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REMARKS ON h-TRANSFORM AND DRIFT**

Ying Jiangang*

Abstract

The author studies the h-transforms of symmetric Markov processes and corresponding
Dirichlet spaces, and also discusses the drift transformation of Fukushima and Takeda’s type[2]

and improves their result by a different approach.
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§1. h-Transforms

In this paper we are going to give a formula characterizing Revuz measures under h-

transform. Assume that X is a right Markov process with state space (E,B) which is

metrizable, constructed on the canonical space Ω of right continuous paths, and (Pt) and

(Uq) are the semigroup and resolvent of Xrespectively. Let h be an excessive function and

let Eh := {0 < h < ∞}. Define kernels Ph
t by

Ph
t (x, dy) =

1

h(x)
Pt(x, dy)h(y), x ∈ Eh;

= ϵx(dy), x ∈ E − Eh.

(1.1)

Then it is well known and easy to check that (Ph
t ) is a sub-Markovian semigroup on E. It

is also known (see, e.g. [6, 7]) that there exist probabilities P x/h on Ω for x ∈ E such that

Xh := (Xt, P
x/h) is a right process with state space (E,B) and semigroup (Ph

t ). Clearly

X = X1. We call Xh the h-transform of X (by h) and denote its resolvent by (Uh
q ). We

make the assumption that Eh = E in this paper just for convenience. The notations Eq(h)

and Excq(h), q ≥ 0, are used for the classes of functions and measures respectively excessive

relative to the semigroup (e−qtPh
t ) (or called q, h-excessive). Particularly Eq := Eq(1) and

Excq := Excq(1). (By convention q will be erased if q = 0.) Recall that v ∈ E(h) if and only

if vh ∈ E while ξ ∈ Exc if and only if hξ ∈ Exc(h). Also known as in [7] if Lh denotes the

energy functional of Xh, Lh(hξ, v) = L(ξ, hv) where ξ ∈ Exc, v ∈ E(h) and L := L1, the

energy functional of X.

As a convention for notations, the ‘p’ and ‘b’ before a class of functions stand for ‘non-

negative’ and ‘bounded’ respectively. For any measure µ and function f , µ(f) is a shorthand
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for the integral
∫
fdµ. For two functions f, g on E, (x, y) 7→ f(x)g(y) defines a function on

E × E, which is denoted by f ⊗ g.

§2. Revuz Measures

In this section we bring in weak duality. However some of the results are true even without

duality and we shall not bother to indicate them explicitly. Assume that, with respect to a

σ-finite measure m on E, X has a weak duality X̂ = (X̂t, P̂
x), which is also a right process

on (E,B), with semigroup (P̂t). As a convention the hat sign “ˆ” is always used on notations

to indicate that they are with respect to X̂. Clearly for h ∈ E, ĥ ∈ Ê, Xh and X̂ ĥ are in

duality with respect to the measure hĥm.

Let A be an additive functional of X, namely A is an increasing adapted process and for

almost every ω ∈ Ω, (i) At+s(ω) = At(ω)+As(θtω) for s, t ≥ 0; (ii) At(ω) < ∞ for t < ζ(ω).

Let UA (resp. Uh
A) denote the potential operator of A under X (resp. Xh). Let also, for

ξ ∈ Exc, νξA denote the bivariate Revuz measure of A relative to X and ξ; precisely for any

nonnegative measurable function G on E × E,

νξA(G) :=↑ lim
t↓0

1

t
P ξ

∫ t

0

G(Xs−, Xs)dAs.

Similarly the bivariate Revuz measure of A relative to Xh and an excessive measure ξ of

Xh is denoted by ν
ξ/h
A . Obviously the Revuz measure ρxiA of A relative to X and ξ is the

right marginal measure of corresponding bivariate Revuz measure, i.e., ρξA = νξA(1⊗ ·). We

say A is integrable to ξ if ρξA is finite, and s-integrable to xi if A =
∑
n
A(n) where each A(n)

is an additive functional of X integrable to ξ.

Lemma 2.1. If h ∈ E ĥ ∈ Ê and A is s-integrable to m, then

ν
hĥm/h
A = (ĥ⊗ h) · νmA .

Proof. Let G be any nonnegative measurable function on E × E. Set

κ(]s, t]) :=

∫
]s,t]

G(Xu−, Xu)dAu,

for 0 ≤ s < t. Then κ is an s-integrable homogeneous random measure. By (4.8) in [3], we

have

ν
hĥm/h
A (G) = ρhĥm/h

κ (1E) = ρĥmκ (h) = νĥmA (1⊗ h ·G).

Similarly by (8.12) in [5],

νĥmA (G) = lim
t↓0

t−1Pm[ĥ(X0)κ(]0, t])]

= lim
t↓0

t−1Pm[

∫ t

0

ĥ(Xs−)κ(ds)]

= νmA (ĥ⊗ 1 ·G).

Therefore

ν
hĥm/h
A = 1⊗ h · νĥmA

= (1⊗ h)(ĥ⊗ 1) · νmA = ĥ⊗ h · νmA .

That completes the proof.
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Finally we take a look at the canonical measures of X and its h-transform. Let d be a

metric on E and for positive integer n, Dn := {(x, y) ∈ E× : d(x, y) ≤ 1
n},

A
(n)
t :=

∑
s≤t

1Dc
n
(Xs−, Xs).

It is clear that each A(n) is an additive functional of X and s-integrable since the jumps

are uniformly bounded. The canonical measure of X relative to m is the increasing limit

of the bivariate Revuz measure of A(n) relative to X and m as n goes to infinity. Thus the

following result is immediate from Lemma 2.1.

Corollary 2.1. Let νm and νhĥm/h be the canonical measures of X and Xh relative to

m and hĥm, respectively. Then

νhĥm/h = (ĥ⊗ h) · νm. (2.1)

Remark 2.1. If (N,H) is a Lévy system of X, then it is not hard to check that a Lévy

system of Xh can be taken as (Nh, H), where

Nh(x, dy) := N(x, dy)h(y)/h(x).

The corollary above follows easily from this fact.

§3. Dirichlet Form Associated with h-Transform

In this section let X be an m-symmetric right process associated with a Dirichlet form

(E , D(E)). As usual Eq := E + q(·, ·) and (Eq, D(E)) is nothing but the Dirichlet space

associated with q-subprocess of X. It is well known that the h-transform Xh is an h2m-

symmetric right process associated with a Dirichlet form (Eh, D(Eh)) which is defined to

be

D(Eh) := {u ∈ L2(E;h2m) : uh ∈ D(E)};
Eh(u, v) := E(uh, vh), u, v ∈ D(Eh).

(3.1)

The form (Eh, D(Eh)) is called the h-transform of (E , D(E)). Clearly they are both quasi-

regular and if h is bounded, then bD(E) ⊂ D(Eh). For convenience any element in Dirichlet

spaces assumes automatically its quasi-continuous version. Let E(c), ν and k be the diffusion

part of E , the canonical measure and the killing measure of X relative to m respectively.

Then the Beurling-Deny formula for E reads as, for u ∈ D(E),

E(u, u) = E(c)(u, u) +
1

2

∫
(u(x)− u(y))2ν(dx, dy) + k(u2). (3.2)

Let Eh,(c), νh and kh be the counterparts of (Eh, D(Eh)).

Theorem 3.1. If h ∈ E ∩D(E) and 0 < h < ∞ a.e. m, then for u ∈ bD(Eh)

Eh,(c)(u, u) = E(c)(uh, uh)− E(c)(u2h, h);

νh = (h⊗ h) · ν;
kh(u2) = E(u2h, h).

Proof. The second formula is immediate by Corollary 2.1. For the other two, since
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h ∈ D(E), we see 1 ∈ D(Eh) and

kh(u2) = Eh(u2, 1) = E(u2h, h)

= E(c)(u2h, h) +
1

2

∫
[u2(x)h(x)− u2(y)h(y)][h(x)− h(y)]ν(dx, dy)

+ k(u2h2)

= E(c)(u2h, h) +

∫
u2(x)h(x)[h(x)− h(y)]ν(dx, dy) + k(u2h2).

Hence we have

Eh(u, u) = E(uh, uh)

= E(c)(uh, uh) +
1

2

∫
[u(x)h(x)− u(y)h(y)]2ν(dx, dy) + k(u2h2)

= E(c)(uh, uh) +
1

2

∫
[u(x)− u(y)]2h(x)h(y)ν(dx, dy)

+
1

2

∫
[u2(x)h(x)− u2(y)h(y)][h(x)− h(y)]ν(dx, dy) + k(u2h · h)

= E(c)(uh, uh)− E(c)(u2h, h) +
1

2

∫
[u(x)− u(y)]2νh(dx, dy) + E(u2h, h).

It follows immmediately that Eh,(c)(u, u) = E(c)(uh, uh) − E(c)(u2h, h), of which the strong

locality can be easily verified.

§4. Drift Transformation and Distorted Dirichlet Space

Now we fix α > 0 and consider the Ito-Watanabe’s factorization of h-transforms. Let

h := Uαg with g ∈ L2(E,m) ∩ bB(E) strictly positive and

Mt := e−αt h(Xt)

h(X0)
. (4.1)

Then M is a supermartingale multiplicative functional of X and the transformation carried

by M is actually an h-transform for α-subprocess Xα of X. Let M [h] be the martingale

part in Fukushima’s decomposition of A[h] := h(X·) − h(X0) and define formally (see §6.3
in [2] for details)

Z
[h]
t :=

∫ t

0

dM
[h]
s

h(Xs−)
, (4.2)

which is also a martingale additive functional of X. Let Z [h] = Z [h],c + Z [h],d be the

decomposition as continuous and purely discontinuous parts. Denote by L[h] the Doleans-

Dade’s exponential martingale of Z [h]. Then it admits a representation as follows:

L
[h]
t = exp

(
Z

[h],c
t − 1

2
⟨Z [h],c⟩t

)
eZ

[h],d
t

∏
s≤t

h(Xs)

h(Xs−)
e
−(

h(Xs)
h(Xs−)

−1)
1{t<ζ}. (4.3)

By Ito’s formula, we have

h(Xt)

h(X0)
= L

[h]
t · e

∫ t
0

Ah(Xs)
h(Xs)

ds, (4.4)

where A is the generator of (E , D(E)). Clearly Ah = −g + αh. Let Bt :=
∫ t

0
g(Xs)
h(Xs)

ds. Then

B is a PCAF and the Ito-Watanabe’s factorization of M is

Mt = L
[h]
t · e−Bt . (4.5)



No.4 Ying, J. G. REMARKS ON h-TRANSFORM AND DRIFT 477

This factorization may be extended to h ∈ Eα∩D(E) (set of α-potentials in terms of [2]).

In this case there exists a measure ξ of finite energy with a corresponding PCAF N such

that h = Uαξ = Uα
N1 a.e. Then the factorization above holds with Bt =

∫ t

0
1

h(Xs)
dNs.

In some sense the transformation involving L[h] is more important than h-transform since

L[h] may still be well defined as a martingale multiplicative functional and represented as

(4.3) as long as h admits the Fukushima’s decomposition, for instance when h is only a

nonnegative element in D(E) (though M , defined by (4.1), is no longer a supermartingale).

By Lemma 6.3.1 of [2] the transformed process X̃ of X by L[h] is h2m-symmetric. We

denote by (Ẽ , D(Ẽ)) the Dirichlet space on L2(E, h2m) associated with X̃ and let Xα,h be

the transformed process of X by M . Then Xα,h may be recovered from X̃ by a killing

transform associated with B. The following result generalizes slightly Theorem 6.3.1 in [2].

Theorem 4.1. Let h ∈ Eα ∩D(E) and be strictly positive.

(i) D(Eh) is densely contained in D(Ẽ).
(ii) For any u ∈ bD(Eh),

Ẽ(u, u) = Eh,(c)(u, u) +
1

2

∫
(u(x)− u(y))2h(x)h(y)ν(dx, dy).

(iii) 1 ∈ D(Ẽ) and Ẽ(1, 1) = 0.

(iv) If, in addition, h is bounded, then D(E) ⊂ D(Ẽ) and u ∈ D(E),

Ẽ(u, u) =
∫

h2dµc
⟨u⟩ +

1

2

∫
(u(x)− u(y))2h(x)h(y)ν(dx, dy), (4.6)

where µc
⟨u⟩ is the Revuz measure of ⟨M [u],c⟩.

Proof. It is easily seen that the Revuz measure of B relative to h2m is hξ and the

Dirichlet space associated with Xα,h is (Eh
α , D(Eh). By results in §6.1 of [2] we find that (i)

is true and for any u ∈ D(Eh),

Eh
α(u, u) = Ẽ(u, u) + ξ(u2h). (4.7)

However by Theorem 3.1

Eh
α(u, u) = Eh,(c)(u, u) +

1

2

∫
(u(x)− u(y))2νh(dx, dy) + E(u2h, h) + α(hu, hu) (4.8)

and

E(u2h, h) + α(hu, hu) = Eα(u2h, h) = Eα(u2h,Uαξ) = ξ(u2h).

Then (ii) easily follows from (4.7) and (4.8). Finally 1 ∈ D(Eh) ⊂ D(Ẽ) and Ẽ(1, 1) = 0

obviously.

If h is bounded, it is easily seen that bD(E) ⊂ D(Ẽ) and by Lemma 3.2.5 in [2] we find

that for u ∈ bD(E),

Eh,(c) = E(c)(uh, uh)− E(c)(u2h, h) =

∫
h2dµc

⟨u⟩.

Therefore

Ẽ(u, u) =
∫

h2dµc
⟨u⟩ +

1

2

∫
(u(x)− u(y))2h(x)h(y)ν(dx, dy).

Then we know that Ẽ(u, u) ≤ ||h||2∞E(u, u) for u ∈ bD(E) and it follows that D(E) ⊂ D(Ẽ)
and (4.6) holds for u ∈ D(E). That completes the proof.
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Remark 4.1. The problem was addressed detailedly in §6.3 of [2], where h = Uαg with

g ∈ L2(E,m) strictly positive and bounded. However our approach is rather different.

Example 4.1. Suppose that X is a diffusion, h is locally in D(E) and strictly positive.

Let Dl(E) be the totality of functions locally in D(E). Since the Fukushima’s decomposition

of A[h] still exists uniquely, we may still construct L[h] as above and

L
[h]
t = exp

(∫ t

0

dM
[h]
s

h(Xs)
− 1

2

∫ t

0

d⟨M [h]⟩s
h2(Xs)

)
1t<ζ . (4.9)

It is known by the recent work of Fitzsimmons[1] that Dl(E) = Dl(Ẽ) and for u ∈ Dl(Ẽ)

Ẽ(u, u) =
∫

h2µ⟨u⟩. (4.10)

Example 4.2. More precisely let X be a Brownian motion on Rd and h a nonnegative

function locally in H1(Rd). Set l(x) = lnh(x). Then l is also locally in H1(Rd). It follows

from Ito’s formula that

L
[h]
t = exp

(∫ t

0

∇l(Xs) · dXs −
1

2

∫ t

0

|∇l(Xs)|2ds
)
,

which gives us a drift (or distorted) Brownian motion Y on Rd which is h2m-symmetric and

has the Dirichlet form (Ẽ , D(Ẽ)) as for u, v ∈ D(Ẽ),

Ẽ(u, v) = 1

2

∫
∇u · ∇v · h2dx. (4.11)

Moreover the generator of Y , when restricted to smooth functions of compact support, has

the form

Ãf =
1

2
∆f +∇l · ∇f,

which is a drift to A. In particular, when l(x) = − 1
4 |x|

2, Y is called the Ornstein-Ulenbeck’s

process on Rd.

The examples hint that it is appropriate to call the transformation induced by L[h] the

drift transformation and the corresponding Dirichlet form (Ẽ , D(Ẽ)) the distorted form of

(E , D(E)) whenever it makes sense.
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23 (1987), 321–357.

[ 7 ] Sharpe, M. J., General theory of Markov processes, Academic Press, San Diego, 1988.
[ 8 ] Ying, J., Biveriate Revuz measures and the Feynman-Kac formula, Ann. Inst. Henri Poicaré, 32:2
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