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Abstract

Necessary and sufficient conditions are given for the finiteness of the generalized exponents
expD(k), f(D, k) and F (D, k) for digraphs which are not necessarily primitive. Also the largest

finite value of the generalized exponent expD(k) for digraphs of order n is determined and the
complete characterizations of the extreme digraphs are given.
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§1. Introduction

R. A. Brualdi and Bolian Liu introduced in 1990[1] the concept of generalized exponents

for primitive digraphs. This concept is a generalization of the traditional concept of the

exponents for primitive digraphs and has backgrounds in memoryless communication sys-

tems associated with digraphs. In this paper we show that generalized exponents can also

be defined for digraphs which are not necessarily primitive. We will give necessary and

sufficient conditions for the finiteness of the generalized exponents expD(k), f(D, k) and

F (D, k). These ideas and results suggest that the study of generalized exponents will not be

necessarily restricted in the scope of the primitive digraphs. As an example, we also obtain

in §4 the largest finite value of the generalized exponents expD(k) for D ranging over all

digraphs of order n (which are not necessarily primitive) with the finite expD(k) value, and

give the complete characterizations of the extreme digraphs with the largest finite expD(k)

value.

Let D be a digraph in which loops (cycles of length one) are permitted. D is called

primitive if there exists a positive integer k such that for each ordered pair of vertices x and

y (not necessarily distinct) there is a walk of length k from x to y. The smallest such k is

called the exponent of D, denoted by γ(D).

It is well known that a digraph D is primitive if and only if D is strongly connected and

the greatest common divisor of the lengths of its cycles is 1.
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Definition 1.1. Let D be a digraph and x be a vertex of D. The “vertex exponent”

γD(x) is defined to be the smallest positive integer p such that there are walks of length p

from x to all vertices of D. If no such a p exists, then we define γD(x) = ∞.

Definition 1.2.[1] Let D be an arbitrary digraph of order n. If we choose to order the n

vertices v1, v2, · · · , vn of D in such a way that

γD(v1) 6 γD(v2) 6 ... 6 γD(vn),

then we call γD(vk) the kth generalized exponent of D, denoted by expD(k).

It is obvious that

expD(1) 6 expD(2) 6 · · · 6 expD(n). (1.1)

If D is primitive, then expD(n) = γ(D). So the concept of the generalized exponents is

a generalization of the traditional concept of the exponents for primitive digraphs.

Definition 1.3.[1] Let D be a digraph and X ⊆ V (D) be a subset of V (D). The “set

exponent” expD(X) is defined to be the smallest positive integer p such that for each vertex

y of D there exists a walk of length p from at least one vertex in X to y. If no such a p

exists, then we define expD(X) = ∞.

It is not difficult to verify that if for each vertex y in D there exists a walk of length p

from at least one vertex in X to y, then for each vertex z in D there also exists a walk of

length p+ 1 from at least one vertex in X to z.

We have the following relation between the vertex exponent and set exponent:

γD(x) = expD({x}). (1.2)

Definition 1.4.[1] Let D be an arbitrary digraph of order n and 1 6 k 6 n. Then we

define

f(D, k) = min{expD(X) | X ⊆ V (D) and | X |= k} (1.3)

F (D, k) = max{expD(X) | X ⊆ V (D) and | X |= k}. (1.4)

f(D, k) and F (D, k) are called the “kth lower generalized exponent”and “kth upper general-

ized exponent”of D, respectively.

It is easy to see from (1.2) that

f(D, 1) = expD(1) , F (D, 1) = expD(n). (1.5)

If D is primitive, then all the three types of the generalized exponents expD(k), f(D, k)

and F (D, k) are finite. But for an arbitrary digraph D they are not necessarily finite. In

§3 of this paper, we will give the necessary and sufficient conditions for the finiteness of

the generalized exponents expD(k), f(D, k) and F (D, k) which will allow us to study the

generalized exponents for digraphs which are not necessarily primitive later.

We would also like to point out that, by using the basic connections between digraphs and

matrices, all the concepts and results in this paper can be expressed in the corresponding

matrix version.

§2. Preliminaries

In this section we give some graph theoretical preliminaries about the “imprimitive parti-

tion”of a nontrivial strongly connected digraph and the “condensation digraph”of a digraph,
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and give some number theoretical preliminaries about the Frobenius set and Frobenius num-

ber of a given set of positive integers.

A digraph D is called a trivial digraph, if D contains no arc (a loop is also considered as

an arc). Otherwise D is called nontrivial. It is obvious that a nontrivial strongly connected

digraph always contains a cycle.

Definition 2.1. Let D be a nontrivial strongly connected digraph. Then the greatest

common divisor (abbreviated as “g.c.d.”) of the lengths of all cycles of D is called the period

of D, denoted by p(D).

Since any cycle of D is a closed walk and the length of any closed walk is a sum of the

lengths of some cycles of D, we conclude that the period p(D) is also the g.c.d. of the lengths

of all closed walks of D.

By the primitivity creteria mentioned in §1 we know that a nontrivial strongly connected

digraph D is primitive if and only if p(D) = 1.

In the following, we always use the notation | W | to denote the length of the walk W.

Lemma 2.1. Let D be a nontrivial strongly connected digraph with the period p(D) = p.

Then, for any u, v ∈ V (D) and any two walks W1,W2 from u to v, we have

| W1 |≡| W2 | (mod p). (2.1)

Proof. By the strong connectivity of D there is a walk W from v to u in D. Then

W +W1 and W +W2 are two closed walks of D and so we have | W | + | Wi |≡ 0 (mod p)

for i = 1, 2. Subtracting these two relations we obtain (2.1).

The following notion about the “imprimitive partition”will play an important role in our

main results.

Lemma 2.2. Let D be a nontrivial strongly connected digraph with the period p(D) = p,

and let v be a fixed vertex of D. Let

Vi = {u ∈ V (D) | | W |≡ i (mod p) for any walk W from v to u} (i = 1, · · · , p). (2.2)

Then we have

(1) V1, · · · , Vp form a partition of the vertex set V (D) (called the “imprimitive partition”of

D and V1, · · · , Vp are called the “imprimitive sets”of D).

(2) For any walk W from some vertex of Vi to some vertex of Vj, we have

| W |≡ j − i (mod p). (2.3)

Proof. (1) By Lemma 2.1 we know the sets V1, · · · , Vp are well-defined. Clearly V1, · · · ,
Vp are pairwisely disjoint and V (D) = V1 ∪ V2 ∪ · · · ∪ Vp. Now D is strongly connected, so

there exists a walk W ∗ of length p starting from the vertex v. By taking the subwalks of

W ∗ we can obtain a walk of length i starting from the vertex v for any i = 1, · · · , p. This
shows that each set Vi is not empty and thus they form a partition of V (D).

(2) Suppose W is a walk from vertex ui ∈ Vi to vertex uj ∈ Vj . Take a path P from the

vertex v to vertex ui. Then by the definition of Vi and Vj we have

| P | ≡ i (mod p) (2.4)

| P | + | W | ≡ j (mod p). (2.5)

Subtracting the two relations we obtain (2.3).
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We point out that the imprimitive partition of a strongly connected digraph D is unique

up to the cyclic shiftings of the sets V1, · · · , Vp. The corresponding matrix version of the im-

primitive partition is the “imprimitive normal form”for nonnegative irreducible matrices[3].

We also need the notion of the “condensation digraph”of a digraph and some facts about

the acyclic digraphs.

Definition 2.2.[4] Let D be a digraph, then the condensation digraph
∧
D is the digraph

with the vertex set
∧
V = {

∧
F | F is a strong component of D} (2.6)

and there is an arc from
∧
F1 to

∧
F2 in

∧
D if and only if F1 ̸= F2 and there is at least one arc

from some vertex of F1 to some vertex of F2 in D.

It is easy to see that the condensation digraph
∧
D of any digraph D is an acyclic digraph

(see [4, p.173,10.1.9). Namely,
∧
D contains no cycle.

In the following, we denote the indegree and outdegree of a vertex u in a digraph by

d−(u) and d+(u), respectively.

Lemma 2.3. Let Γ be an acyclic digraph. Then we have

(1) There exists some vertex x in Γ with the indegree d−(x) = 0.

(2) For any vertex v in Γ, there exists some path in D from some vertex u with the

indegree d−(u) = 0 to the vertex v.

Proof. (1) Let Q be the longest path in Γ and suppose that the initial vertex of Q is x.

Then x must be a vertex with d−(x) = 0 since Γ is an acyclic digraph.

(2) Take a path P with the terminal vertex v such that P is the longest path among all

the paths with the terminal vertex v. Then the initial vertex of P must have the indegree

zero.

Now we introduce some number theoretical notions which will be used in the proof of our

main results.

Definition 2.3. Let r1, · · · , rk be positive integers. The Frobenius set S(r1, · · · , rk) of

the numbers r1, · · · , rk is defined as

S(r1, · · · , rk) =
{ k∑

i=1

airi | a1, · · · , ak are nonnegative integers
}
. (2.7)

It is well known, by a lemma of Schur, that if gcd(r1, · · · , rk) = 1, then S(r1, · · · , rk)
contains all the sufficiently large nonnegative integers. In this case we define the Frobenius

number φ(r1, · · · , rk) to be the least integer φ such that m ∈ S(r1, · · · , rk) for all integers

m > φ. In the general case where gcd(r1, · · · , rk) = p, we have

S(r1, · · · , rk) = p · S
(r1
p
, · · · , rk

p

)
(2.8)

and we define the generalized Frobenius number φ(r1, · · · , rk) as

φ(r1, · · · , rk) = p · φ
(r1
p
, · · · , rk

p

)
. (2.9)

Thus, φ(r1, · · · , rk) is the least multiple of p above which all multiples of p belong to

S(r1, · · · , rk).
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For the case k = 2, it is well known that if a and b are relatively prime positive integers,

then the Frobenius number is

φ(a, b) = (a− 1)(b− 1). (2.10)

§3. The Finiteness Conditions for Generalized
Exponents expD(k), f(D,k) and F (D,k)

In order to give the finiteness conditions for generalized exponents expD(k), f(D, k) and

F (D, k), we first give the necessary and sufficient conditions for the finiteness of the “set

exponent”expD(X).

Theorem 3.1. Let D be a digraph, F1, · · · , Fr be those strong components of D such

that
∧
F1, · · · ,

∧
Fr are all the vertices with indegree zero in the condensation digraph

∧
D. Let pi

be the period of the strongly connected subdigraph Fi (if Fi is nontrivial), and let

V (Fi) = Vi1

·
∪ · · ·

·
∪ Vipi (i = 1, · · · , r) (3.1)

be the imprimitive partition of the digraph Fi (if Fi is nontrivial), i = 1, · · · , r. Then for

any vertex subset X ⊆ V (D), the set exponent expD(X) is finite if and only if all the strong

components F1, · · · , Fr are nontrivial and

X ∩ Vij ̸= ∅ (i = 1, . . . , r; j = 1, · · · , pi) (3.2)

for any indices i and j with 1 6 i 6 r and 1 6 j 6 pi.

Proof. Necessity. Suppose some strong component Fi is trivial. Then Fi must be a

single vertex (say zi) without loops. Since
∧
Fi has indegree zero in

∧
D, zi also has indegree

zero in D, and thus for any Y ⊆ V (D) and any positive integer p there is no walk of length p

from any vertex of Y to the vertex zi. So expD(Y ) = ∞ for any Y ⊆ V (D), a contradiction.

Now suppose there exist indices i0 and j0 with 1 6 i0 6 r and 1 6 j0 6 pi0 such that

X ∩ Vi0j0 = ∅. For an arbitrary positive integer m, we take j with 1 6 j 6 pi0 such that

j − j0 ≡ m (modPi0), (3.3)

and then take a vertex y in Vi0j . We will show that there is no walk of length m from any

vertex of X to y. Suppose not, let x ∈ X and W be a walk of length m from x to y. Since

y ∈ Vi0j ⊆ V (Fi0) and
∧
Fi0 has indegree zero in

∧
D, we must have x ∈ V (Fi0) and thus all

the vertices of the walk W are in the strong component Fi0 . Now assume x ∈ Vi0t, where

1 6 t 6 pi0 . By using Lemma 2.2 for the digraph Fi0 we have

j − t ≡ m (mod pi0). (3.4)

Comparing (3.3) and (3.4) we get t ≡ j0 (mod pi0), and so t = j0 since 1 6 t 6 pi0 and

1 6 j0 6 pi0 . Therefore x ∈ Vi0j0 ∩ X, contradicting the assumption X ∩ Vi0j0 = ∅.
Thus we have proved that there is no walk of length m from any vertex of X to y, and so

expD(X) > m. But m is an arbitrary integer, so expD(X) must be infinite. This proves the

necessity part of the theorem.

Sufficiency. Suppose the strong components F1, · · · , Fr are all nontrivial and (3.2) holds.

Take xij ∈ X ∩ Vij for 1 6 i 6 r and 1 6 j 6 pi. Let

X = {x11, · · · , x1p1 ;x21, · · · , x2p2 ; · · · ;xr1, · · · , xrpr} ⊆ X. (3.5)
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We want to show that expD(X) < ∞.

For i = 1, · · · , r, let

Vi = {u ∈ V (D) | there exists a path from some vertex of Fi to u}. (3.6)

Then Vi ⊇ V (Fi). Since
∧
F1, · · · ,

∧
Fr are all the vertices with indegree zero in the condensation

digraph
∧
D, we know that for any vertex u in D there exists a path from some vertex of some

Fi to u (by (2) of Lemma 2.3). This tells us that

V (D) = V1 ∪ V2 ∪ · · · ∪ Vr, (3.7)

but here V1, · · · , Vr are not necessarily pairwisely disjoint.

Now we fix the index i. For any vertex u in Vi, let u∗ be a fixed vertex in Fi such that

there exists a path P (u∗, u) from u∗ to u, and let the length of the path P (u∗, u) be li(u).

Also for any j with 1 6 j 6 pi, take a fixed walk Pij(u
∗) from the vertex xij to the vertex

u∗ such that Pij(u
∗) passes through all vertices of the subdigraph Fi (we can do this since

Fi is a strongly connected subdigraph), and let the length of Pij(u
∗) be lij(u

∗). Now let

dij(u) = lij(u
∗) + li(u). Then the walk Wij(u) = Pij(u

∗) + P (u∗, u) is a walk from the

vertex xij to the vertex u with length dij(u) which passes through all vertices of Fi. Let

{ri1, · · · , riλi} be the set of the distinct lengths of the cycles of the subdigraph Fi (by the

assumption Fi is nontrivial). Then we have

gcd(ri1, · · · , riλi) = p(Fi) = pi. (3.8)

Now let

mi = max
16j6pi

u∈Vi

dij(u) + φ(ri1, · · · , riλi), (3.9)

where φ(ri1, · · · , riλi) is the generalized Frobenius number defined in (2.9). We will show

that for any integer m > mi and any vertex v ∈ Vi there exists a walk of length m from

some vertex of X to the vertex v.

By (2) of Lemma 2.2 we know that {lij(u∗) | j = 1, · · · , pi} is a complete system of

residues mod pi, so {dij(u) | j = 1, · · · , pi} is also a complete system of residues mod pi.

Thus for any integer m > mi and any vertex v ∈ Vi, there exists some index j0 with

1 6 j0 6 pi such that

m ≡ dij0(v) (mod pi). (3.10)

But we also have

m− dij0(v) > mi − max
16j6pi

u∈Vi

dij(u) = φ(ri1, · · · , riλi), (3.11)

so by (3.10), (3.11) and the definition of the generalized Frobenius number we have

m− dij0(v) ∈ S(ri1, · · · , riλi)

which implies that there exist nonnegative integers ai1, · · · , aiλi such that

m− dij0(v) =

λi∑
h=1

aihrih. (3.12)

Now the walk Wij0(v) passes through all the vertices of Fi, so we can add aih times of the

cycles of length rih(h = 1, · · · , λi) to the walk Wij0(v) to obtain a new walk W ′
ij0

(v) from
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the vertex xij0 ∈ X to the vertex v with the length

| W ′
ij0(v) |=| Wij0(v) | +

λi∑
h=1

aihrih = dij0(v) +

λi∑
h=1

aihrih = m.

Thus W ′
ij0

(v) is the desired walk of length m from some vertex xij0 in X to the given vertex

v in Vi.

Finally we take

M = max
16i6r

mi.

For any vertex y in D, there exists an index i0 with 1 6 i0 6 r such that y ∈ Vi0 since

V (D) = V1 ∪ V2 ∪ · · · ∪ Vr. Now M > mi0 and y ∈ Vi0 , so by the above arguments we know

that there exists a walk of length M from some vertex of X to the vertex y. Therefore by

the definition of the set exponent we have expD(X) 6 M and so by the fact X ⊆ X we

obtain

expD(X) 6 expD(X) 6 M < ∞.

This proves the sufficiency part and completes the proof of the theorem.

From Theorem 3.1 we can obtain the finiteness conditions for the generalized exponents

expD(k), f(D, k) and F (D, k).

Theorem 3.2. Let D be a digraph of order n where F1, · · · , Fr; p1, · · · , pr and Vij(1 6
i 6 r, 1 6 j 6 pi) are as defined in Theorem 3.1. Let k be an integer with 1 6 k 6 n.

Then f(D, k) is finite if and only if all the strong components F1, · · · , Fr are nontrivial and

k >
r∑

i=1

pi.

Proof. f(D, k) < ∞ ⇐⇒ there exists some subset X ⊆ V (D) with | X |= k and

expD(X) < ∞
⇐⇒ F1, · · · , Fr are all nontrivial and there exists some subset X ⊆ V (D) with | X |= k

and X ∩ Vij ̸= ∅ for i = 1, · · · , r; j = 1, · · · , pi (by Theorem 3.1)

⇐⇒ F1, · · · , Fr are all nontrivial and k >
r∑

i=1

pi∑
j=1

1 =
r∑

i=1

pi.

Theorem 3.3. Let D be a digraph as in Theorem 3.2. Then F (D, k) is finite if and only

if F1, · · · , Fr are all nontrivial and

k > n− min
16i6r
16j6pi

| Vij | . (3.13)

Proof. F (D, k) < ∞ ⇐⇒ for any subset X ⊆ V (D) with | X |= k, we have expD(X) <

∞
⇐⇒ F1, · · · , Fr are all nontrivial and for any subset X ⊆ V (D) with | X |= k we have

X ∩ Vij ̸= ∅ for i = 1, · · · , r; j = 1, · · · , pi (by Theorem 3.1)

⇐⇒ F1, · · · , Fr are all nontrivial and | Vij |> n− k for i = 1, · · · , r and j = 1, · · · , pi
⇐⇒ F1, · · · , Fr are all nontrivial and min

16i6r
16j6pi

| Vij |> n− k.

Since expD(1) = f(D, 1), by taking k = 1 in Theorem 3.2 we have the following corollary.

Corollary 3.1. Let D be a digraph as in Theorem 3.2. Then expD(1) is finite if and

only if D satisfies the following two conditions:
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(1) D has a unique strong component (say, F1) such that
∧
F1 has the indegree zero in

∧
D.

(2) The subdigraph F1 is a primitive digraph (i.e., F1 is nontrivial and p(F1) = 1).

Proof. By taking k = 1 in Theorem 3.2 we have

expD(1) < ∞ ⇐⇒ f(D, 1) < ∞

⇐⇒ F1, · · · , Fr are nontrivial and 1 >
r∑

i=1

pi

⇐⇒ r = 1, p1 = 1 and F1 is nontrivial

⇐⇒ The conditions (1) and (2) hold.

Now we can give the finiteness condition for expD(k).

Theorem 3.4. Let D be a digraph of order n as in Theorem 3.2, and 1 6 k 6 n. Then

expD(k) is finite if and only if D satisfies the following three conditions:

(1) D has a unique strong component (say, F1) such that
∧
F1 has the indegree zero in

∧
D.

(2) The subdigraph F1 is a primitive digraph.

(3) | V (F1) |> k.

Proof. If expD(k) < ∞, then expD(1) 6 expD(k) < ∞ and so conditions (1) and (2)

hold by Corollary 3.1. Now we will prove that, under the assumption that conditions (1)

and (2) hold, expD(k) < ∞ if and only if condition (3) holds.

Suppose conditions (1) and (2) hold. Then we have r = 1 (r is as defined in Theorem

3.2) and p1 = 1, and V (F1) = V11 is the imprimitive partition of F1. Thus for any vertex

x ∈ V (D), we have

γD(x) < ∞ ⇐⇒ expD({x}) < ∞ ⇐⇒ {x} ∩ V11 ̸= ∅ ⇐⇒ x ∈ V (F1). (3.14)

So

expD(k) < ∞ ⇐⇒| {x ∈ V (D) | γD(x) < ∞} |> k ⇐⇒| V (F1) |> k.

If D is a strongly connected digraph, then the conditions (1) and (3) in Theorem 3.4 hold

trivially. Thus we have the following:

Corollary 3.2. Let D be a nontrivial strongly connected digraph of order n and 1 6 k 6
n. Then we have

(1) expD(k) < ∞ if and only if D is a primitive digraph.

(2) Let p be the period of D. Then f(D, k) < ∞ if and only if k > p.

(3) Let V (D) = V1

·
∪ V2

·
∪ · · ·

·
∪ Vp be the imprimitive partition of the digraph D. Then

F (D, k) < ∞ if and only if k > n− min
16i6p

| Vi |.

§4. The Largest Finite Generalized Exponent expD(k)

with Characterizations of the Extreme Digraphs

In §3 we have obtained the necessary and sufficient conditions for the finiteness of the

generalized exponents expD(k), f(D, k) and F (D, k). This suggests that from now on it will

no longer be necessary to restrict the study of the generalized exponents in the scope of the

primitive digraphs, and we can consider various problems related to generalized exponents

for general digraphs which are not necessarily primitive, and generalize the corresponding

results in primitive cases to general (non-primitive) cases. As an example of this idea

of generalizations, we determine in this section the largest finite value of the generalized
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exponent expD(k) for D ranging over all digraphs of order n (with the finite expD(k) value)

and give the complete characterizations for the extreme digraphs with the largest finite

expD(k) value.

Definition 4.1. A digraph D is called “k-generalized primitive”(or simply “k-primitive”)

if expD(k) < ∞. The set of all k-primitive digraphs of order n is denoted by GP (n, k).

Similarly, D is called k-lower primitive if f(D, k) < ∞ and D is called k-upper primitive

if F (D, k) < ∞.

Obviously, a (k + 1)-primitive digraph is always k-primitive, and a digraph D of order n

is primitive if and only if it is n-primitive. A primitive digraph of order n is k-primitive for

all 1 6 k 6 n.

Lemma 4.1. Let D be a primitive digraph of order n and s = s(D) be the length of the

shortest cycle of D. Then

expD(1) 6 s(n− 2) + 1. (4.1)

Proof. See [2], Theorem 3.4.4.

Lemma 4.2. Let D be a k-primitive digraph of order n. Then we have

expD(i+ 1) 6 expD(i) + 1 (1 6 i 6 k − 1). (4.2)

Proof. Since expD(k) < ∞, D satisfies the three conditions in Theorem 3.4. Let F1 be

the unique strong component ofD such that
∧
F1 has the indegree zero in

∧
D. Let | V (F1) |= m

(where m > k by Theorem 3.4). We may order the m vertices v1, · · · , vm of F1 in such a

way that

γD(v1) 6 γD(v2) 6 · · · 6 γD(vm).

Notice that γD(x) < ∞ if and only if x ∈ V (F1) (see (3.14)), so we have

expD(j) = γD(vj) (j = 1, · · · ,m).

Now 1 6 i 6 k − 1 6 m− 1 and F1 is strongly connected, so there exist indices j, t such

that (vt, vj) ∈ E(F1) and 1 6 j 6 i < t 6 m. Thus

expD(i+ 1) 6 expD(t) = γD(vt) 6 γD(vj) + 1 = expD(j) + 1 6 expD(i) + 1.

The Lemma is proved.

We also need to prove the following number theoretical lemma, which will be used in the

proof of Theorem 4.1.

Lemma 4.3. Let a, b be relatively prime positive integers, let S(a, b) be the Frobenius

set of a and b and φ(a, b) = (a − 1)(b − 1) be the Frobenius number of a and b (namely,

φ(a, b) − 1 is the largest integer not in S(a, b)). If m is an integer not in S(a, b), then

φ(a, b)− 1−m ∈ S(a, b).

Proof. Let φ = φ(a, b). Since a, b are relatively prime, there exists an integer x such

that 0 6 x 6 b− 1 and xa ≡ m (mod b). Write xa−m = yb. If y 6 0, then we would have

m = xa− yb ∈ S(a, b), a contradiction. So y > 0 and we obtain

φ− 1−m = (b− 1− x)a+ (y − 1)b ∈ S(a, b).

Now we prove our main results in this section.
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Theorem 4.1. Let D ∈ GP (n, k) be a k-primitive digraph of order n where n > 4 and

1 6 k 6 n. Then we have

expD(k) 6 (n− 1)(n− 2) + k, (4.3)

and the equality holds in (4.3) if and only if D is isomorphic to the following (primitive)

digraph Fn.

Fig. 4.1 The Digraph Fn

Proof. Firstly we will show that if D ∈ GP (n, k) and D � Fn, then expD(k) < (n −
1)(n− 2) + k.

Case 1. D is a primitive digraph with the shortest cycle length s 6 n− 2.

Then by Lemma 4.1 and Lemma 4.2 we have

expD(k) 6 expD(1) + (k − 1) 6 s(n− 2) + 1 + (k − 1)

6 (n− 2)2 + k < (n− 1)(n− 2) + k.

Case 2. D is a primitive digraph with the shortest cycle length s > n− 1.

Then D must contain some cycle of length n − 1 and also contain some cycle of length

n by the primitivity of D. By direct verifications we can see that there are only two such

digraphs of order n (up to isomorphism): one is just the digraph Fn in Fig.4.1, and the

other is the digraph Hn = Fn+ {(2, n)} (obtained by adding a new arc (2, n) to the digraph

Fn). By our assumption of this step, D � Fn, so in this case we have D ∼= Hn.

Now we want to show that there is a walk of length φ(n, n − 1) = (n − 1)(n − 2) from

vertex 1 to any vertex i in the digraph Hn.

Subcase 2.1. i = n− 1.

By taking m = 1 and a = n, b = n − 1 in Lemma 4.3 (noticing that n > 4 implies

1 /∈ S(n, n− 1)), we know φ(n, n− 1)− 2 ∈ S(n, n− 1), so we can write φ(n, n− 1)− 2 =

xn+y(n−1), where x and y are nonnegative integers. Taking the path Q = (1, n)+(n, n−1)

of length 2 from vertex 1 to vertex n − 1, and adding x cycles of length n and y cycles of

length n − 1, we obtain a walk of length 2 + xn + y(n − 1) = φ(n, n − 1) from vertex 1 to

vertex i = n− 1 in Hn.

Subcase 2.2. i = n.

Taking the path

P = (1, n− 1) + (n− 1, n− 2) + · · ·+ (3, 2) + (2, n)
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of length n− 1 from vertex 1 to vertex n, and adding n− 3 cycles of length n− 1 to P, we

obtain a walk of length (n− 1)(n− 2) from vertex 1 to vertex i = n.

Subcase 2.3. 1 6 i 6 n− 2.

Then 1 6 n− i− 1 6 n− 2, so n− i− 1 /∈ S(n, n− 1) and by Lemma 4.3 we have

φ(n, n− 1)− (n− i) = φ(n, n− 1)− 1− (n− i− 1) ∈ S(n, n− 1).

Thus we can write φ(n, n− 1)− (n− i) = xin+ yi(n− 1), where xi and yi are nonnegative

integers. Taking the path

Pi = (1, n− 1) + (n− 1, n− 2) + · · ·+ (i+ 1, i)

of length n − i from vertex 1 to vertex i, and adding xi cycles of length n and yi cycles of

length n− 1, we obtain a walk of length (n− i) + xin+ yi(n− 1) = φ(n, n− 1) from vertex

1 to vertex i in Hn.

Combining the three subcases we obtain

γHn
(1) 6 (n− 1)(n− 2),

so in this case (where D ∼= Hn) we have

expD(1) 6 γD(1) 6 (n− 1)(n− 2)

and thus

expD(k) 6 expD(1) + (k − 1) < (n− 1)(n− 2) + k.

Case 3. D is not primitive.

Then D is k-primitive but not primitive, so 1 6 k 6 n−1. By Corollary 3.2 we also know

that D is not strongly connected. Now D satisfies the three conditions in Theorem 3.4, so

there is a unique strong component F1 of D such that
∧
F1 has the indegree zero in

∧
D. Let

| V (F1) |= m. Then we have k 6 m 6 n− 1 since D is not strongly connected.

Now take a vertex x ∈ V (F1). For any vertex y ∈ V (D), by the property of the strong

component F1 we know that there exists some vertex z in F1 such that the distance d(z, y) 6
n − m. Now both of the two vertices x and z are in F1, so there exists a walk of length

γF1(x)+ (n−m)− d(z, y) from x to z in F1 by the definition of the vertex exponent γF1(x).

Therefore there exists a walk of length γF1(x) + (n − m) from x to y in D. Since y is an

arbitrary vertex in D, it follows that

γD(x) 6 γF1(x) + (n−m) (for any x ∈ V (F1)). (4.4)

But we also know that k 6 m (by Theorem 3.4), so from (4.4) we obtain

expD(k) 6 expF1
(k) + (n−m). (4.5)

Now F1 is primitive by Theorem 3.4. Ifm > 2, then its shortest cycle length s(F1) 6 m−1

and so we have (by Lemma 4.1 and Lemma 4.2)

expF1
(k) 6 expF1

(1) + (k − 1) 6 s(F1) · (m− 2) + 1 + (k − 1)

6 (m− 1)(m− 2) + k. (4.6)

We can show by direct verifications that (4.6) also holds for the case m = 1 (and hence

k = 1).
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Combining (4.5),(4.6) and using the fact m 6 n− 1, we have

expD(k) 6 expF1
(k) + (n−m) 6 (m− 1)(m− 2) + k + (n−m)

= (m− 2)2 + n− 2 + k 6 (n− 3)2 + n− 2 + k

< (n− 1)(n− 2) + k. (4.7)

This proves the Case 3.

Combining Cases 1, 2 and 3 we obtain

expD(k) < (n− 1)(n− 2) + k (D ∈ GP (n, k), D � Fn). (4.8)

Secondly we will show that expFn
(k) = (n− 1)(n− 2) + k. Since Fn is primitive and its

shortest cycle length s(Fn) = n− 1, we have by Lemma 4.1 and Lemma 4.2 that

expFn
(k) 6 expFn

(1) + (k − 1) 6 s(Fn)(n− 2) + 1 + (k − 1)

= (n− 1)(n− 2) + k. (4.9)

On the other hand, there is no walk of length (n− 1)2 from vertex n to itself in Fn. For

if there exists such a (closed) walk W, then W will be a union of the cycles of Fn which

contains the cycle of length n at least once (since the cycle of length n is the only cycle in

Fn containing the vertex n), so its length | W |= (n− 1)2 would be able to be expressed as

(n− 1)2 = n+ an+ b(n− 1),

where a, b are nonnegative integers, which implies that

φ(n, n− 1)− 1 = (n− 1)2 − n ∈ S(n, n− 1).

This contradicts the definition of the Frobenius number φ(n, n− 1). Thus we have

expFn
(n) > γFn(n) > (n− 1)2 + 1 (4.10)

and so

expFn
(k) > expFn

(n)− (n− k) > (n− 1)(n− 2) + k. (4.11)

Combining (4.9) and (4.11) we have

expFn
(k) = (n− 1)(n− 2) + k, (4.12)

and the results of the theorem follow from (4.8) and (4.12).

Finally we point out that since the unique extreme digraph Fn in the above theorem is

primitive, Theorem 4.1 also gives the largest value of the generalized exponent expD(k) for

D ranging over all primitive digraphs of order n and gives the complete characterizations of

the extreme primitive digraphs. Thus the results in [1, Theorem 3.4] and in [5, Theorem 2]

have been generalized from the primitive cases to the (more general) k-primitive cases.
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