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Abstract

The author shows that a rank-preserving ∗-isomorphism between separable C∗-algebras with
unity is approximately equivalent to the identity representation. Some applications are made

for approximately similarity of n-tuples of operators.
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§1. Introduction

In what follows, all of Hilbert spaces appeared in this paper are infinite-dimensional

separable complex Hilbert space. If H is a Hilbert space, then L(H) denotes the C∗-algebra

of all bounded linear operators on H and K(H) denotes the set of compact operators on H.

Two operators S and T are called approximately equivalent if there is a sequenc {Un} of

unitary operators such that ∥U∗
nSUn − T∥ → 0 (n → ∞).

Similarly two operatos S and T are approximately similar if there is a sequence {Vn} of

invertible operators with sup (∥Vn∥, ∥V −1
n ∥) < ∞ (such a sequence will be called invertibly

bounded) and ∥V −1
n SVn − T∥ → 0 (n → ∞).

D. W. Hadwin[5] initiated a study of an asymptotic version of unitary equivalence of

operators. All of the questions raised in [5] were answered in a paper of D. Voiculescu[9]

which contains a complete characterization of approximately equivalent representions of

a separable C∗-algebra. D. W. Hadwin has shown that two operators are approximately

equivalent if and only if there is a rank-preserving ∗-isomorphism between the C∗-algebras

they generate that sends one of the operators onto the other. Although, in general, there

seems to be no analogous result for approximately similarity, but there is one in the case

when one of the operators is normal (see [7, Proposition 3.6]). It is the purpose of this

paper to prove a rank-preserving ∗-isomorphism between separable C∗-algebras with unity

is approximately equivalent to the identity representation. Some applications are made for

approximately similarity of n-tuples of operators.
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Following [9], let A be a separable C∗- algebra in L(H); (π1,H1) and (π2,H2) are two

separable representations of A. (π1,H1) and (π2,H2) are called approximately equivalent,

if there is a sequence of unitary operators {Un}, satisfying : for any A ∈ A,

(1) Unπ1(A)U∗
n − π2(A) is a compact operator, n = 1, 2, · · · ;

(2) lim
n→∞

∥Unπ1(A)U
∗
n − π2(A)∥ = 0.

In fact, it was shown by D. Voiculescu[9] that (2) contains (1).

Definition 1.1. Let A be a subspace in L(H). A linear mapping π : A → L(H1
) is called

rank-preserving if rankπ(A) = rankA for any A ∈ A.

Evidently, a rank-preserving mapping must be injective and its inverse π−1 : π(A) → A
is rank-preserving too.

Let A be a C∗-algebra in L(H). A ∗-homomorphism π : A → L(H1
) is called a rank-

preserving ∗-isomorphism if π is rank-preserving.

§2. Representation of Rank-preserving ∗-isomorphism

Proposition 2.1. If π is a continuous rank-preserving mapping from C∗-algebra A in

L(H) to L(H1
), then π(A ∩K(H)) ⊂ K(H1

).

Proof. Since A ∩ K(H) is a closed idea in A, it suffices to prove π(K) ∈ K(H1
) for any

self -adjoint operator K in A ∩K(H) .

Let K be a self-adjoint in A ∩ K(H) with spectrum σ(K) = {λn}. Pn is the projection

from H onto ker(K − λnIH). According to the spectral decomposition theorem, the series∑
n
λnPn is convergent uniformly to K, where λn ̸= 0 and λn → 0 (n → ∞), Pn ∈ A,

n = 1, 2, · · · .
Since π is a rank-preserving mapping, thus π(Pn) ∈ K(H1

), it follows from the continuity

of π that π(K) ∈ K(H1
).

Corollary 2.1. Let A and B be separately C∗-subalgebras in L(H) and L(H1
). If π :

A → B is a rank-preserving ∗-isomorphism, then

π(A ∩K(H)) = B ∩ K(H1
), π−1(B ∩ K(H1

)) = A ∩K(H).

In what follows, we assume A and B are two separable C∗- subalgebras in L(H).

Let Â ( resp. B̂ ) denote the C∗-subalgebra A ∩K(H) (resp. B ∩ K(H) ).

A projection P in Â is called minimal if P ̸= 0 and the only subprojections of P in Â are

0 and P .

Lemma 2.1. Let P be a nonzero projection in Â. Then P is a minimal projection if and

only if P ÂP = {λP, λ ∈ C }. Every nonzero projection in Â is finite-dimensional, and is a

finite sum of orthogonal minimal projections.

Proof. If P ÂP consists of scalar multiples of P , then P is minimal. Conversely, assume

P is minimal. It suffices to show that PTP is a scalar multiple of P , for every self-adjoint

operator T ∈ Â. Considering the spectral formula for PTP , we have PTP =
∑
n
λnPn,

where the Pn are mutually orthogonal spectral projections of PTP . Since PTP annihilates

P⊥H, so does each Pn, and hence Pn ≤ P . Thus each nonzero Pn must be P , and hence

PTP = λP has the required form. It is plain that every projection in Â is finite-dimensional,

by compactness, and the last phrase follows from the usual sort of finite induction.
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Corollary 2.2. Let A be a C∗-subalgebra in L(H) and A ∩ K(H) ̸= 0. Then there is a

minimal projection P ∈ Â. If F(Â) denotes the set of all minimal projections in Â, then

spanF(Â) = Â, where spanF(Â) denotes the uniformly closure of all linear combinations

of F(Â).

Proof. Since A ∩ K(H) ̸= 0, choosing a nonzero self-adjoint operator T ∈ Â, by the

spectral theorem about the compact operators, we see that there is a nonzero spectral

projection P of T . From the proof of Lemma 2.1, we easily know that P is a minimal

projection in Â. The last assertion now follows from Proposition 2.1 and the spectral

theorem of compact operators again.

Lemma 2.2. If π : A → B is a rank-preserving ∗-isomorphism, and A∩K(H) ̸= 0, then

there is a unitary map U : [ÂH] 7→ [B̂H] such that UT = π(T )U , for any T ∈ Â, where

[ÂH] denotes the closed linear span of all vectors of the form Tξ, T ∈ Â, ξ ∈ H (similarly

[B̂H]).

Proof. By Corollary 2.2, F(Â) ̸= ϕ. For any P ∈ F(Â), by Lemma 2.1, there is a linear

functional f such that PTP = f(T )P , for any T ∈ Â.

Since π is a rank-preserving ∗-isomorphism, PH and π(P )H have the same finite dimen-

sion.

Choose arbitrarily a unit vector η (resp. ξ ) in π(P )H (resp. in PH ). Then H0 = [π(Â)η]

defines a rank-preserving ∗-subisomorphism π0 of π. For any T ∈ Â, we have

∥π(T )η∥2 = ∥π(T )π(P )η∥2 = ∥π(TP )η∥2

= (π(PT ∗TP )η, η) = f(T ∗T )(π(P )η, η)

= f(T ∗T ) = (PT ∗TPξ, ξ) = ∥Tξ∥2.

This shows that map U : Tξ 7→ π(T )η extends uniquely to a untary map of [Âξ] onto

[π(Â)η], and the formula UT = π0(T )U is immediate from the definition of π0 and U .

Since H is separable, by the Zorn lemma, we can choose a maximal sequence {πi} of

orthogonal rank-preserving ∗-subisomorphisms of π and a sequence {Ui} of unitary maps

such that π = ⊕πi and UiT = πi(T )Ui, for any T ∈ Â.

It follows that there is a unitary map U : [ÂH] 7→ [π(Â)H], such that UT = π(T )U for

all T ∈ Â.

By Corollary 2.1, π(Â) = B̂, the proof of the Lemma now is completed .

Theorem 2.1. If π : A → B is a rank-preserving ∗-isomorphism, where A and B are

separable C∗-algebras with unity in L(H), then π is approximately equivalent to the identity

representation id.

Proof. First, if A∩K(H) = 0, then by Collorary of Theorem 5 in [2], π is approximately

equivalent to id.

If A ∩K(H) ̸= 0, following the notation in [2], let

He = χ
π(ker π̇)
H = span

{ n∑
i=1

π(Ai)xi|Ai ∈ ker
·
π, xi ∈ H

}
,

where

ker π̇ = {A ∈ A| π(A) ∈ K(H)} = {A ∈ A| π(A) ∈ B ∩ K(H)}.
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Evidently, kerπ = ker (id). On the other hand, since

ker π̇ = {A ∈ A| π(A) ∈ B ∩ K(H)} = π−1(B ∩ K(H)),

it follows from Colloray 2.1 that

ker π̇ = A ∩K(H) = ker ˙(id),

hence He = χ
B∩K(H)
H . Similarly,

H1
e = χ

id(ker ˙(id))
H = χ

A∩K(H)
H .

Let Pe (resp. P 1
e ) be the projection on He (resp. H1

e ). From the definition of U in

Lemma 2.2, we have UP 1
e = PeU . Since He and H1

e are invariable separably with respect

to π(A) and id(A), we see that corresponding to the space decomposition

H = He ⊕H⊥
e = H1

e ⊕H1
e
⊥
,

π and id have separablly decomposition : π = πe ⊕ π′, id = (id)e ⊕ (id)′, where πe =

π|He , (id)e = id|He .

By [2, Theorem 5], we need only to show that πe is unitarily equvalent to (id)e.

Let W = PeUP 1
e |H1

e
. Then W is a unitary operator from H1

e onto He. Thus for any

K ∈ A ∩ K(H), we have

πe(K) = π(K)|He = UKU−1|He = UKP 1
e U

−1|He

= UPeKP 1
e U

−1|He
= PeUP 1

eKP 1
e U

−1|He

= W (K|H1
e
) = W (id)e(K)W−1.

Because A∩K(H) is an ideal in A and the restrictions of πe and (id)e are non-degenerate,

we have for any A ∈ A and K ∈ A ∩ K(H), π(AK) = W (id)e(AK)W−1. It follows that

πe(A)πe(K) = W (id)e(A)W
−1πe(K).

Since χ
πe(A)∩K(H)
He

= He, we have

πe(A) = W (id)e(A)W
−1,

that is, πe is unitarily equivalent to (id)e.

Corollary 2.3. Let (π,Hπ) be a non-degenerate representation of a separable C∗-algebra

A, where Hπ is a separable Hilbert space. If π|A∩K(H) = 0, then id⊕π approximatly equvalent

to id.

Proof. Since H and Hπ both are separable, there exists a unitary operator U from H
onto H ⊕ Hπ. Let ρ : T 7−→ U∗(T ⊕ π(T ))U . We can easily justify that ρ : A 7−→ ρ(A)

is a rank-preserving ∗-isomorphism. Theorem 2.1 guarantees that id ⊕ π is approximatly

equivalent to id.

We obtain again the result of [3, Corollary 2].

Corollary 2.4. Let A = (A1, A2, · · · , An) and B = (B1, B2, · · · , Bn) be two n-tuples of

operators in L(H). Then A and B are approximatly equivalent if and only if there is a rank-

preserving ∗- ismorphism ρ : C∗(A1, A2, · · · , An) 7−→ C∗(B1, B2, · · · , Bn) such that ρ(I) = I

and ρ(Ai) = Bi, i = 1, 2, · · · , n, where C∗(A1, A2, · · · , An) (similarly C∗(B1, B2, · · · , Bn))

is the C∗-algebra generated by I and A1, A2, · · · , An.

Evidently, Corollary 2.4 is the generalization of [6, Corollary 3.7].
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Theorem 2.2. Let M1 and M2 be two Von-Neumann algbras in L(H). π : M1 → M2

is a rank-preserving ∗-isomorphism. If M1 ∩ K(H) ̸= 0, then there is a unitary operator U

in L(H), such that π(A) = UAU∗ for any A ∈ M1.

Proof. Since H is separable, the unit ball is second numerable by strong topology, so is

the unit ball of M1 ∩K(H) too. It follows that M1 ∩K(H) is strongly separable. Let {An}
be a strongly dense sequece of operators in M1 ∩ K(H), and A is the C∗-algebra which is

generated by I and {An}. Since

[M1 ∩ K(H)]
′
= [M1

′ ∩ K(H)
′
]
′′
= M1

′,

we have [M1 ∩ K(H)]
′′
= M1. Write N = M1 ∩ K(H)

s
. Then by [3, Theorem 2],

M1 = {λIH + T | λ ∈ C, T ∈ N},

and it follows that A is strongly dense in M1. The fact that an isomorphism between two

Von-Neumann algebras must be strongly continuous guarantees that π(A) is strongly dense

in M2.

Since A ∩ K(H) ̸= 0, by Lemma 2.2 there exists a unitary map U from [ÂH] onto [B̂H],

such that π(A) = UAU−1, for any A ∈ Â.

Let P and Q be separably the projections on [ÂH] and [B̂H]. Since M1 and M2 are

Von-Neumann algebras, we have P ∈ M1, Q ∈ M2. Because π(P ) = Q, we have

rankπ(I − P ) = rank(I − P ) = rank(I −Q),

and therefore U can be extented to the unitary operator (still be denoted by U) on H.

Since

{[A ∩K(H)]}
′′
= A

′′
= M1

and π is strongly continuous, we have π(A) = UAU∗ for any A ∈ M1.

§3. Some Applications

In this section, we discuss some applications of Theorem 2.1 for n-tuples of operators.

Let S = (S1, · · · , Sn) and T = (T1, · · · , Tn) be two n-tuples of operators. S and T are

called approxinately equivalent or approximately similar if there is a sequence of unitary

operators {Un} or invertibly bounded operators {Vn} such that ∥U∗
nSkUn − Tk∥ → 0 or

∥V −1
n SkVn − Tk∥ → 0 (n → ∞), k = 1, 2, · · · , n.
First we discuss the approximately similar problem of n-tuples of operators.

Let T = (T1, T2, · · · , Tn) be an n-tuple of operators in L(H). For any x ∈ H, write

col(T )x = (T1x, T2x, · · · , Tnx). Then col(T ) : H → H⊕ · · · ⊕ H︸ ︷︷ ︸
n

is a linear continuous

operator. Let kerT =
n∩

i=1

kerTi. Then ker col(T ) = kerT.

It is easily known that col(T ) has closed range if and only if there is an r > 0 such that
n∑

i=1

T ∗
i Ti ≥ r(I − P ), where P is the projection from H onto kerT .

Lemma 3.1. Suppose T = (T1, · · · , Tn) is an n-tuple of operators and V is an invertible

operator in L(H). Write

V −1TV = (V −1T1V, · · · , V −1TnV ).
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If there is an ϵ > 0 such that
n∑

i=1

∥Tix∥2 ≥ ϵ∥x∥2 for any x ∈ (kerT )
⊥
, then for any

x ∈ (kerV −1TV )
⊥

n∑
i=1

∥V −1TiV x∥2 ≥ ϵ

∥V ∥2∥V −1∥2
∥x∥2.

Proof. Let P be the projection from H onto (kerT )
⊥

and Q = V −1PV . Then Q is an

idempotent operator. If H = (kerQ)
⊥ ⊕ kerQ, then Q =

(
I O
A O

)
. Let Q1 =

(
I O
O O

)
.

Then

kerQ1 = kerQ = kerV −1PV = kerV −1TV.

It follows that Q−1 is the projection from H onto (kerV −1TV )
⊥
. Since Q1x = x for any

x ∈ (kerV −1TV )
⊥

and TiP = Ti, i = 1, 2, · · · , n, QQ1 = Q,V Q = PV , hence we have
n∑

i=1

∥V −1TiV x∥2 =
n∑

i=1

∥V −1TiV Q1x∥2 =
n∑

i=1

∥V −1TiPV Q1x∥2

=

n∑
i=1

∥V −1TiV Qx∥2 ≥ 1

∥V ∥2
n∑

i=1

∥TiV Qx∥2.

Since V Q = PV, thus V Qx ∈ (kerT )⊥, we have
n∑

i=1

∥V −1TiV x∥2 ≥ ϵ

∥V ∥2
∥V Qx∥2 ≥ ϵ

∥V ∥2∥V −1∥2
∥Qx∥2 ≥ ϵ

∥V ∥2∥V −1∥2
∥x∥2,

where the last inequality is due to x = Q1x.

Proposition 3.1. Let S = (S1, · · · , Sn) and T = (T1, · · · , Tn) be two n-tuples of opera-

tors in L(H). If S is approximately similar to T and col(S) has closed range, then col(T )

has closed range too and dimkerS = dimkerT .

Proof. Because S is approximately similar to T , there is an inversely bounded sequence

of oprators {Vn} such that

∥V −1
n SiVn − Ti∥ → 0 (n → ∞), i = 1, 2, · · · , n.

Write S
(k)
i = V −1

k SiVk. Since col(S) has closed range, by Lemma 3.1
n∑

i=1

∥S(k)
i x∥

2
≥ ϵ2∥x∥2

for any x ∈ (kerS(k))⊥, where S(k) = (S
(k)
1 , · · · , S(k)

n ), that is∥∥∥( n∑
i=1

S
(k)
i

∗
S
(k)
i

) 1
2

x
∥∥∥ ≥ ϵ∥x∥.

On the other hand , since ker
( n∑
i=1

S
(k)
i

∗
S
(k)
i

) 1
2 = ker (S(k)), and

( n∑
i=1

S
(k)
i

∗
S
(k)
i

) 1
2 →

( n∑
i=1

T ∗
i Ti

) 1
2

(k → ∞),

by [1, Lemma 1.9], it follows that
( n∑
i=1

T ∗
i Ti

) 1
2 has closed range, and therefore col(T ) has

closed range too.
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Let Pk and P be the projections from H onto kerS(k) and kerT respectively. Since both

of col(S(k)) and col(T ) have closed range, there is r ≥ 0 such that
n∑

i=1

S
(k)
i

∗
S
(k)
i ≥ r(I − Pk)

and
n∑

i=1

T ∗
i Ti ≥ r(I − P ).

It follows that ∥Pk − P∥ → 0 (k → ∞), and therefore

dimkerT = dimranP ≤ lim inf
n→∞

dimranPn = dimkerS.

By symmetry, we also have dimkerT ≤ dimkerS, therefore dimkerT = dimkerS.

Corollary 3.1. Suppose S is approximately similar to T , where S and T are two double

commuting n-tuples of operators in L(H). If S is a Fredholm n-tupl of operators, then T is

a Fredholm n-tuple of operators too, and σja(S) = σja(T ).

We follow the notation of [7]. If Q ⊆ L(H), then the approximately double commutant of

Q, denoted by appr(Q), is the set of those operators T for which ∥AnT−TAn∥ → 0 (n → ∞)

whenever {An} is a bounded sequence such that ∥AnS−SAn∥ → 0 (n → ∞) for every S ∈ Q.

Theorem 3.1. Let T = (T1, · · · , Tn) be an n-tuple of operators in L(H) and Q =

{T1, · · · , Tn}. Suppose appr(Q)
′′
= C∗(Q). If n-tuples of operators S = (S1, · · · , Sn) is

approximately similar to T, then there is an n-tuple of operators R = (R1, · · · , Rn), such

that R is approximately equivalent to T and S is similar to R.

Proof. Since S is approximately similar to T , there is an invertibly bounded sequence

of {Vn} ∈ L(H) such that

∥V −1
n TiVn − Si∥ → 0 (n → ∞), i = 1, 2, · · · .

By [7, Theorem 3.4], for any T ∈ appr(Q)
′′
= C∗(Q), {V −1

n TVn} is a convergent sequence

in norm. Let π(A) = lim
n→∞

V −1
n AVn for any A ∈ C∗(Q). It is known easily that π is a rank-

preserving isomorphism and

∥π∥ ≤ sup
n
(∥V −1

n ∥, ∥Vn∥),

that is, π is a representation of C∗(Q).

We claim that π is completely bounded, indeed, for any matrix of operators (Aij)k×k,

where Aij ∈ C∗(Q), i, j = 1, 2, · · · , define

πk((Aij))k×k = (π((Aij))k×k = lim
n→∞

(V −1
n AijVn)k×k.

It is easily justified that

∥πk∥ ≤ sup
n

(∥V −1
n ∥, ∥Vn∥),

and

sup
j≥1

∥πj∥ ≤ sup
n

(∥V −1
n ∥, ∥Vn∥) < +∞.

Therefore π is completely bounded. It follows from [4, Theorem 1.10] that there is an

invertible operator V ∈ L(H), such that V −1π(·)V is a representation of C∗(Q).
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Write ρ(·) = V −1π(·)V . It is known easily that ρ is a rank-preserving ∗-isomorphism.

Hence by Theorem 2.1, ρ is approximately equivalent to id, that is, there is a sequence of

unitary operators {Un}, such that for any positive integer n and T ∈ C∗(Q), ρ(T )−U∗
nTUn ∈

K(H) and

∥ρ(T )− U∗
nTUn∥ → 0 (n → ∞).

It follows that Si = π(Ti) = V ρ(Ti)V
−1 and

∥ρ(Ti)− U∗
kTiUk∥ → 0 (k → ∞), i = 1, 2, · · · , n,

that is, S is approximately equivalent to (ρ(T1), · · · , ρ(Tn)) which is unitarily equvalent to

T . Let R = (ρ(T1), · · · , ρ(Tn)). The theorem is completed finally.

Corollary 3.2. Suppose N = (N1, · · · , Nn) is an n-tuple of normal operators in L(H).

If an n-tuple of operators S in L(H), S = (S1, · · · , Sn), is approximately similar to N , then

there is an n-tuple of operators R = (R1, · · · , Rn), which is unitarily equivalent to N , is

approximately equivalent to S.

Proof. Write Q = {N1, · · · , Nn}. Then appr(Q)
′′ ∈ C∗(Q). On the other hand, for any

T ∈ C∗(Q), if {Vk} is a bounded sequence such that

∥NiVk − VkNi∥ → 0 (k → ∞), i = 1, 2, · · ·n,

according to the asymptotic Fuglede’s theorem, it follows that

∥N∗
i Vk − VkN

∗
i ∥ → 0 (k → ∞), i = 1, 2, · · · ,

and T ∈ appr(Q)
′′

by [7, Theorem 2.2], that is, appr(Q)
′′

= C∗(Q). The corollary is

completed by Theorem 3.1.

The Corollary 3.2 generate partially the result of [7, Theorem 3.5].
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