ(f) = λ̄(f) = σ(f) = (n+ k)/k. (1.2)

(b) If degP1 ≥ n, then apart from one possible exception, all solutions satisfy (1.2). The

possible exceptional solution is of the form f0 = Q · exp(P0), where Q is a polynomial of

degree degQ = degP1 − n.

Gao Shian had earlier addressed the case when k = 2 in Theorem A.

In this paper, we use the same notations as in [1], i.e., we use λ(f) and λ̄(f) to denote

respectively the exponents of convergence of the zero-sequence and the sequence of distinct

zeros of f(z) and λ(1/f) and λ̄(1/f) to denote respectively the exponents of convergence of

the pole-sequence and the sequence of distinct poles of a meromorphic function f(z), σ(f)
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to denote the order of growth of f(z). We use the standard notations of the Nevanlinna’s

theory (e. g. see [5]).

In [2], Chen Zongxuan proved

Theorem B. Let B be a rational function having a pole at ∞ of order n > 0, H(z) be

a transcendental meromorphic function satisfying σ(H) = β < (n + k)/k. If all solutions

of (1.1) are meromorphic functions, then apart from one possible exception f0, all solutions

satisfy (1.2) and λ(1/f) = λ(1/H). The possible exceptional solution f0 satisfies β ≤ σ(f0) <

(n+ k)/k.

Theorem C. Let B be a rational function having a pole at ∞ of order n > 0, H(z) be

a meromorphic function satisfying (n+ k)/k < σ(H) = β < ∞. If all solutions of (1.1) are

meromorphic functions, then

(a) σ(f) = β, λ(1/f) = λ(1/H);

(b) If β = λ(H) > λ(1/H), then λ(f) = β;

(c) If β > max{λ(H), λ(1/H)}, then apart from one possible exception f0 having λ(f0) <

β, all solutions satisfy

λ̄(f) = λ(f) = σ(f) = β. (1.3)

By the fundamental theory of the differential equation with complex coefficients, we know

that all solutions of linear differential equation with entire coefficients are entire functions.

But a solution of linear differential equation with meromorphic coefficients is not perhaps a

meromorphic function. For example, f = exp{ 1
z} is a solution of

f ′′ −
( 1

z4
+

2

z3

)
f = 0,

but exp{ 1
z} is not a meromorphic function. Therefore in Theorems B and C, the condition

that all solutions of (1.1) are meromorphic functions is very rigorous. In this paper, we shall

subtract this condition in Theorems B and C, generalize Theorems B and C, and obtain

the precise estimate of the order of exceptional solution f0. We shall prove the following

theorems.

Theorem 1.1. Suppose that B is a rational function having a pole at ∞ of order n >

0, H ≡/ 0 is a meromorphic function satisfying σ(H) = β. If (1.1) has a meromorphic

solution f , then

(a) If β < (n + k)/k, then all meromorphic solutions f of (1.1) satisfy (1.2) with at

most one possible exceptional meromorphic solution f0. The possible exceptional solution f0
satisfies σ(f0) = β.

(b) If β = (n+ k)/k, then all meromorphic solutions f of (1.1) satisfy σ(f) = (n+ k)/k

and

max{λ(f), λ(1/f)} ≥ max{λ(H), λ(1/H)}. (1.4)

Theorem 1.2. Suppose that B is a rational function having a pole at ∞ of order n > 0, H

is a meromorphic function satisfying (n+k)/k < σ(H) = β < ∞. If (1.1) has a meromorphic

solution f, then

(a) σ(f) = β;

(b) If β = λ(H) > λ(1/H), then λ(f) = β.
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(c) If β > max{λ(H), λ(1/H)}, then all meromorphic solutions f of (1.1) satisfy (1.3)

with at most one possible exceptional meromorphic solution f0. The possible exceptional

solution f0 satisfies (1.4).

§2. Lemmas and Preliminaries

Theorem D (Borel, see Theorem 5.13 in [8]). Suppose that Q(z) is canonical product

formed by {zn;n = 1, 2, · · · } (zn ̸= 0) and λ(Q) = β < ∞. Set On = {z : |z − zn| <

|zn|−α} (α(> β) is a constant), then for any given ϵ > 0, |Q(z)| ≥ exp{−|z|β+ϵ} holds for

z /∈
∞∪

n=1
On.

Theorem E (See [6, p.19]). Suppose that w(z) is a finite order entire function, µ(r) is

the maximum term of the power series of w(z), then lim
r→∞

logM(r, w)/ logµ(r) = 1.

Lemma 2.1. Suppose that H(z) is a meromorphic function, σ(H) = β < ∞. Then

for any given ϵ > 0, there is a set E1 ⊂ (1,∞) that has finite linear measure and finite

logarithmic measure such that |H(z)| ≤ exp{rβ+ϵ} holds for |z| = r /∈ [0, 1] ∪ E1, and

r → ∞.

Proof. If H has only finitely many poles, then Lemma 2.1 holds obviously. Now assume

that H(z) has infinitely many poles. Set H(z) = h(z)/[zk1 ·Q(z)], where k1 is nonnegative

integer, h(z) is an entire function, Q(z) is a canonical product formed by the nonzero poles

{zj : j = 1, 2, · · · ; |zj | = rj , 0 < r1 ≤ r2 < · · · } of H(z). Hence σ(h) ≤ σ(H) = β, σ(Q) =

λ(Q) ≤ β.

For any given ϵ > 0, set Oj = {z : |z − zj | ≤ r
−(β+ϵ/2)
j } (j = 1, 2, · · · ) and O =

∞∪
j=1

Oj .

Set

E1 =
∞∪
j=1

(rj − r
−(β+ϵ/2)
j , rj + r

−(β+ϵ/2)
j ).

Since
∞∑
j=1

1/r
β+ϵ/2
j = d < ∞, (2.1)

we see that the linear measure of E1, mE1 = 2d < ∞. For |z| = r /∈ E1 ∪ [0, 1], we have by

Theorem D, |Q(z)| ≥ exp{−rβ+ϵ/2}. Hence

|H(z)| ≤ exp{2rβ+ϵ/2}/rk1 ≤ exp{rβ+ϵ}

holds for |z| = r /∈ E1 ∪ [0, 1], r → ∞.

Now we prove logarithmic measure of E1, lm E1 < ∞. From

lmE1 =
∞∑
j=1

[log(rj + r
−(β+ϵ/2)
j )− log(rj − r

−(β+ϵ/2)
j )] =

∞∑
j=1

log
(
1 +

2r
−(β+ϵ/2)
j

rj − r
−(β+ϵ/2)
j

)
,

and for sufficiently large rj

log
(
1 +

2r
−(β+ϵ/2)
j

rj − r
−(β+ϵ/2)
j

)
≤

2r
−(β+ϵ/2)
j

rj − r
−(β+ϵ/2)
j

≤ 2r
−(β+ϵ/2)
j ,

we have lmE1 ≤ ∞ by (2.1).
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Lemma 2.2. Suppose that g(z) is a transcendental entire function, σ(g) = α < ∞. Then

there is a set E2 ⊂ (1,∞) that has infinite logarithmic measure such that

lim
r→∞
r∈E2

log logM(r, g)

log r
= lim

r→∞
r∈E2

log νg(r)

log r
= α,

where νg(r) denotes the centralindex of g(z).

Proof. By σ(g) = α, there exists {rn} (rn → ∞), such that

lim
rn→∞

log logM(rn, g)

log rn
= α. (2.2)

Set E2 ⊂ (1,+∞). E2 has the following properties: (a) If the sequence {rn} satisfies (2.2),

then {rn} ⊂ E2. (b) If a sequence {rn} ⊂ E2 (rn → ∞), then (2.2) holds for {rn}. Now we

affirm that the logarithmic measure of E2, lm E2 = ∞. In fact, if lm E2 = δ < ∞, then by

the definition of E2, we have

lim
r→∞

r∈(1,∞)−E2

log logM(r, g)

log r
= α1 < α. (2.3)

Now for a given {r′n} ⊂ (1,∞), r′n → ∞, there exists a point r′′n ∈ [r′n, (δ + 1)r′n] − E2.

From
log logM(r′′n, g)

log r′′n
≥ log logM(r′n, g)

log[(δ + 1)r′n]
=

log logM(r′n, g)

log r′n + log(δ + 1)
,

we have

lim
r′n→∞

log logM(r′n, g)

log r′n
= lim

r′n→∞

log logM(r′n, g)

log r′n + log(δ + 1)

≤ lim
r′′n→∞

log logM(r′′n, g)

log r′′n

≤ lim
r→∞

r∈(1,+∞)−E2

log logM(r, g)

log r
.

Since {r′n} is arbitrary, we have α ≤ α1. This is a contradiction, hence lmE2 = ∞.

By σ(g) = α < ∞ and Theorem E, we have

lim
r→∞

logM(r, g)

logµ(r)
= 1, (2.4)

where µ(r) is the maximum term of the power series of g(z), µ(r) = |aνg(r)|rνg(r). By (2.4),

for sufficiently large r,

logM(r, g) ≤ 2 log µ(r) ≤ 2 log+ |aνg |+ 2νg(r) · log r.

From

log logM(r, g)

log r
≤ log νg(r)

log r
+

log+ log+ |aνg |+ 2 log 2 + log log r

log r
,

we have

α = lim
r→∞
r∈E2

log logM(r, g)

log r
= lim

r→∞
r∈E2

log logM(r, g)

log r
≤ lim

r→∞
r∈E2

log νg(r)

log r
≤ lim

r→∞
r∈(0,∞)

log νg(r)

log r
= α,

i.e.,

lim
r→∞
r∈E2

log νg(r)

log r
= α.
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Lemma 2.3. Suppose that g(z) is an entire function with σ(g) = ∞. Then there is a set

E2 ⊂ (1,∞) that has infinite logarithmic measure such that

lim
r→∞
r∈E2

log νg(r)

log r
= ∞.

Proof. Using the same proof as in the proof of the upper half part of Lemma 2.2, we

can prove Lemma 2.3.

Lemma 2.4.[2] Suppose that B is a rational function having a pole at ∞ of order n > 0.

If f ≡/ 0 is a meromorphic solution of the homogeneous equation

f (k) +Bf = 0, (2.5)

then σ(f) = (n+ k)/k.

Lemma 2.5.[4] Suppose that u(z) is a meromorphic function with σ(u) = β < ∞, ϵ > 0

is a given constant. Then there exists a set E3 ⊂ (1,∞) that has finite logarithmic measure

such that ∣∣∣u(j)(z)

u(z)

∣∣∣ ≤ rj(β−1+ϵ) (j = 1, · · · , k) (2.6)

hold for all z satisfying |z| = r /∈ [0, 1] ∪ E3.

Lemma 2.6. Suppose that u(z) is a meromorphic function with σ(u) = β < ∞, m

is integer, ϵ > 0 is a given constant. Then there exists a set E3 ⊂ (1,∞) that has finite

logarithmic measure, such that for all z satisfying |z| = r /∈ [0, 1] ∪ E3, we have

|u(z) · (u−1(z))(m)| ≤ rm(β−1+ϵ). (2.7)

Proof. Firstly we use induction to prove

u
( 1

u

)(m)

=
∑

(j1,··· ,jm)

α(j1···jm)

(u′

u

)j1
· · ·

(u(m)

u

)jm
, (2.8)

where α(j1···jm) is a constant, j1, · · · , jm satisfying 1 · j1+2 · j2+ · · ·+m · jm = m. For n = 1,

(2.8) holds obviously. For n = m, assume that (2.8) holds. So, we have for n = m+ 1,( 1

u

)(m+1)

=
[( 1

u

)(m)]′
=

[ 1
u

∑
(j1···jm)

a(j1···jm)

(u′

u

)j1
· · ·

(u(m)

u

)jm]′
= − u′

u2

∑
(j1···jm)

a(j1···jm)

(u′

u

)j1
· · ·

(u(m)

u

)jm

+
1

u

∑
(j1···jm)

a(j1···jm)

{ m∑
i=1

(u′

u

)j1
· · ·

(u(d−1)

u

)jd−1

·
[
jd

(u(d)

u

)jd−1(u(d+1)

u

)
− jd

(u(d)

u

)jd(u′

u

)]
·
(u(d+1)

u

)jd+1

· · ·
(u(m)

u

)jm}
=

1

u

∑
(j1···jm)

a(j1···jm)

(u′

u

)j1+1

· · ·
(u(m)

u

)jm
+

1

u

∑
(j1·jm)

a(j1···jm)

·
{ m∑

i=1

[
− jd

(u′

u

)j1+1(u′′

u

)j2
· · ·

(u(m)

u

)jm

+ jd

(u′

u

)j1
· · ·

(u(d)

u

)jd−1(u(d+1)

u

)jd+1+1

· · ·
(u(m)

u

)jm]}
,



438 CHIN. ANN. OF MATH. Vol.19 Ser.B

where the indexs satisfy 1 · (j1 + 1) + 2 · j2 + · · ·+m · jm = m+ 1, or 1 · j1 + · · ·+ d · (jd −
1) + (d+ 1) · (jd+1 + 1) + · · ·+m · jm = m+ 1. Therefore (2.8) holds.

Now by (2.8) and Lemma 2.5, it is easy to see that Lemma 2.6 holds.

Lemma 2.7. Suppose that b0, · · · bk−1, H ≡/ 0 are meromorphic functions, σ(H) = β <

∞, and that there are a set E3 ⊂ (1,+∞) that has finite logarithmic measure and a constant

number C1 > 0 such that for |z| = r /∈ [0, 1] ∪ E3,

|bj(z)| ≤ rC1 (j = 0, · · · , k − 1) (2.9)

hold. If an entire function g(z) is a solution of the equation

g(k) + bk−1g
(k−1) + · · ·+ b0g = H, (2.10)

then σ(g) < ∞.

Proof. Assume that σ(g) = ∞, µ(r) denotes the maximum term of the power series of

g(z), and νg(r) denotes the centralindex of g(z). By Lemma 2.3, we know that there is a

set E2 ⊂ (1,∞) that has infinite logarithmic measure such that

lim
r→∞
r∈E2

log νg(r/2)

log(r/2)
= ∞. (2.11)

Since νg(r) is a step function to r, we can assume that tj (j = 0, 1 · · · , 0 = t0 < t1 < t2 < · · · )
are discontinuous points of νg(r). As t ∈ (tj , tj+1), we have µ(t) = |aνg(t)| · tνg(t), where the

centralindex νg(t) = m is a fixed constant. Hence

µ′(t) = m|am|tm−1 = µ · νg(t)/t

holds for t ∈ (tj , tj+1). Since µ(t) is a continuous function, we have for r > 2

logµ(r)− logµ(1) =

∫ r

1

[µ′(t)/µ(t)]dt =

∫ r

1

[ν(t)/t]dt >

∫ r

r
2

(ν(t)/t)dt ≥ ν(r/2) · log 2.

By Cauchy’s inequality, it is easy to see that µ(r) ≤ M(r, g). So,

ν(r/2) · log 2 ≤ logM(r.g)− logµ(1). (2.12)

For a given large α such that

α > max{C1, β}+ k, (2.13)

by (2.11) and (2.12), we obtain

ν(r) = (r/2) ≥ (r/2)α = C2r
α, (2.14)

M(r, g) ≥ C3exp{C4r
α} (2.15)

for r ∈ E2, r → ∞, where C2, C3, C4 are positive constants.

By the Wiman-Valiron theory (see [6, 9, 10]) we have basic formulas

g(j)(z)

g(z)
=

(νg(r)
z

)j

(1 + o(1)) (j = 1, · · · , k), (2.16)

where |z| = r, |g(z)| = M(r, g), r /∈ E4,
∫
E4

dr
r < ∞.

By Lemma 2.1, we have

|H(z)| ≤ exp{rβ+ 1
2 } (2.17)

for |z| = r ∈ [1,+∞]− E1,
∫
E1

dr
r < ∞.
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Now, we take sufficiently large |z| = r ∈ E2 − (E1 ∪ E3 ∪ E4), |g(z)| = M(r, g), and

logarithmic measure lm [E2 − (E1 ∪ E3 ∪ E4) = ∞. By (2.10) and (2.16), we have(νg(r)
z

)k

(1 + o(1)) + bk−1

(νg(r)
z

)k−1

(1 + o(1)) + · · ·+ b0 =
H(z)

g(z)
,

ν(r)

zk
(1 + o(1))

=
H(z)

g(z)νk−1(r)
− bk−1

zk−1
(1 + o(1))− bk−2

zk−2ν(r)
(1 + o(1))− · · · − b0

νk−1(r)
.

(2.18)

By (2.13)–(2.15), (2.17), we have

|H(z)|
|g(z)|

=
|H(z)|
M(r, g)

≤ 1

C3
exp{rβ+ 1

2 − C4r
α} → 0, (2.19)∣∣∣ bj(z)

zjνk−1−j(r)

∣∣∣ → 0 (j = 0, · · · , k − 2) (2.20)

for |z| = r ∈ E2 − (E1 ∪ E3 ∪ E4), r → ∞. And (2.14) (2.19) and (2.20) give∣∣∣ H(z)

g(z) · νk−1(z)
− bk−1

zk−1
(1 + o(1))− bk−2

zk−2ν(r)
(1 + o(1))− · · · − b0

νk−1(r)

∣∣∣
= O

( bk−1

zk−1

)
= O(rC1−k+1). (2.21)

On the other hand, by (2.14), we have∣∣∣ν(r)
zk

(1 + o(1))
∣∣∣ ≥ C2r

α−k > rC1 (2.22)

for r ∈ E2, r → ∞. (2.21) contradicts (2.22) by (2.18). Therefore σ(g) < ∞.

Lemma 2.8. Suppose that B is a rational function having a pole at ∞ of order n > 0,

and H ≡/ 0 is a meromorphic function with σ(H) = β. If (1.1) has a meromorphic solution

f, then

(a) If β < (n+ k)/k, then all meromorthic solutions f of (1.1) satisfy σ(f) = (n+ k)/k,

with at most one exceptional meromorthic solution f0 with σ(f0) = β.

(b) If (n+ k)/k ≤ β < ∞, then σ(f) = β.

Proof. By (1.1), we have σ(f) ≥ β. By (1.1) and the fact that B has only finitely many

poles, we know that if |z| (< ∞) is sufficiently large, then either f and H are both analytic

at z, or f has a pole at z of order m1 if and only if H has a pole at z of order m1 + k.

So, λ̄(1/f) = λ̄(1/H). By n(r.f) ≤ n(r,H) +O(1) and n(r,H) ≤ (k + 1)n(r, f) +O(1), it

follows that

λ(1/f) = λ(1/H). (2.23)

Set f(z) = g(z)/(zm2u(z)) = g(z)/u1(z), where m2 is nonnegative integer, g(z) is an

entire function, u(z) is a canonica1 product (or polynomial) formed by the nonzero poles

{zj : j = 1, 2, · · · } (|zj | = rj , 0 < r1 ≤ r2 ≤ · · · ) of f, u1(z) = zm2u(z), then λ(u1) =

σ(u1) = λ(1/f) = λ(1/H) ≤ β.

(a) First we prove that if σ(f) = α > β, then σ(f) = (n + k)/k. By σ(f) > β, we have

σ(g) = σ(f) = α. For any given ϵ (0 < 2ϵ < min{α− β, ((n+ k)/k)− β}), by Lemma 2.1, it

follows that there is a set E1 ⊂ (1,+∞) that has finite logarithmic measure, such that

|1/u1(z)| ≤ exp{rβ+ϵ} (2.24)
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holds for |z| = r /∈ [0, 1] ∪ E1, r → ∞. By (2.23) and the fact that the poles of f can only

occur at poles of H except at most finitely many poles, it follows that

|H(z)| ≤ exp{rβ+ϵ} (2.25)

holds for |z| = r /∈ [0, 1] ∪ E1, r → ∞. Substituting f(z) = g(z)/u1(z) into (1.1), we have

g(k)

g
+ C1

ku1(u
−1
1 )′

g(k−1)

g
+ · · ·+ Ck−1

k u1(u
−1
1 )(k−1) g

′

g
+ u1(u

−1
1 )(k) +B =

H · u1

g
, (2.26)

where Cj
k (j = 1, · · · , k−1) are the usua1 notation of the binomial coefficients. By σ(u1) ≤ β

and Lemma 2.6, there is a set E3 ⊂ (1,+∞) that has finite logarithmic measure, such that

for |z| = r /∈ E3 ∪ [0, 1], for j = 1, · · · , k, we have

|u1(z)(u
−1
1 (z))(j)| ≤ rj(β−1+ϵ). (2.27)

By 0 < 2ϵ < [(n+ k)/k]− β, we have k(β − 1 + ϵ) < n. So

|u1(z)(u
−1
1 (z))(k) +B| = O(rn). (2.28)

By Lemma 2.7 and (2.26)–(2.28), we have σ(g) = α < ∞.

By Lemma 2.2 and σ(g) < ∞, there is a set E2 ⊂ (1,+∞) that has infinite logarithmic

measure such that

lim
r→∞
r∈E2

log logM(r, g)

log r
= lim

r→∞
r∈E2

log νg(r)

log r
= α. (2.29)

By the Wiman-Valiron theory, there is a set E4 ⊂ (1,∞) that has finite logarithmic

measure, such that for |z| = r /∈ E4, |g(z)| = M(r, g), (2.16) holds. By (2.29), we have

M(r, g) ≥ exp{rα−ϵ} (2.30)

for |z| = r ∈ E2 − (E1 ∪ E3 ∪ E4) and sufficiently large r. By (2.25),(2.30), |u1(z)| ≤
exp{rβ+ϵ} (r → ∞) and β + ϵ < α− ϵ, we have for r → ∞∣∣∣u1(z) ·H(z)

g(z)

∣∣∣ = ∣∣∣u1(z) ·H(z)

M(r, g)

∣∣∣ ≤ exp{2rβ+ϵ − rα−ϵ} → 0. (2.31)

Now we take |z| = r ∈ E2 − (E1 ∪ E3 ∪ E4), |g(z)| = M(r, g). Since the logarithmic

measure of E2 − (E1 ∪E3 ∪E4), lm [E2 − (E1 ∪E3 ∪E4)] = ∞, by (2.16), (2.26)–(2.28) and

(2.31), we obtain for |z| = r → ∞(νg(r)
z

)k

(1 + o(1)) +O(rβ−1+ϵ)
(νg(r)

z

)k−1

(1 + o(1)) + · · ·

+O(r(k−1)(β−1+ϵ))
(νg(r)

z

)
(1 + o(1)) +O(rn) = o(1). (2.32)

For r ∈ E2 − (E1 ∪ E3 ∪ E4), r → ∞, we have by (2.29)

νg(r) = rα+o(1). (2.33)

By (2.33), and since ϵ is arbitrarily small, it is easy to see that the degrees of all terms of

the left of (2.32) are respectively

k(α− 1), (k − j)(α− 1) + (β − 1)j (j = 1, · · · , k − 1), n.

By β < α and the Wiman-Valiron theory, we get α = (n+k)/k, i.e., σ(f) = σ(g) = (n+k)/k.

Now if f0 and f1(f1 ≡/ f0) are both meromorphic solutions of (1.1), with σ(f0) = σ(f1) = β,

then σ(f0− f1) < (n+k)/k. But f0− f1 ≡/ 0 is a meromorphic solution of the corresponding
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homogeneous equation (2.5) of (1.1). This contradicts Lemma 2.4. Therefore, the equation

(1.1) has at most one exceptional meromorphic solution f0 with σ(f0) = β.

(b) Since σ(f) ≥ β ≥ (n+ k)/k, we need only to prove that σ(f) = α > β fails.

Assume that α > β. Using the same reasoning as in (a), for any given ϵ (0 < ϵ < α− β),

we easily see that (2.24)–(2.27) hold. By β ≥ (n+ k)/k and (2.27), it follows that

|u1(z)(u
−1
1 (z))(k) +B| = {rk(β−1+ϵ)} (2.28)’

holds for |z| = r ∈ (1,+∞) − E3, r → ∞. And (2.26), (2.27), (2.28)’ and Lemma 2.7 give

σ(g) = α < ∞. Continually using the same proof as in (a), we easily know that (2.29)–

(2.33) hold. For |z| = r ∈ E2 − (E1 ∪ E3 ∪ E4), it is easy to see that there is only one term(ν(r)
z

)k
(1 + o(1)) with the degree k(α− 1) being the highest one among all terms of (2.32).

This is impossible. Therefore, σ(f) = β.

Lemma 2.9. Suppose that β is a positive integer and β > 1, Ak−j (j = 1, · · · , k) are

rational functions having a pole at ∞ of order nk−j = j(β−1), and U ≡/ 0 is a meromorphic

function with σ(U) < β. If the equation

h(k) +Ak−1h
(k−1) + · · ·+A0h = U (2.34)

has a meromorphic solution h, then all meromorphic solutions of (2.34) satisfy σ(h) = β

except at most one possible exceptional solution. The possible meromorphic one h0 satisfies

σ(h0) = σ(U).

If h ≡/ 0 is a meromorphic solution of the equation

h(k) +Ak−1h
(k−1) + · · ·+A0h = 0 (2.35)

that is the corresponding homogeneous differential equation of (2.34), then σ(h) = β.

Proof. Set σ(U) = d. Then d < β. By (2.34), σ(h) = α ≥ d holds. Now assume that

σ(h) > d. Set h(z) = g(z)/u1(z), where g(z) and u1(z) are defined in the same way as in

the proof of Lemma 2.8. Using the same reasoning as in Lemma 2.8, we have σ(u1) ≤ d and

|u1(z)| ≤ exp{rd+ϵ} (r → ∞). (2.36)

And there is a set E4 ⊂ (1,+∞) that has finite logarithmic measure, such that (2.16) holds

for |z| = r /∈ E4[0, 1]. For any given ϵ(0 < 2ϵ < min{α−d, β−d}), there is a set E1 ⊂ (1,+∞)

that has finite logarithmic measure such that for |z| = r /∈ E1 ∪ [0, 1], r → ∞,

|U(z)| ≤ exp{rd+ϵ} (2.37)

holds. By (2.34) and the fact that for m = 1, · · · , k,

h(m)

h
=

m∑
j=0

Cj
mu1(z)(u

−1
1 (z))(j)

g(m−j)

g
=

g(m)

g
+

m∑
j=1

Cj
mu1(z)(u

−1
1 (z))(j)

g(m−j)

g
, (2.38)

where Cj
m (m = 1, · · · , k; j = 0, · · · ,m) are the binomial coefficients, we obtain

g(k)

g
+

k∑
j=1

[Cj
ku1(u

−1
1 )(j) +Ak−1C

j−1
k−1u1(u

−1
1 )(j−1) + · · ·

+Ak−j+1C
1
k−j+1u1(u

−1
1 )′ +Ak−j ]

g(k−j)

g
=

Uu1

g
. (2.39)

By Lemma 2.6 and the hypotheses, there is a set E3 ⊂ (1,+∞) that has finite logarithmic
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measure such that for |z| = r /∈ [0, 1] ∪ E3 we have

|Cj
ku1(z)(u

−1
1 (z))(j)| ≤ rj(d−1+ϵ),

|Ak−1(z)C
j−1
k−1u1(z)(u

−1
1 (z))(j−1)| ≤ r(j−1)(d−1+ϵ)+1(β−1),

· · · · · · · · · · · · · · · · · ·

|Ak−j+1(z)C
1
k−j+1u1(z)(u

−1
1 (z))′| ≤ r1·(d−1+ϵ)+(j−1)(β−1).

Since Ak−j(z) = ak−jz
j(β−1)(1 + o(1)) (ak−j ̸= 0, is a constant) and β > d+ ϵ, we have

Cj
ku1(z)(u

−1
1 (z))(j) + · · ·+Ak−j+1(z)C

1
k−j+1u1(z)(u

−1
1 (z))′ +Ak−j(z)

= ak−jz
j(β−1)(1 + o(1)) (2.40)

for |z| = r ∈ (1,+∞) − E3, r → ∞. By (2.39), (2.40) and Lemma 2.7, we know that

σ(g) = α < ∞. By Lemma 2.2, there is a set E2 ⊂ (1,+∞) that has infinite logarithmic

measure, such that

lim
r→∞
r∈E2

log logM(r, g)

log r
= lim

r→∞
r∈E2

log νg(r)

log r
= α. (2.41)

By (2.36), (2.37), (2.41), we have

M(r, g) ≥ exp{rα−ϵ},∣∣∣u1(z) · U(z)

g(z)

∣∣∣ = ∣∣∣u1(z)U(z)

M(r, g)

∣∣∣ ≤ exp{2rd+ϵ − rα−ϵ} → 0 (2.42)

for |z| = r ∈ E2 − (E1 ∪ E3 ∪ E4), |g(z)| = M(r, g), r → ∞. By (2.39), (2.40), (2.42) and

(2.16), we have(νg(r)
z

)k

(1 + o(1)) + ak−1z
β−1

(νg(r)
z

)k−1

(1 + o(1)) + · · ·

+ a1z
(k−1)(β−1)

(νg(r)
z

)
(1 + o(1)) + a0z

k(β−1)(1 + o(1)) = o(1) (2.43)

for |z| = r ∈ E2 − (E1 ∪ E3 ∪ E4), |g(z)| = M(r, g), r → ∞. For |z| = r ∈ E2 − (E1 ∪ E3 ∪
E4), r → ∞, we have by (2.41)

νg(r) = rα+o(1). (2.44)

By (2.44), and since ϵ is arbitrarily small, we know that the degrees of all terms of the

left of (2.43) are respectively

k(α− 1), (k − j)(α− 1) + (β − 1)j (j = 1, · · · , k).

By the Wiman-Valiron theory, we get α = β, i.e., σ(h) = σ(g) = β.

Using the same manner as above, we can prove that if h(z) ̸= 0 is a meromorphic solution

of the corresponding homogeneous equation (2.35) of (2.34), then σ(h) = β.

If h0 and h1 (h1 ≡/ h0) are both meromorphic solutions of (2.34) with σ(h0) = σ(h1) =

σ(U) = d < β, then σ(h1 − h0) < β. But h1 − h0 ≡/ 0 is a meromorphic solution of

the corresponding homogeneous equation (2.35) of (2.34). By the above proof, we have

σ(h1 − h0) = β. This is a contradiction. Therefore (2.34) has at most one exceptional

meromorphic solution h0 with σ(h0) = σ(U).

Lemma 2.10. Suppose that B is a rational function and H ≡/ 0 is a meromorphic
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function with σ(H) = β < ∞. If f(z) is a meromorphic solution of (1.1), then

max{λ(f), λ(1/f)} ≥ max{λ(H), λ(1/H)}. (2.45)

Proof. Set f = g
u1
, where g and u1 are defined in the same way as in the proof of

Lemma 2.8. Using the same proof as in Lemma 2.8, we can prove that (2.26)–(2.28) hold.

By Lemma 2.7, we know that σ(g) < ∞. hence σ(f) < ∞.

Now f and H can be written as

f(z) = zm1
h1(z)

u1(z)
eP1(z), H(z) = zm2

h2(z)

u2(z)
eP2(z), (2.46)

where m1,m2 are integers, h1(z) and h2(z) are canonical products (or polynomials) formed

respectively by the nonzero zeros of f and H, u1 and u2 are canonical products (or poly-

nomials) formed respectively by the nonzero poles of f and H,P1 and P2 are polynomials

with deg P1 ≤ σ(f), deg P2 ≤ σ(H). Substituting (2.46) into (1.1), we obtain

F (h1, u1) = zm2
h2

u2
eP2−P1 , (2.47)

where F is a rational function in h1, u1. and h
(j)
1 , u

(j)
1 (j = 1, · · · , k), with polynomial

coefficients. (2.47) gives

max{σ(h1), σ(u1)} ≥ σ(F ) = σ
(
zm2

h2

u2
eP2−P1

)
≥ max{σ(h2), σ(u2)}.

So (2.45) holds.

Lemma 2.11.[2] Suppose that B0, · · · , Bk−1 are rational functions and H ≡/ 0 is a mero-

morphic function. If f(z) is a meromorphic solution of the equation

f (k) +Bk−1f
(k−1) + · · ·+B0f = H,

and σ(H) < σ(f) < ∞, then λ̄(f) = λ(f) = σ(f).

§3. Proof of Theorems

Proof of Theorem 1.1. (a) By Lemma 2.8, we know that all meromorphic solutions

f of (1.1) satisfy σ(f) = (n + k)/k, with at most one possible exceptional meromorphic

solution f0 with σ(f0) = β. By Lemma 2.11, the meromorphic solutions f satisfying σ(f) =

(n+ k)/k > β satisfy

λ̄(f) = λ(f) = σ(f) = (n+ k)/k.

(b) By Lemma 2.8 and Lemma 2.10, it follows that (b) holds.

Proof of Theorem 1.2. (a) From Lemma 2.8, σ(f) = β holds.

(b) If β = λ(H) > λ(1/H), by Lemma 2.10 and (2.23) in proof of Lemma 2.8, it is easy

to see that λ(f) = β.

(c) If β > max{λ(H), λ(1/H)}, then set H = Uep, where U = zs V1

V2
(s is an integer, V1

and V2 are canonical products (or polynomials) formed respectively by the nonzero zeros

and nonzero poles of H,

σ(U) = max{λ(H), λ(1/H)} < β,

and P is a polynomial with degP = β. Now set f = h · ep. Then f(z) and h(z) have the

same zeros and poles. Substituting f = hep, H = Uep into (1.1), we have

h(k) +Ak−1h
(k−1) + · · ·+A0h = U, (3.1)
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where Ak−j (j = 1, · · · , k) are rational functions. To work out the order of pole at ∞ of

Ak−j , by induction, we have for m ≥ 2 (see [7]),

f (m) = {h(m) +mP ′h(m−1) +

m∑
j=2

[Cj
m(P ′)j +Hj−1(P

′)h(m−j)}ep, (3.2)

where Hj−1(P
′) are differential polynomials in P ′ and its derivatives of total degree j − 1

with constant coefficients. It is easy to see that the derivatives of Hj−1(P
′) with respect to

z are of the same form as Hj−1(P
′). Cj

m are binomial coefficients. (3.2) and (1.1) give

Ak−1 = kP ′, Ak−j = Cj
k(P

′)j +Hj−1(P
′) (j = 2, · · · , k − 1),

A0 = Ck
k (P

′)k +Hk−1(P
′) +B.

Obviously, Ak−j (j = 1, · · · , k − 1) are polynomials and deg Ak−j = j(β − 1). By β >

(n + k)/k, the rational function A0 has a pole at ∞ of order k(β − 1). By Lemma 2.9,

all meromorphic solutions of (3.1) satisfy σ(h) = β > σ(U), except at most one possible

exceptional one. The possible meromorphic one h0 satisfies σ(h0) = σ(U). By Lemma

2.11, it follows that λ̄(h) = λ(h) = σ(h) = β. Therefore, (1,1) has at most one possible

exceptional solution f0 = h0e
p, f0 satisfies (1.4) by Lemma 2.10. All other meromorphic

solutions f = hep of (1.1) satisfy (1.3).

§4. Examples for the Exceptional Solution

Example 4.1. The equation

f ′′ + (z2 + 1/z2)f = (2z2 + cos2 z)/(z2 cos3 z)

satisfies the hypotheses of Theorem 1.1(a), and has solution f0(z) = sec z, such that σ(f0) =

σ(H) = 1 < (n+ 2)/2.

Example 4.2. The equation

f ′′ − (4z + 2/z2)f = (4z2 − 2− 2/z − 2/z2)exp(z2)

satisfies the hypotheses of Theorem 1.2(c), and has solution f0 = ((1/z) + 1)exp(z2), such

that λ(f0) = λ(1/f0) = 0, σ(f0) = 2.
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