THE INVARIANT CONTINUOUS-TRACE C*-ALGEBRAS BY THE ACTIONS OF COMPACT ABELIAN GROUPS**

FANG XIAOCHUN*

Abstract

The author studies the relation of continuous-trace property between C^* -algebra A and the fixed point C^* -algebra A^{α} in certain C^* -dynamic system (A, G, α) by introducing an α -invariant continuous trace property. For separable C^* -dynamic system (A, G, α) with G compact and abelian, A liminal, $\alpha_t \in \operatorname{Aut}_{C_b(\hat{A})}(A)$ and pointwise unitary, the necessary and sufficient condition for A to be continuous-trace, which contains A^{α} continuous-trace, is obtained.

Keywords Continuous-Trace, Action of Group, C*-Algebra
1991 MR Subject Classification 46L, 58F
Chinese Library Classification 0177.5, 019

§1. Introduction

Let (A, G, α) be a C^* -dynamic system. The relation between $A \times_{\alpha} G$ and A has been studied for a long time, and considerable progress has been made. Specially if A is a continuous-trace C^* -algebra, I. Raeburn and his collaborators got rich results several years ago. For example, [17] and [19] say that if \hat{A} is paracompact, G is abelian and α is locally unitary, then A is continuous-trace iff $A \times_{\alpha} G$ is continuous-trace. In other direction, the relation between $A \times_{\alpha} G$ and A^{α} with G compact has also been studied for many years. The movement of this paper is to investigate the continuous-trace relation between $A(A \times_{\alpha} G)$ and A^{α} and to characterize the pointwise unitary property in a C^* -dynamic system (A, G, α) with A continuous-trace. If A is separable and G is generated by a compact subset, then α is locally unitary iff α is pointwise unitary by Rosenberg's results. In this paper we prove that the pointwise unitary property is equivalent to α -invariant continuous-trace property, if G is compact and abelian, and $\alpha_t \in \operatorname{Aut}_{C_b(\hat{A})}(A)$. By the way, throughout the paper we always assume $\alpha_t \in \operatorname{Aut}_{C_b(\hat{A})}(A)$, which enables us to consider the action in fiber level and whose other equivalent description can be found in [16]. It is easy to see that if α is pointwise unitary then $\alpha_t \in \operatorname{Aut}_{C_b(\hat{A})}(A)$.

Manuscript received March 5, 1996.

^{*}Department of Applied Mathematics, Tongji University, Shanghai, 200092, China.

^{**}Project supported by the National Natural Science Foundation of China and the Academic Sinica Postdoctoral Foundation of China.

§2. α -Invariant Continuous-Trace Property and Pointwise Unitary Property

In this part, we give the definitions and some properties of $\alpha(\cdot)$ -invariant Fell's condition and α -invariant continuous-trace C^* -algebra.

Definition 2.1. Let X be a locally compact Hausdoff space, $\mathbf{A} = (A(x), \Lambda)$ be a continuous field of elementary C^{*}-algebras in the sense of [2]. For every $x \in X$, $(A(x), G, \alpha(x))$ is a C^{*}-dynamic system such that $\forall f(\cdot) \in \Lambda, t \in G, \alpha(\cdot)_t(f(\cdot)) \in \Lambda$, where $\alpha(\cdot)_t(f(\cdot))(x) = \alpha(x)_t(f(x))$. We say that \mathbf{A} satisfies $\alpha(\cdot)$ -invariant Fell's condition if for every $x \in X$ there is a neighbourhood N of x and a continuous field $p(\cdot)$ of projections of rank 1 over N such that $\alpha(y)_t(p(y)) = p(y), \forall y \in N, t \in G$.

Naturally we want to know, when \mathbf{A} is locally constructed by a continuous field of Hilbert spaces as in [2], what is the group action.

Let A be an elementary C^{*}-algebra, G be a locally compact Hausdorff group, (A, G, α) be a C^{*}-dynamic system, and $p \in A$ be a projection of rank 1 which is invariant under the action α . (H, ξ, U) is defined by (A, p, α) , where H = Ap is a Hilbert space, whose inner product is given by $\langle a, b \rangle = \operatorname{tr}(b^*a), \xi = p \in H$, and $U_t(ap) = \alpha_t(a)p, \forall t \in G$. By

 $||ap||_{H}^{2} = \operatorname{tr}(pa^{*}ap) = ||pa^{*}ap||_{A} = ||ap||_{A}^{2} \text{ and } \alpha_{t}(a)p = \alpha_{t}(ap),$

we see that U is a strongly continuous homomorphism from G to U(H) (the unitary group of H) and $U_t\xi = \xi, \forall t \in G$. We denote the map from (A, p, α) to (H, ξ, U) by β .

Let *H* be a Hilbert space, ξ be a unit vector in *H*, and *U* be a unitary representation of *G* on *H* such that $U_t \xi = \xi(\forall t \in G)$. We get (A, p, α) , where A = K(H), *p* is the projection of rank 1 on $\mathbf{C}\xi$, $\alpha_t = AdU_t$. $\forall \eta \in H$,

$$\alpha_t(p)\eta = U_t p U_t^* \eta = \langle U_t^* \eta, \xi \rangle U_t \xi = \langle \eta, \xi \rangle \xi = p \eta$$

So $\alpha_t(p) = p, \forall t \in G$. Put $\gamma(H, \xi, U) = (A, p, \alpha)$.

Lemma 2.1. (i) Let H be a Hilbert space, U be a unitary representation of G on H, ξ be a unit vector in H such that $U_t \xi = \xi$, $\forall t \in G$. Put

$$\gamma(H,\xi,U) = (A,p,\alpha), \quad \beta(A,p,\alpha) = (H^{'},\xi^{'},U^{'}).$$

Let $\varphi(a) = a\xi$, for each $a \in Ap = H'$. Then φ is an isomorphism of the Hilbert spaces such that $\varphi(\xi') = \xi$, $\varphi U'_t = U_t \varphi$.

(ii) Let A be an elementary C^{*}-algebra, (A, G, α) be a C^{*}-dynamic system, p be a projection of A of rank 1 such that $\alpha_t(p) = p$, $\forall t \in G$. Put

$$\beta(A, p, \alpha) = (H, \xi, U), \quad \gamma(H, \xi, U) = (A', p', \alpha').$$

For every $a \in A$, let $\psi(a)$ be a linear operator on H = Ap defined by $\psi(a)y = ay(\forall y \in Ap)$. Then ψ is an isomorphism from the C^{*}-algebra A onto C^{*}-algebra A' such that $\psi(p) = p'$, $\psi\alpha_t = \alpha'_t\psi, \forall t \in G$.

Proof. By [2, 10.6.6] and the discussion above, it is only necessary to check $\varphi U'_t = U_t \varphi$ and $\psi \alpha_t = \alpha'_t \psi$.

Let $\mathbf{H} = (H(x), \Gamma)$ be a continuous field of Hilbert space over locally compact space Xwith a continuous vector field $\xi(\cdot)$ such that $\|\xi(x)\| = 1$, U(x) be a unitary representation of G on H(x) such that $\forall \eta(\cdot) \in \Gamma$, $t \in G$, $U(\cdot)_t(\eta(\cdot)) \in \Gamma$ and $U(x)_t(\xi(x)) = \xi(x), \forall x \in X$. We put $\gamma(\mathbf{H}, \xi(\cdot), U(\cdot)) = (\mathbf{A}, p(\cdot), \alpha(\cdot))$ pointwise defined by discussion above in Lemma 2.1 and \mathbf{A} is the continuous field of elementary C^* -algebras $(A(x), \Lambda)$ over X, where Λ is (closed) generated by all sections of the form $\theta_{\xi_1(\cdot), \xi_2(\cdot)} + \theta_{\xi_3(\cdot), \xi_4(\cdot)} + \cdots + \theta_{\xi_{2n-1}(\cdot), \xi_{2n}(\cdot)}$ as in [2, 10.7], where $\xi_i(\cdot) \in \Gamma$. Since for every $\xi_1(\cdot), \xi_2(\cdot) \in \Gamma, x \in X, t \in G$,

$$\alpha(x)_t(\theta_{\xi_1(x),\xi_2(x)}) = U(x)_t\theta_{\xi_1(x),\xi_2(x)}U(x)_t^* = \theta_{U(x)_t\xi_1(x),U(x)_t\xi_2(x)},$$

for every $f(\cdot) \in \Lambda$, $t \in G$, $\alpha(\cdot)_t(f(\cdot)) \in \Lambda$.

Let $\mathbf{A} = (A(x), \Lambda)$ be a continuous field of elementary C^* -algebras over X, $(A(x), G, \alpha(x))$ be a C^* -dynamic system such that $\alpha(\cdot)_t(f(\cdot)) \in \Lambda$, $\forall t \in G, f(\cdot) \in \Lambda, p(\cdot)$ be a continuous section of projections of rank 1 such that $\alpha(x)_t(p(x)) = p(x)$, $\forall x \in X, t \in G$. We put $\beta(\mathbf{A}, p(\cdot), \alpha(\cdot)) = (\mathbf{H}, \xi(\cdot), U(\cdot))$, pointwise defined by discussion above in Lemma 2.1, and $\mathbf{H} = (H(x), \Gamma)$ is a continuous field of Hilbert spaces over X, where Γ is the set of all $\eta(\cdot) \in \Lambda$ such that for every $x \in X$, $\eta(x)p(x) = \eta(x)$. For every $\eta(\cdot) \in \Gamma$, $t \in G$, $x \in X$,

$$(U(x)_t(\eta(x)))p(x) = (\alpha(x)_t(\eta(x)))p(x) = \alpha(x)_t(\eta(x)) = U(x)_t(\eta(x)),$$

and so clearly $U(\cdot)_t(\eta(\cdot)) \in \Gamma$. We also have $U(x)_t(\xi(x)) = \xi(x), \forall x \in X$.

Lemma 2.2. (i) Let $\mathbf{H} = (H(x), \Gamma)$ be a continuous field of Hilbert spaces over X, with a continuous section $\xi(\cdot)$ such that $\|\xi(x)\| = 1$, U(x) be a unitary representation of G on H(x) such that $U(x)_t(\xi(x)) = \xi(x)$ for every $x \in X$, and $U(\cdot)_t(\eta(\cdot)) \in \Gamma$, for every $\eta(\cdot) \in \Gamma$, $t \in G$. Put $(\mathbf{H}', \xi'(\cdot), U'(\cdot)) = \beta \gamma(\mathbf{H}, \xi(\cdot), U(\cdot))$, $\mathbf{H}' = (H'(x), \Gamma')$. For every $x \in X$, let φ_x be an isomorphism from H'(x) onto H(x) (Lemma 2.1). Then $\varphi = (\varphi_x)_{x \in X}$ is an isomorphism from \mathbf{H}' to \mathbf{H} such that $U(x)\varphi_x = \varphi_x U'(x)$.

(ii) Let $\mathbf{A} = (A(x), \Lambda)$ be a continuous field of elementary C^* -algebras over X with a continuous section $p(\cdot)$ of projections of rank 1, $(A(x), G, \alpha(x))$ be a C^* -dynamic system such that for every $t \in G$, $f(\cdot) \in \Lambda$, $\alpha(\cdot)_t(f(\cdot)) \in \Lambda$, and $\alpha(x)_t(p(x)) = p(x)$. Let $(\mathbf{A}', p'(\cdot), \alpha'(\cdot)) = \gamma \beta(\mathbf{A}, p(\cdot), \alpha(\cdot)), \mathbf{A}' = (A'(x), \Lambda')$. For every $x \in X$, let ψ_x be the canonical isomorphism from A(x) onto A'(x) (Lemma 2.1). Then $\psi = (\psi_x)_{x \in X}$ is an isomorphism from \mathbf{A} to \mathbf{A}' such that $\psi_x(p(x)) = p'(x), \alpha'(x)_t\psi_x = \psi_x\alpha(x)_t, \forall x \in X, t \in G$.

Proof. Use Lemma 2.1, the discussion above, and [2, 10.7.6].

Corollary 2.1. Let $\mathbf{A} = (A(x), \Lambda)$ be a continuous field of elementary C^* -algebras; for every $x \in X$, $(A(x), G, \alpha(x))$ be a C^* -dynamic system such that $\alpha(\cdot)_t(f(\cdot)) \in \Lambda$, $\forall t \in G$, $f(\cdot) \in \Lambda$. Then the following are equivalent:

(i) For every $x_0 \in X$, there exist a neighbourhood V of x_0 , a continuous field of Hilbert spaces $\mathbf{H} = (H(x), \Gamma)$ over V with a continuous vector field $\xi(\cdot)$ over V with $\|\xi(x)\| = 1(\forall x \in V)$, and for every $x \in V$ a unitary representation U(x) of G on H(x) satisfying $U(x)_t(\xi(x)) = \xi(x), U(\cdot)_t(\eta(\cdot)) \in \Gamma$ for every $t \in G, \eta(\cdot) \in \Gamma$, such that $\mathbf{A}|_V$ is isomorphic to $\mathbf{A}(\mathbf{H}) = \gamma(\mathbf{H})$ and the isomorphism maps α to $AdU(\cdot)$.

(ii) A satisfies the $\alpha(\cdot)$ -invariant Fell's condition.

Definition 2.2. Let A be a limital C^* -algebra with Hausdoff spectrum, (A, G, α) be a C^* -dynamic system. A is called α -invariant continuous-trace C^* -algebra if for every $x_0 \in \hat{A}$, there is a neighbourhood N of x_0 and a $p \in A^{\alpha}$, $p \ge 0$, such that $\forall x \in N$, x(p) is a projection of rank 1. It is clear that an α -invariant continuous-trace C^* -algebra is a continuous-trace C^* -algebra.

Lemma 2.3. Let A be a limital C^* -algebra with Hausdorff spectrum, (A, G, α) be a C^* -dynamic system such that for every $t \in G$, $\alpha_t \in \operatorname{Aut}_{C_b(\hat{A})}(A)$. Let $\mathbf{A}(A) = (A(x), \Lambda)$ be the continuous field of elementary C^* -algebras over \hat{A} defined by A, and for every $x \in \hat{A}$, $a \in A$, let $\alpha(x)_t(a(x)) = x(\alpha_t(a))$. Then for every $f(\cdot) \in \Lambda, t \in G$, $\alpha(\cdot)_t(f(\cdot)) \in \Lambda$ and A is an α -invariant continuous-trace C^* -algebra if and only if $\mathbf{A}(A)$ satisfies the $\alpha(\cdot)$ -invariant Fell's condition.

Proof. A is (closed) generated by $\{a(\cdot)|a \in A\}$ (see [2]), where a(x) = x(a), $\forall x \in A$. So $\alpha(\cdot)_t(f(\cdot)) \in \Lambda, \forall f(\cdot) \in \Lambda, t \in G$. It is also clear that $(A(x), G, \alpha(x))$ is a C^* -dynamic system by [16, Lemma 1.4], and $A \cong \Gamma_0(\mathbf{A})$ by [2, Lemma 10.5.4]. Denoting this isomorphism by φ , we see $\varphi \alpha = \alpha(\cdot)\varphi$. If A is an α -invariant continuous-trace C^* -algebra, for every $x_0 \in \hat{A}$ there exists a neighbourhood N of x_0 and a $p \in A^{\alpha}$ such that for every $x \in N, x(p)$ is a projection of rank 1, then $\varphi(p)$ is invariant under $\alpha(\cdot)$ and $\varphi(p)(x) = x(p)$ for every $x \in N$. So $\mathbf{A}(A)$ satisfies the $\alpha(\cdot)$ -invariant Fell's condition. Conversely $\forall x_0 \in \hat{A}$, there exists a neighbourhood N_1 of x_0 and a continuous field of projections $p_1(\cdot)$ of rank 1 over N_1 such that $\forall x \in N_1, t \in G, \alpha(x)_t(p_1(x)) = p_1(x)$ and $\overline{N_1}$ is compact. Taking a neighbourhood N of x_0 such that $N \subset \overline{N} \subset N_1$, we can choose a continuous field of projections for \hat{A} such that f(x) = 1, if $x \in N$, and f(x) = 0, if $x \in N_1^c$. Let $p(\cdot)$ be the continuous field of projections over $\hat{A}, p(x) = f(x)p_1(x)$ if $x \in N_1$, and p(x) = 0 if $x \in N_1^c$. Then for every $t \in G, x \in \hat{A}, \alpha(x)_t(p(x)) = p(x)$, and for every $x \in N, p(x)$ is a projection of rank 1. By φ , there is a unique $p \in A^{\alpha}$ such that x(p) = p(x). So A is an α -invariant continuous-trace C^* -algebra.

Lemma 2.4. Let (A, G, α) be a C^* -dynamic system with $\alpha_t \in \operatorname{Aut}_{C_b(\hat{A})}(A)$, $A \alpha$ -invariant continuous-trace. Then α is pointwise unitary.

Proof. By Lemma 2.3 and Corollory 2.1 for every $x_0 \in \hat{A}$, there is a neighbourhood N of x_0 such that $\mathbf{A}(A)|_N \cong \mathbf{A}(\mathbf{H})$, where \mathbf{H} is a continuous field of Hilbert spaces. Let $\varphi(\cdot)$ be this isomorphism. We also have $\varphi(x)\alpha(x)_t = AdU(x)_t\varphi(x), \forall x \in N, t \in G$. Specially let $x = x_0$. For every $a \in A$,

$$\varphi(x_0)x_0(\alpha_t(a)) = \varphi(x_0)\alpha(x_0)_t(x_0(a)) = AdU(x_0)_t(\varphi(x_0)x_0(a)).$$

So $(\varphi(x_0)x_0, U(x_0))$ is a covariant pair of representation of (A, G, α) . Since $\varphi(x_0)$ is an isomorphism from elementary C^* -algebra $x_0(A)$ onto $K(H(x_0)), \varphi(x_0)x_0 \cong x_0$. So A is pointwise unitary.

Theorem 2.1. Let (A, G, α) be a C^{*}-dynamic system with G compact and abelian, $\alpha_t \in \operatorname{Aut}_{C_k(\hat{A})}(A)(\forall t \in G)$. Then the following are equivalent:

(i) The closed ideal generated by $m(A) \cap A^{\alpha}$ is A, and A is pointwise unitary, where m(A) are the continuous-trace ideal of A.

(ii) For every $x_0 \in \hat{A}$, there exists $a \in m(A) \cap A^{\alpha}$ such that $x_0(a) \neq 0$, and A is pointwise unitary.

(iii) A is an α -invariant continuous-trace C^{*}-algebra.

(iv) A is a continuous-trace C^* -algebra, and α is pointwise unitary.

(v) (A, G, α) is locally equivalent to $(C_0(\hat{A}), G, id)$ in the sense of [25].

Proof. The equivalence of (i) and (ii) is an easy consequence of the fact that for every closed ideal I of A, $I = \bigcap_{\hat{A} \setminus \hat{I}} \ker x$. And the equivalence of (iv) and (v) is proved in Propsition

4.3 of [25].

(iii) \Rightarrow (iv). Lemma 2.4.

(iii) \Rightarrow (ii). we only need to prove the first part. Since A is of continuous-trace, \hat{A} is Hausdorff and A is liminal. $\forall x_0 \in \hat{A}$, there is a neighbourhood N of x_0 and a $p \in A^{\alpha}$ such that $\forall x \in N, x(p)$ is a projection of rank 1. Choosing an open set W such that $x_0 \in W \subset \overline{W} \subset N$, we let $I = \bigcap_{\substack{x \in \hat{A} \setminus W}} \ker x$, so $\hat{I} \cong W$. Since $x_0 \in W$, by the theorem on transitity, we can choose $a \in I^+$ such that $x_0(a)x_0(p) = x_0(p)$. Replacing a by $\int \alpha_t(a)dt$ and using $p \in A^{\alpha}$, we can assume $a \in I^+ \cap A^{\alpha}$. Put $b = p^{\frac{1}{2}}ap^{\frac{1}{2}}$. Then $b \in m(A) \cap A^{\alpha}$, and $x_0(b) = x_0(p)x_0(a)x_0(p) = x_0(p) \neq 0$.

(ii) \Rightarrow (iii). For every $x_0 \in \hat{A}$, there exists $a_0 \in m(A) \cap A^{\alpha}$, $x_0(a_0) \neq 0$. We can assume that $a_0 \in A^+$, and $||x_0(a_0)|| = 1$. For $x_0(A) = K(H_0)$, where H_0 is the Hilbert space of representation x_0 , the eigenspace H_1 of $x_0(a_0)$ corresponding to eigenvalue 1 is not zero. Let $\alpha(x_0)_t(x_0(a)) = x_0(\alpha_t(a))$ ($\forall t \in G, a \in A$). By the pointwise unitary of A, there is a unitary representation $U(x_0)$ of G on H_0 such that $x_0(\alpha_t(a)) = AdU(x_0)_t(x_0(a))$. So

$$\alpha(x_0)_t(x_0(a)) = AdU(x_0)_t(x_0(a))$$

For every $\xi \in H_1$, $x_0(a_0)\xi = \xi$. So

$$U(x_0)_t(x_0(a_0))U(x_0)_t^*\xi = x_0(\alpha_t(a_0))\xi = x_0(a_0)\xi = \xi,$$

i.e., $x_0(a_0)U(x_0)_t^*\xi = U(x_0)_t^*\xi(\forall t \in G)$. Therefore $U(x_0)_tH_1 = H_1(\forall t \in G)$. By the compactness of $x_0(a_0)$, we assume that the dimension of H_1 is $n < \infty$. We assert that for every $t \in G$, there is a $\mu(t) \in \mathbf{C}$, $|\mu(t)| = 1$, such that $\{\overline{\mu(t)}U(x_0)_t|t \in G\}$ have a common nonzero fixed point in H_1 . In fact $t \in G$, the spectrum of $U(x_0)_t|_{H_1}$ is a point spectrum and contained in the unit circle of \mathbf{C} . Let $\mu(t)$ be a spectral point. Then $\overline{\mu(t)}U(x_0)_t|_{H_1}$ has a point spectrum 1. So $\overline{\mu(t)}U(x_0)_t$ has fixed points in H_1 . We let $H_{t,\mu(t)} = \{\xi \in H_1, \overline{\mu(t)}U(x_0)_t\xi = \xi\}$. Since G is abelian, $U(x_0)_s$ commutes with $\overline{\mu(t)}U(x_0)_t$ for every $t \in G$. Choosing $t_1 \in G$ and $\mu(t_1)$ as above, we see that $H_{t_1,\mu(t_1)}$ is a finite dimension invariant subspace of $U(x_0)_s(\forall s \in G)$. Similiarly if there is $s \in G$ such that every eigenspace of $U(x_0)_s|_{H_{t_1,\mu(t_1)}}$ corresponding to one eigenvalue is not $H_{t_1,\mu(t_1)}$, we can choose $t_2 \in G$, $\mu(t_2) \in \mathbf{C}$, $|\mu(t_2)| = 1$, such that

$$\dim(H_{t_1,\mu(t_1)}) > \dim(H_{t_1,\mu(t_1)}) \bigcap H_{t_2,\mu(t_2)}) \neq 0.$$

Continuing this process, we have two cases:

(1) There are $t_1, t_2, \dots, t_m \in G, \mu(t_1), \mu(t_2), \dots, \mu(t_m) \in \mathbb{C}, |\mu(t_i)| = 1 \ (1 \le i \le m)$ such that for $1 \le i \le m - 1$

$$\dim\left(\bigcap_{j=1}^{i} H_{t_j,\mu(t_j)}\right) > \dim\left(\bigcap_{j=1}^{i+1} H_{t_j,\mu(t_j)}\right), \ \dim\left(\bigcap_{j=1}^{m} H_{t_j,\mu(t_j)}\right) = 1.$$

(2) There is an $H_G \subset H_1$, dim $H_G \ge 2$, and for every $t \in G$, there is $\mu(t)$ such that $H_{t,\mu(t)} \supset H_G$. In case (2), the assertion is clear. In case (1), since $H_{t_j,\mu(t_j)}$ is an invariant subspace of $U(x_0)_t$, so is $\bigcap_{i=1}^m H_{t_j,\mu(t_j)}$. But its dimension is 1, so there is

$$\xi \in \bigcap_{j=1}^{m} H_{t_j,\mu(t_j)}, \quad \|\xi\| = 1, \quad U(x_0)_t \xi = \mu(t)\xi \quad (t \in G).$$

Therefore $\overline{\mu(t)}U(x_0)_t$ has a fixed point ξ . This completes the assertion. Let $\xi_0 \neq 0$ be a common fixed point of $\{\overline{\mu(t)}U(x_0)_t | t \in G\}$ in H_1 , and p_0 be the projection on $\mathbf{C}\xi_0$. Then $\forall \eta \in H_0$,

$$\begin{aligned} \alpha(x_0)_t(p_0)\eta &= AdU(x_0)_t(p_0)\eta \\ &= U(x_0)_t p_0 U(x_0)_t^* \eta \\ &= \overline{\mu(t)} U(x_0)_t (\langle \mu(t)U(x_0)_t^* \eta, \xi_0 \rangle \xi_0) \\ &= \langle \eta, \overline{\mu(t)}U(x_0)_t \xi_0 \rangle (\overline{\mu(t)}U(x_0)_t \xi_0) \\ &= \langle \eta, \xi_0 \rangle \xi_0 = p_0 \eta. \end{aligned}$$

So $p_0 \in x_0(A)^{\alpha(x_0)} = (K(H_0))^{\alpha(x_0)}$ is a projection of rank 1. Let $b \in A^+$ such that $x_0(b) = p_0$. Replacing b by $\int \alpha_t(b)dt$, we can assume $b \in A^{\alpha}$. Let $b_1 = f(b)$, where f(t) = t, for $0 \leq t \leq 1$; f(t) = 1, for $t \geq 1$. Then $0 \leq b_1 \leq 1$, $b_1 \in A^{\alpha}$, and $x_0(b_1) = f(x_0(b)) = f(p_0) = p_0$. Let $b_2 = a_0^{\frac{1}{2}} b_1 a_0^{\frac{1}{2}} \in A^{\alpha}$. Then

$$x_0(b_2) = x_0(a_0)^{\frac{1}{2}} p_0 x_0(a_0)^{\frac{1}{2}} = p_0$$

Since $b_2 \leq a_0$ (so $b_2 \in A^{\alpha} \cap m(A)^+$) and $\operatorname{tr}(x_0(b_2)) = 1, ||x_0(b_2)|| = 1$, there exists a neighbourhood N of x_0 such that for every $x \in N$, the largest eigenvalue of $x(b_2)$ is large than $\frac{3}{4}$, while the others are less than $\frac{1}{2}$, and $\operatorname{tr}(x(b_2)) < 2$. Let $p = g(b_2)$, where $g(t) \in C(\mathbf{R})$, g(t) = 1, if $t \geq \frac{3}{4}$; g(t) = 0 if $t \leq \frac{1}{2}$; g(t) is linear if $\frac{1}{2} \leq t \leq \frac{3}{4}$. Then $p \in m(A) \cap A^{\alpha}$, and for every $x \in N$, x(p) is a projection of rank 1.

 $(iv) \Rightarrow (ii)$. If A is a continuous-trace C^* -algebra, for every $x_0 \in \hat{A}$, there is $a \in m(A)^+$ such that $x_0(a) \neq 0$. Because (A, G, α) is pointwise unitary, for every $x \in \hat{A}$, there is a unitary representation U(x) of G such that $\alpha(x) = AdU(x)$. Let $b = \int \alpha_t(a)dt \in A^{\alpha}$. Then

$$\operatorname{tr}(x(b)) = \operatorname{tr}\left(\int x(\alpha_t(a))dt\right) = \operatorname{tr}\left(\int \alpha(x)_t(x(a))dt\right)$$
$$= \int \operatorname{tr}(AdU(x)_t(x(a)))dt = \int \operatorname{tr}(x(a))dt = \operatorname{tr}(x(a))dt$$

So $b \in A^{\alpha} \cap m(A)$, and clearly $x_0(b) \neq 0$.

Remark 2.1. The equivalence of (i) and (ii) does not require that G should be compact abelian and $\alpha_t \in \operatorname{Aut}_{C_b(\hat{A})}(A)$; (iii) \Rightarrow (vi) does not require that G should be compact abelian; (iii) \Rightarrow (ii) does not require that G should be abelian.

§3. α -invariant Continuous-Trace Property of *A* and Continuous-Trace Property of A^{α}

In this part, we discuss the continuous-trace relation between A^{α} and A.

Lemma 3.1. Let $A \subset K(H)$ be a nondegenerate C^* -algebra. Then $H = \bigoplus_i \bigoplus_{j=1}^{n_i} H_{ij}$ $(n_i < \infty)$ such that (id, H_{ij}) is an irreducible representation of A, and (id, H_{ij}) is equivalent to (id, H_{il}) , (id, H_{ij}) is disjoint with $(id, H_{kl})(i \neq k)$, and for every $\pi \in \hat{A}$, π is equivalent to some (id, H_{ij}) .

Proof. By [2, 5.4.13], (id, H) is equivalent to $\bigoplus_{i} \bigoplus_{j=1}^{n_i} (\pi_{ij}, K_{ij})$, where $n_i < \infty$, and (π_{ij}, K_{ij}) is an irreducible representation of A, π_{ij} is equivalent to π_{il} , π_{ij} is disjoint with

 π_{kl} $(i \neq k)$. So (id, H) is equal to $\bigoplus_{i} \bigoplus_{j=1}^{n_i} (id, H_{\pi_{ij}})$. Denoting $H_{\pi_{ij}}$ by H_{ij} , we see that $H = \oplus H_{ij}$, and (id, H_{ij}) is equivalent to $(id, H_{il}), (id, H_{ij})$ is disjoint with (id, H_{kl}) $(i \neq k)$. Let $E_{ij} \in A'$ be the projection corresponding to (id, H_{ij}) . Then $E_{ij}H = H_{ij}$, and for fixed i the central projections of $E_{ij}(j = 1, 2, \cdots, n_i)$ in $A' \cap A''$ are the same, notated by F_i . By irreducibility, if $i \neq k, F_i$ is orthogonal to F_k . Since

$$\sum_{i} F_i \ge \sum_{i,j} E_{ij} = 1, \quad \sum_{i} F_i = 1.$$

Let (π, H_0) be an irreducible representation of A. There is an irreducible representation $(\tilde{\pi}, \tilde{H}_0)$ of K(H) such that $\tilde{\pi}|_{H_0} = \pi$. By irreducibility, $(\tilde{\pi}, \tilde{H}_0)$ is equivalent to (id, H), so there is an isometric isomorphism U from H onto \tilde{H}_0 such that $\tilde{\pi} = (AdU)id$. Let $H_{\pi} = U^*H_0$. Then

$$AU^*H_0 = U^*UAU^*H_0 = U^*\tilde{\pi}(A)H_0 = U^*\pi(A)H_0 \subset U^*H_0.$$

So (id, H_{π}) is equivalent to (π, H_0) as the irreducible representation of A. Let E_{π} be the projection corresponding to (id, H_{π}) , F_{π} be the central projection of E_{π} . By the irreducibility of (id, H_{π}) and (id, H_{ij}) , there is an i_0 such that $F_{i_0} = F_{\pi}$. So (id, H_{π}) is equivalent to (id, H_{i_0j}) , i.e., (π, K) is equivalent to some (id, H_{ij}) .

The following lemma is well known (for example [24, Theorem 3.2] is essentially one of it is generalized forms). For clearness we give it a simple proof.

Lemma 3.2. Let A be a C^* -algebra with Hausdorff spectrum, (A, G, α) be a C^* -dynamic system with G compact, $\alpha_t \in \operatorname{Aut}_{C_b(\hat{A})}(A)$. Then $X_{\alpha} = \{x \in \hat{A} | x(A^{\alpha}) \neq 0\} = \hat{I}$ is an open set of \hat{A} , where I is the closed ideal generated by A^{α} , and there exists a continuous open mapping θ from $\operatorname{Prim}(A^{\alpha})$ onto X_{α} .

Proof. Let $\mathbf{A} = (A(x), \Lambda)$ be a continuous field of C^* -algebras defined by A. For every $x \in X_{\alpha}$, let $E_{\alpha}(x) = A(x)^{\alpha(x)}$ where $\alpha(x)_t(x(a)) = x(\alpha_t(a))$ for every $a \in A$, and let Λ_0 be the restriction of Λ on X_{α} in the sense of [2], and let

$$\Lambda_{\alpha} = \{ a(\cdot) \in \Lambda_0 | a(x) \in A(x)^{\alpha(x)}, \forall x \in X_{\alpha} \}.$$

We assert that $\mathbf{A}^{\alpha} = (E_{\alpha}(x), \Lambda_{\alpha})$ is a continuous field of C^{*}-algebras over X_{α} .

Let φ be the homomorphism from A^{α} to $\Gamma_0(\mathbf{A}^{\alpha})$ (the C^* -algebra defined by \mathbf{A}^{α}) defined by $\varphi(a)(x) = x(a) \ (\forall x \in X_{\alpha})$. By Dans-Hoffmann theorem and [2, 11.5.3.], $A^{\alpha} = \Gamma_0(\mathbf{A}^{\alpha})$ and this completes the proof by [11, Theorem 4].

Remark 3.1. We have proved that A^{α} is isomorphic to the C^* -algebra defined by \mathbf{A}^{α} .

Theorem 3.1. Let (A, G, α) be a C^* -dynamic system with A liminal, \hat{A} Hausdorff, A^{α} continuous-trace, G compact and $\alpha_t \in \operatorname{Aut}_{C_b(\hat{A})}(A)$. Let I be the (closed) ideal of Agenerated by A^{α} . If $\theta : \widehat{A^{\alpha}} \to \hat{I}$ (defined in Lemma 3.2) is a sheaf and for every $x \in \hat{I}$, every minimal projection in $(A(x)^{\alpha(x)}|_{\overline{A(x)^{\alpha(x)}H(x)}})' \subset B(\overline{A(x)^{\alpha(x)}H(x)})$ is central, then I is an α -invariant continuous-trace C^* -algebra.

Proof. Because $A^{\alpha} = I^{\alpha}$, we assume I = A. For $x \in \widehat{A}$, there are an open set $N \subset \widehat{A}^{\alpha}$ and $p \in (A^{\alpha})^+$ such that $\theta(N)$ is a neighbourhood of x, $\theta|_N$ is a homeomorphism, and for every $y \in N, y(p)$ is a projection of rank 1, and for every $y_1 \in N^c$ such that

$$\theta(y_1) \in \theta(N), \quad y_1(p) = 0.$$

Vol.19 Ser.B

By Remark 3.1, and the construction in Theorem 4 of [11], $y(p) = \pi(\theta(y)(p))$, where π is an irreducible representation of $A(\theta(y))^{\alpha(\theta(y))} \stackrel{\triangle}{=} A^y$. But A is limited as $A(\theta(y)) = K(H(\theta(y)))$. By Lemma 3.1, $\pi \cong (id, H_{\pi})$, where $H_{\pi} \subset \overline{A^y(H(\theta(y)))} \stackrel{\triangle}{=} H_y$. So $\theta(y)(p)|_{H_{\pi}}$ is a projection of rank 1. Let E_{π} be the projection of H_y on H_{π} . Then E_{π} is a minimal projection in $(A^y|_{H_y})' \subset B(H_y)$ by the irreducibility of π . So E_{π} is central. By the same reason and Lemma 3.1, $H_y = \oplus H_j$, and letting E_j be the projection on H_j , we see that E_j is orthogonal to $E_i(i \neq j)$, and E_j is central.

If there is a j_0 such that $E_{j_0} \neq E_{\pi}$ (so $(id, H_{j_0}) \ncong (id, H_{\pi})$) and $\theta(y)(p)E_{j_0} \neq 0$, let $y_{j_0} = (id, H_{j_0})\theta(y)$ be an irreducible representation of A^{α} , then

$$\theta(y_{j_0}) = \theta(y) \in \theta(N), \quad y_{j_0} \notin N, \quad \text{and} \quad y_{j_0}(p) = \theta(y)(p)E_{j_0} \neq 0.$$

This is a contradiction, so $\theta(y)(p)$ is a projection in $H(\theta(y))$ of rank 1, since $\theta(y)(p)|_{H^{\perp}_{u}} = 0$.

Corollary 3.1. Let (A, G, α) be a C^* -dynamic system with A liminal, \hat{A} Hausdorff, G compact and $\alpha_t \in \operatorname{Aut}_{C_b(\hat{A})}(A)$, I be the closed ideal generated by A^{α} . If for every $x \in \hat{I}$, $x(A^{\alpha}) = K(\overline{A(x)^{\alpha(x)}H(x)})$, then I is an α -invariant continuous-trace C^* -algebra iff A^{α} is a continuous-trace C^* -algebra.

Proof. In this case, $(A(x)^{\alpha(x)}|_{\overline{A(x)^{\alpha(x)}(H(x))}})'$ is trival, and by Lemma 3.2, [11, Theorem 4], θ is a homeomorphism.

Theorem 3.2. Let (A, G, α) be a C^* -dynamic system with A^{α} continuous-trace, G compact and abelian, $\alpha_t \in \operatorname{Aut}_{C_b(\hat{A})}(A)$ ($\forall t \in G$). If I is an α -invariant continuous-trace C^* -algebra, then $\theta : \widehat{A^{\alpha}} \to \widehat{I}$ is a sheaf, and for every $x \in \widehat{I}$, every minimal projection in $(A(x)^{\alpha(x)}|_{\overline{A(x)^{\alpha(x)}H(x)}})' \subset B(\overline{A(x)^{\alpha(x)}H(x)})$ is central.

Proof. Since $A^{\alpha'} = I^{\alpha}$, without loss of generality, we assume A = I. First for every $x \in \hat{A}$, we see that $\theta^{-1}(x)$ is discret in $\widehat{A^{\alpha}}$. Otherwise because $\widehat{A^{\alpha}}$ is Hausdorff, there is a net $\{z_i\} \subset \theta^{-1}(x)$, and $z \in \theta^{-1}(x)$ such that $z_i \to z, z_i \neq z$. By Lemma 3.1,

$$z_i \cong (id, H_i)x, \quad z \cong (id, H_0)x,$$

where H_0 , $H_i \subset \overline{A(x)^{\alpha(x)}H(x)}$ (notated by $H(x,\alpha)$) and (id, H_i) , (id, H_0) are irreducible representations of $A(x)^{\alpha(x)}$. Let F_i and F respectively be the central projections in $(A(x)^{\alpha(x)}|_{H(x,\alpha)})'$ corresponding to (id, H_i) and (id, H_0) , U(x) be the unitary representation of G on H(x) such that $AdU(x)_t = \alpha(x)_t$. Then

$$\ker z_i = \{a \in A^{\alpha} | x(a)F_i = 0\},\$$

and for every $a \in A^{\alpha}, \xi \in H(x)$,

$$U(x)_t(x(a)\xi) = x(a)(U(x)_t\xi).$$

So $H(x, \alpha)$ is invariant under $U(x)_t$. Let $U(x, \alpha)_t$ be the restriction of $U(x)_t$ on $H(x, \alpha)$. For every $b \in A^{\alpha}$,

$$U(x,\alpha)_t x(b) U(x,\alpha)_t^* = U(x)_t x(b) U(x)_t^* |_{H(x,\alpha)} = x(b) |_{H(x,\alpha)}$$

i.e., $U(x,\alpha)_t \in (A(x)^{\alpha(x)}|_{H(x,\alpha)})'$. So

$$AdU(x,\alpha)_t(F_i) = F_i,$$

and so is it for F. Since A^{α} is a continuous-trace C^* -algebra, there is $p \in A^{\alpha}$ such that z(p) is a projection of rank 1. So $x(p)|_{FH(x,\alpha)}$ has eigenvalue 1, whose eigenspace is invariant

under $U(x, \alpha)_t (\forall t \in G)$. By the same discussion as in the proof of Theorem 2.1. (ii) \Rightarrow (iii), there is a $\xi_0 \in FH(x, \alpha)$, $\|\xi_0\| = 1$ such that

$$U(x)_t \xi_0 = \lambda(x, t) \xi_0,$$

where $\lambda(x,t)$ is a complex number with module 1. Let p_0 be the projection on $\mathbf{C}\xi_0$, a be an element in A such that $x(a) = p_0$. Since $F \perp F_i$, $x(a)F_i = 0$, $x(a)F = p_0$. Let $b = \int \alpha_t(a)dt \in A^{\alpha}$. Then

$$\begin{aligned} x(b)F_i &= \int U(x)_t x(a) U(x)_t^* F_i dt = \int U(x)_t x(a) F_i U(x, \alpha)_t^* F_i dt = 0, \\ x(b)F &= \int U(x)_t x(a) U(x)_t^* F dt = \int U(x, \alpha)_t p_0 U(x, \alpha)_t^* dt = p_0 \neq 0. \end{aligned}$$

So $0 \neq b \in \ker z_i \setminus \ker z$, i.e., $z \notin \overline{\{z_i\}}$, which is a contradiction.

Moreover using the notation in Lemma 3.1, by replacing H and A by $H(x,\alpha)$ and $A(x)^{\alpha(x)} = x(A^{\alpha})$, the proof above says that for every $F_i = \sum_{j=1}^{n_i} E_{ij}$, there is $b \in A^{\alpha}$ such that

$$x(b)|F_i = \bigoplus_{j=1}^{n_i} x(b)|_{H_{ij}}$$

(where $\oplus H_{ij} = H(x, \alpha)$) is a projection of rank 1. But $(id, H_{il}) \cong (id, H_{ik})$, so n_i must be 1. From this it is easy to see every minimal projection in $(x(A^{\alpha})|_{H(x,\alpha)})'$ is central.

For the completion of the proof, since θ is open and continuous, we need only to check that for every $z \in \widehat{A^{\alpha}}$, there is a neighbourhood N of z such that $\theta|_N$ is injective. Otherwise since $\theta^{-1}(x)$ is discrete, where $x = \theta(z)$, there is a neighbourhood N_1 of z such that $\theta^{-1}(x) \cap N_1 = z$, and there are $\{z_i\}, \{z'_i\} \subset N_1$ such that

$$z_i \to z, \quad z'_i \to z \text{ and } \theta(z_i) = \theta(z'_i), \quad z_i \neq z'_i$$

Let $x_i = \theta(z_i)$. Then $x_i \to x$. Since A^{α} is a continuous-trace C^* -algebra, we can get a positive element $p \in A^{\alpha}$ and a neighbourhood N of z such that $N \subset \overline{N} \subset N_1$, and for every $z' \in N, z'(p)$ is a projection of rank 1; for every $z' \in N_1^c$, z'(p) = 0. Without loss of generality, we assume $z_i, z'_i, z \in N$. Then

$$x(p), x_i(p) \in A(x)^{\alpha(x)}, \quad tr(x(p)) = 1, \quad tr(x_i(p)) \ge 2.$$

But A is a continuous-trace C^* -algebra, $p(\cdot)$ is a continuous field over \hat{A} . Since x(p) = p(x) is a projection, by spectral calculus we can assume that $p \ge 0$ and p(y) is a projection for every y near x. Let $\{a_i\}$ be a net converging to p with a_i positive and of continuous-trace. By spectral calculus again, we can get a positive continuous-trace element $a_0 \in A$ such that $a_0(y)$ is a projection and $|a_0(y) - p(y)| < 1$ for every y near x. So $\operatorname{tr}(p(y)) = \operatorname{tr}(a_0(y))$. But $\operatorname{tr}(a_0(y))$ is continuous, therefore $\operatorname{tr}(x_i(p)) \to \operatorname{tr}(x(p))$. This is a contradiction.

Corollary 3.2. Let (A, G, α) be a separable C^* -dynamic system with G compact and abelian, A liminal, $\alpha_t \in \operatorname{Aut}_{C_b(\hat{A})}(A)$. Then A is of α -invariant continuous-trace iff the four conditions below hold:

(i) A^{α} is a continuous-trace C^* -algebra;

- (ii) the closed ideal I of A generated by A^{α} is A;
- (iii) $\theta: \hat{A}^{\alpha} \to \hat{A}$ is a sheaf;

(iv) for every $x \in \hat{A}$, every minimal projection in $(x(A^{\alpha})|_{\overline{x(A^{\alpha})H(x)}})' \subset B(\overline{x(A^{\alpha})H(x)})$ is central.

Proof. By Theorem 3.1. and Theorem 3.2., it is enough to prove that if A is an α -invariant continuous-trace C^* -algebra, then A^{α} is a continuous-trace C^* -algebra. In fact, since G is compact, A^{α} is strong Morita equivalent to a closed ideal I of $A \times_{\alpha} G$ (for example [13, p.113]). So it is enough to prove I is a continuous-trace C^* -algebra, but it is clear.

Acknowlegement. The main part of this paper was completed when the author was a postdoctoral fellow in the Institute of Mathematics, Academic Sinica. Special thanks are due to Prof. Li Bingren for his guidance, help and hospitality.

References

- [1] Arveson, W. B., On groups of automorphisms of operator algebras, J. Funct. Anal., 15(1974), 217–243.
- [2] Dixmier, J., C*-Algebras, North-Holland, Amsterdam, 1977.
- [3] Fang, X. C., Amenability of group in the C*-dynamic system, Chinese Science Bulletin, 37(1992), 1150–1152.
- [4] Fang, X. C., The Arveson spectrum of coactions, Chin. Ann. of Math., 15A:1(1994), 39-45.
- [5] Fang, X. C., The induced representations of C*-groupoid dynamic systems, Chin. Ann. of Math., 17B:1(1996), 103–114.
- [6] Gootman, E. C. & Lazar, A. J., Applications of non-commutative duality to crossed product C*-algebras determined by an action or coaction, Proc. London Math. Soc., 59(1989), 593–624.
- [7] Gootman, E. C. & Lazar, A. J., Compact group actions on C*-algebras: An application of non-commutative duality, J. Funct. Anal., 91(1990), 237–245.
- [8] Green, P., The local constructure of twisted covarience algebras, Acta Math., 140(1978), 191–250.
- [9] Hoegh-Krohn, R., Landstad, M. B. & Stormer, E., Compact ergodic groups of automorphisms, Ann. of Math., 114(1981), 75–86.
- [10] Landstad, M. B., Algebras of spherical functions associated with covarient systems over a compact group, Math. Scand., 47(1980), 137–149.
- [11] Lee, R. -Y., On the C*-algebras of operator fields, Indiana Univ. Math. J., 25(1976), 303–314.
- [12] Olesen, D. & Raeburn, I., Pointwise unitary automorphism groups, J. Funct. Anal., 93(1990), 278–309.
- [13] Peligrad, C., Locally compact group actions on C*-algebras and compact subgroups, J. Funct. Anal., 76(1988), 126–139.
- [14] Pedersen, G. K., C*-algebras and their automorphism groups, Academic Press, London and New York, 1979.
- [15] Phillips, J. & Raeburn, I., Crossed products by locally unitary automorphism groups and principal bundles, J. Operator Theory, 11(1984), 215-241.
- [16] Phillips, J. & Raeburn, I., Automorphisms of C*-algebras and second Cech cohomology, Indiana Univ. Math. J., 29(1980), 799–822.
- [17] Raeburn, I. & Rosenberg, J., Crossed products of continuous- trace C*-algebras by smooth actions, Trans. Amer. Math. Soc., 305(1988), 1–45.
- [18] Raeburn, I., On the Picard group of a continuous trace C*-algebra, Trans. Amer. Math. Soc., 263(1981), 183–205.
- [19] Raeburn, I. & Williams, D. P., Pull-backs of C*-algebras and crossed products by certain diagonal actions, Trans. Amer. Math. Soc., 287(1985), 755–777.
- [20] Rieffel, M. A., Induced representations of C*-algebras, Adv. in Math., 13(1974), 176–257.
- [21] Rieffel, M. A., Unitary representations of group extensions, an algebraic approach to the theory of Mackey and Blattner, Studies in Analysis, Adv. in Math. Supplementary Studies, Vol. 4., pp. 43-82, Academic Press, New York, 1979.
- [22] Rieffel, M. A., Actions of finite groups on C*-algebras, Math. Scand., 47(1980), 157–176.
- [23] Rieffel, M. A., Continuous fields of C*-algebras coming from group cocycles and actions, Math. Ann., 283(1989), 631–643.
- [24] Rieffel, M. A., Proper actions of groups on C*-algebras, in "Mappings of operator algebras" (H. Araki & R. V. Kadison Eds), pp. 141-182, Birkhause, boston/Basel/Berlin, 1990.
- [25] Raeburn, I. & William, D. P., Dixmier-Douady classes of dynamical systems and crossed products, Can. J. Math., 45(1993), 1032–1066.