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THE INVARIANT CONTINUOUS-TRACE C*-ALGEBRAS
BY THE ACTIONS OF COMPACT ABELIAN GROUPS**
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Abstract

The author studies the relation of continuous-trace property between C*-algebra A and the
fixed point C*-algebra A% in certain C*-dynamic system (A, G, &) by introducing an a-invariant
continuous trace property. For separable C*-dynamic system (A,G,«) with G compact and
abelian, A liminal, a; € AUth(A) (A) and pointwise unitary, the necessary and sufficient condi-
tion for A to be continuous-trace, which contains A% continuous-trace, is obtained.
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¢1. Introduction

Let (4,G,a) be a C*-dynamic system. The relation between A x, G and A has been
studied for a long time, and considerable progress has been made. Specially if A is a
continuous-trace C*-algebra, I. Raeburn and his collaborators got rich results several years
ago. For example, [17] and [19] say that if A is paracompact, G is abelian and « is locally
unitary, then A is continuous-trace iff A x, G is continuous-trace. In other direction, the
relation between A X, G and A% with G compact has also been studied for many years. The
movement of this paper is to investigate the continuous-trace relation between A(A x, G)
and A“ and to characterize the pointwise unitary property in a C*-dynamic system (A4, G, «)
with A continuous-trace. If A is separable and G is generated by a compact subset, then
« is locally unitary iff o is pointwise unitary by Rosenberg’s results.In this paper we prove
that the pointwise unitary property is equivalent to ca-invariant continuous-trace property,
if G is compact and abelian, and «o; € AUth(A) (A). By the way, throughout the paper
we always assume ay € Aute, A)(A)7 which enables us to consider the action in fiber level
and whose other equivalent description can be found in [16]. It is easy to see that if « is
pointwise unitary then a; € Aute, 4)(A4).
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62. a-Invariant Contionuous-Trace
Property and Pointwise Unitary Property

In this part, we give the definitions and some properties of «(-)-invariant Fell’s condition
and a-invariant continuous-trace C*-algebra.

Definition 2.1. Let X be a locally compact Hausdoff space, A = (A(z),A) be a contin-
uous field of elementary C*-algebras in the sense of [2]. For every v € X, (A(z), G, a(x))
is a C*-dynamic system such that Vf(-) € At € G, a(-):(f(+)) € A, where a(-):(f(-)(z) =
a(x)i(f(x)). We say that A satisfies a(-)-invariant Fell’s condition if for every x € X there
is a meighbourhood N of x and a continuous field p(-) of projections of rank 1 over N such
that o(y)(p(y)) = p(y), Vy € N, t € G.

Naturally we want to know, when A is locally constructed by a continuous field of Hilbert
spaces as in [2], what is the group action.

Let A be an elementary C*-algebra, G be a locally compact Hausdorff group, (4, G, «)
be a C*-dynamic system, and p € A be a projection of rank 1 which is invariant under the
action a. (H,&,U) is defiend by (A, p,«), where H = Ap is a Hilbert space, whose inner
product is given by (a,b) = tr(b*a), £ =p € H, and Ui(ap) = oy (a)p, ¥Vt € G. By

lap||}; = tr(pa*ap) = |lpa*aplla = |lap|% and aw(a)p = ai(ap),
we see that U is a strongly continuous homomorphism from G to U(H)(the unitary group
of H) and Uy =&, Vt € G. We denote the map from (4, p, a) to (H,§,U) by S.
Let H be a Hilbert space, £ be a unit vector in H, and U be a unitary representation of
G on H such that U = £(Vt € G). We get (A, p,«), where A = K(H), p is the projection
of rank 1 on C¢, oy = AdU;. Vn € H,

ay(p)n = UpUin = (Ui, UE = (n,§)§ = pn.
So ax(p) = p,vVt € G. Put v(H,§,U) = (A, p, ).
Lemma 2.1. (i) Let H be a Hilbert space, U be a unitary representation of G on H, &
be a unit vector in H such that U;§ =&, YVt € G. Put

V(H,EU) = (A p.a), BApa)=(H U
Let p(a) = a€, for each a € Ap = H'. Then @ is an isomorphism of the Hilbert spaces such
that p(§) =&, oU, = Usp .
(ii) Let A be an elementary C*-algebra, (A, G,a) be a C*-dynamic system, p be a projec-
tion of A of rank 1 such that ay(p) = p, Vt € G. Put
B(A,p,a) = (H,&,U), ~(H,§U)=(A",p,a).
For every a € A, let ¥(a) be a linear operator on H = Ap defined by (a)y = ay(Vy € Ap).
Then v is an isomorphism from the C*-algebra A onto C*-algebra A’ such that Y(p) =p,
Yoy = a/yp, YVt € G.
Proof. By [2, 10.6.6] and the discussion above, it is only necessary to check pU, = Uyp
and Yoy = o/41).
Let H = (H(z),T") be a continuous field of Hilbert space over locally compact space X

with a continuous vector field £(-) such that ||£(z)|| = 1, U(z) be a unitary representation
of G on H(z) such that Vn(-) €T, t € G, U(-)¢(n(-)) € T and U(z)({(x)) = &(z),Vx € X.
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We put v(H,£(-),U(:)) = (A,p(-),a(-)) pointwise defined by discussion above in Lemma
2.1 and A is the continuous field of elementary C*-algebras (A(z),A) over X ,where A is
(closed) generated by all sections of the form O, .y ¢,() + ¢y (),e0) T+ Oar 1 (),60n () 38
in [2, 10.7], where &;(-) € T". Since for every &1(-),&(-) €Tz € X, t € G,

(@) (0e (@).620)) = U(@)t0e, ()62 (0) U (2)F = Ou (2.1 0) U (@)u22)
for every f(-) € A, t € G, a():(f(-)) € A.

Let A = (A(x), A) be a continuous field of elementary C*-algebras over X, (A(z), G, a(x))
be a C*-dynamic system such that a(-).(f(-)) € A, Vt € G, f(-) € A, p(-) be a continuous
section of projections of rank 1 such that o(z):(p(x)) = p(x), Vo € X,t € G. We put
B(A,p(-),a()) = (H,&(-),U(+)), pointwise defined by discussion above in Lemma 2.1, and
H = (H(x),T) is a continuous field of Hilbert spaces over X, where I is the set of all n(-) € A
such that for every z € X, n(x)p(z) = n(z). For every n(-) €', t € G, z € X,

(U()e(n(x))p(x) = (a(x)i(n(z))p(x) = alz)i(n(z)) = Ulx)i(n(z)),
and so clearly U(-):(n(-)) € I'. We also have U(z):(&(x)) = &(x), Vo € X.

Lemma 2.2. (i) Let H = (H(x),T") be a continuous field of Hilbert spaces over X, with a
continuous section &(-) such that ||E(z)|| = 1, U(x) be a unitary representation of G on H(x)
such that U(x)(&(x)) = &(x) for every x € X, and U(-)¢(n(-)) € I',for every n(-) € I';t € G.
Put (H € (),U (-)) = By(H,£(-),U(-)), H = (H (2),T"). For every x € X, let @, be an
isomorphism from H' (x) onto H(z) (Lemma 2.1). Then ¢ = (@3)zex is an isomorphism
from H' to H such that U(z)p, = 0, U (z).

(ii) Let A = (A(x),A) be a continuous field of elementary C*-algebras over X with
a continuous section p(-) of projections of rank 1, (A(z),G,a(x)) be a C*-dynamic sys-
tem such that for every t € G, f(-) € A, a(-):(f() € A, and a(x):(p(x)) = p(x). Let
(A", p' (), (1)) = vB(A, p(-),a(), A" = (A (x),A). For every x € X, let 1, be the canon-
ical isomorphism from A(z) onto A'(z) (Lemma 2.1). Then 1 = (¢3)zex is an isomorphism
from A to A" such that . (p(z)) = p'(z),  (2)1he = hea(z), Vo € X,t € G.

Proof. Use Lemma 2.1, the discussion above, and [2, 10.7.6].

Corollary 2.1. Let A = (A(z),A) be a continuous field of elementary C*-algebras; for
every x € X, (A(z),G,a(x)) be a C*-dynamic system such that a():(f(-)) € A, ¥Vt € G,
f(-) € A. Then the following are equivalent:

(i) For every xg € X, there exist a neighbourhood V' of xq, a continuous field of Hilbert
spaces H = (H(x),T') over V with a continuous vector field £(-) over V. with [|{(x)| =
1(Vz € V), and for every x € V a unitary representation U(x) of G on H(x) satisfying
Ux)(&(x)) = &(x), UM)e(n(-) €T for every t € G, n(-) € T, such that Aly is isomorphic
to A(H) = v(H) and the isomorphism maps o to AdU(-).

(ii) A satisfies the «(-)-invariant Fell’s condition.

Definition 2.2. Let A be a liminal C*-algebra with Hausdoff spectrum, (A,G,a) be a
C*-dynamic system. A is called a-invariant continuous-trace C*-algebra if for every xg € /Al,
there is a neighbourhood N of xg and ap € A%, p > 0, such thatVx € N, x(p) is a projection
of rank 1. It is clear that an a-invariant continuous-trace C*-algebra is a continuous-trace
C*-algebra.
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Lemma 2.3. Let A be a liminal C*-algebra with Hausdorff spectrum, (A,G,«a) be a
C*-dynamic system such that for everyt € G, ay € Autg, 4)(A). Let A(A) = (A(z),A) be
the continuous field of elementary C*-algebras over A defined by A, and for every x € A,
a€ A, let a(x)i(a(x)) = x(ag(a)). Then for every f(-) € At € G, a(-)(f(-) € A and A is
an a-invariant continuous-trace C*-algebra if and only if A(A) satisfies the «(-)-invariant
Fell’s condition.

Proof. A is (closed) generated by {a(-)|a € A} (see [2]), where a(z) = z(a), Yz € A. So
a()e(f()) e A, V() € At € G. Ttis also clear that (A(z), G, a(x)) is a C*-dynamic system
by [16, Lemma 1.4], and A = T'y(A) by [2, Lemma 10.5.4]. Denoting this isomorphism by
©, we see pa = a-)p. If A is an a-invariant continuous-trace C*-algebra, for every xy € A
there exists a neighbourhood N of zy and a p € A* such that for every © € N, x(p) is a
projection of rank 1, then ¢(p) is invariant under «(-) and ¢(p)(x) = x(p) for every x € N.
So A(A) satisfies the a(-)-invariant Fell’s condition. Conversely Vzo € A, there exists a
neighbourhood N; of g and a continuous field of projections p;(-) of rank 1 over Nj such
that Vo € Ny, t € G, a(x)¢(p1(x)) = pi(z) and Ny is compact. Taking a neighbourhood
N of xg such that N € N C N;, we can choose a continuous function f on A such that
fl@)=1,if x € N, and f(x) =0, if z € Nf. Let p(-) be the continuous field of projections
over A, p(x) = f(x)p1(z) if £ € Ny, and p(z) = 0 if # € N¢. Then for every t € G, = € A,
a(x)i(p(x)) = p(x), and for every x € N, p(x) is a projection of rank 1. By ¢, there is a
unique p € A% such that z(p) = p(z). So A is an a-invariant continuous-trace C*-algebra.

Lemma 2.4. Let (A, G, ) be a C*-dynamic system with o € Aute, 4)(A),A a-invariant
continuous-trace. Then o is pointwise unitary.

Proof. By Lemma 2.3 and Corollory 2.1 for every zg € A, there is a neighbourhood N
of z¢ such that A(A)|xy = A(H), where H is a continuous field of Hilbert spaces. Let ¢(-)
be this isomorphism. We also have p(z)a(z): = AdU (z)ip(x),Vz € N, t € G. Specially let
x = xg. For every a € A,

p(xo)zo(ar(a)) = p(xo)a(zo)i(zo(a)) = AdU (20)(p(x0)xo(a))-

So (¢(xo)xo,U(xp)) is a covariant pair of representation of (A4,G,«). Since p(zg) is an
isomorphism from elementary C*-algebra z¢(A) onto K(H(zo)), w(xo)xo = xo. So A is
pointwise unitary.

Theorem 2.1. Let (A,G,a) be a C*-dynamic system with G compact and abelian,
ay € Aut, 4)(A)(VE € G). Then the following are equivalent:

(i) The closed ideal generated by m(A) N A is A,and A is pointwise unitary,where m(A)
are the continuous-trace ideal of A.

(ii) For every zo € A, there exists a € m(A)NA® such that zo(a) # 0, and A is pointwise
unitary.

(i) A is an a-invariant continuous-trace C*-algebra.

(iv) A is a continuous-trace C*-algebra, and « is pointwise unitary.

(v) (A4, G, a) is locally equivalent to (Co(A), G, id) in the sense of [25].

Proof. The equivalence of (i) and (ii) is an easy consequence of the fact that for every

closed ideal T of A, I = () kerz. And the equivalence of (iv) and (v) is proved in Propsition
ANT
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4.3 of [25].

(iii)=(iv). Lemma 2.4.

(iii)=-(ii). we only need to prove the first part. Since A is of continuous-trace, A is
Hausdorff and A is liminal. Vz, € A, there is a neighbourhood N of z¢ and a p € A®
such that Vo € N, z(p) is a projection of rank 1. Choosing an open set W such that
g EWCWCN,welet I = () kerz, so I =~ W. Since zyp € W, by the theorem on

e AA\W
transitity, we can choose a € I'" Su\ch that zo(a)zo(p) = zo(p). Replacing a by [ ay(a)dt
and using p € A%, we can assume a € I N A%, Put b = pzapz. Then b € m(A) N A%, and
0(b) = wo(p)zo(a)zo(p) = o(p) # 0.

(ii)=-(iii). For every xo € A, there exists ag € m(A4) N A%, zo(ap) # 0. We can assume
that ag € AT, and ||zg(ag)|| = 1. For z¢(A) = K(Hy), where Hy is the Hilbert space of
representation zo, the eigenspace Hy of z(ag) corresponding to eigenvalue 1 is not zero.
Let a(zo)i(xo(a)) = zo(au(a)) (Vt € G,a € A). By the pointwise unitary of A, there is a
unitary representation U(xg) of G on Hy such that xo(ay(a)) = AdU (z9)(xo(a)). So

a(xo)¢(zo(a)) = AdU(x0)¢(zo(a)).
For every £ € Hy, xo(ag)é =¢&. So

U(xo)t(z0(a0))U(w0);§ = wo(ar(ao))€ = wo(ao)é = &,
ie., xo(ap)U(xo)ié = U(xo)ié(Vt € G). Therefore U(xo)eH1 = Hi(Vt € G). By the
compactness of zg(ag), we assume that the dimension of H; is n < co. We assert that for

every t € G, there is a p(t) € C, |u(t)] = 1, such that {u(¢t)U(xo):|t € G} have a common
nonzero fixed point in Hy. In fact ¢t € G, the spectrum of U(xg)¢| g, is a point spectrum

and contained in the unit circle of C. Let u(t) be a spectral point. Then u(t)U(xo)¢|m,

has a point spectrum 1. So u(t)U(xo); has fixed points in Hy. We let Hy ) = {§ €
Hy, p(t)U(xo):€ = €}. Since G is abelian, U(z)s commutes with p(t)U(z), for every
t € G. Choosing t; € G and p(t;) as above, we see that Hy, ,,) is a finite dimension
invariant subspace of U(xg)s(Vs € G). Similiarly if there is s € G such that every eigenspace
of U(x0)5|Ht1,u(t1) corresponding to one eigenvalue is not Hy, ,«,), we can choose t3 € G,

u(te) € C, |u(tz)| = 1, such that
dim(Htl,u(h)) > dim(Htl’u(tl)) ﬂHtZaU'(tZ)) ;A 0

Continuing this process, we have two cases:
(1) There are t1, to, -+, tm € G,u(t1), p(ta), -, p(tm) € C, |u(t:)| =1 (1 <i < m) such
that for 1 <i<m -1
i i+1 m
dim( ﬂ Htj,u(tj)> > dim( ﬂ Htj,u(tj)); dim( m Htj,u(tj)) =1L
j=1 j=1 j=1

(2) There is an Hg C Hp, dimHg > 2, and for every ¢ € G, there is p(t) such that
Hy ) O Hg. In case (2), the assertion is clear. In case (1), since Hy, () is an invariant
m
subspace of U(zp)¢,50 is (| Hy, u(t,)- But its dimension is 1, so there is
j=1

Jj=
m

§€ () Heyuwys lEI=1, Ulzo)é =) (t € Q).

j=1
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Therefore p(t)U(zg): has a fixed point £. This completes the assertion. Let & # 0 be a

common fixed point of {u(t)U(zo):|t € G} in Hy, and py be the projection on C&y. Then
V77 € H07

a(o)¢(po)n = AdU (o) (po)n
= U(x0)tpoU(0)in
= u(OU () ((u(8)U (z0)Fn, £0)€0)

= (n, p(t)U (w0)&0) (1(t)U (20):&0)
= (n,%0)&0 = pon-

So po € xo(A)*@0) = (K(Hy))**0) is a projection of rank 1. Let b € At such that
zo(b) = po. Replacing b by [ a;(b)dt, we can assume b € A*. Let by = f(b), where f(t) =t,
for 0 <t <1; f(¢) =1, for t > 1. Then 0 < by <1, by € A%, and zo(b1) = f(xo(b)) =
f(po) =po. Let ba = aéblaé € A®. Then

wo(ba) = wo(a0)? pozo(a0)? = po-

Since by < ag (so be € A* Nm(A)T) and tr(zo(b2)) = 1,]|zo(b2)|| = 1, there exists a
neighbourhood N of xg such that for every € N, the largest eigenvalue of z(bs) is large
than 2, while the others are less than 3, and tr(z (b)) < 2. Let p = g(bs), where g(t) € C(R),
g(t) =1ift > 3; g(t) =0if t < 1; g(¢) is linear if £ <¢ < 2. Then p € m(A) N A, and for
every x € N, z(p) is a projection of rank 1.

(iv)=(ii). If A is a continuous-trace C*-algebra, for every zo € A, there is a € m(A)*
such that xzo(a) # 0. Because (A, G, «) is pointwise unitary, for every z € A, there is a
unitary representation U(z) of G such that a(z) = AdU(z). Let b = [ ay(a)dt € A*. Then

tr(z(b)) = tr(/x(at(a))dt) - tr(/a(z)t(x(a))dt)

- / tr(AdU (2) (x(a)))dt = / tr(z(a))dt = tr(z(a)).

So be A*Nm(A), and clearly zo(b) # 0.

Remark 2.1. The equivalence of (i) and (ii) does not require that G should be compact
abelian and o; € AUth(A) (A); (ili)=(vi) does not require that G should be compact abelian;
(iii)=-(ii) does not require that G should be abelian.

§3. a-invariant Continuous-Trace Property
of A and Continuous-Trace Property of A~

In this part, we discuss the continuous-trace relation between A% and A.
ng
Lemma 3.1. Let A C K(H) be a nondegenerate C*-algebra. Then H = @ @ H;; (n; <
i =1
00) such that (id, H;;) is an irreducible representation of A,and (id, H;j;) is equivalent to
(id, Hy), (id, H;j;) is disjoint with (id, Hy)(i # k), and for every m € A, T is equivalent to
some (Zd, H”)
n;
Proof. By [2, 5.4.13], (id, H) is equivalent to € € (m;, K;j), where n; < oo, and
i j=1
(mij, Kij) is an irreducible representation of A, m;; is equivalent to 7, m;; is disjoint with
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7w (1 # k). So (id, H) is equal to Eé(id, Hy.,). Denoting H, by H;j, we see that
i j=1

H = ®H,;, and (id, H;;) is equivalent to (id, Hy;), (id, H;;) is disjoint with (id, Hy;) (i # k).

Let E;; € A" be the projection corresponding to (id, Hy;). Then Ey; H = Hy;, and for fixed

i the central projections of E;;(j =1,2,--- ,n;) in A'NA" are the same, notated by F;. By

irreducibility, if i # k,F; is orthogonal to Fj. Since

S F>> Ejy=1 Y Fi=1
i i,j i

Let (w, Hy) be an irreducible representation of A. There is an irreducible representation
(7, Hy) of K(H) such that 7|, = m. By irreducibility, (7, Hy) is equivalent to (id, H),
so there is an isometric isomorphism U from H onto ﬁo such that 7 = (AdU)id. Let
H, = U*Hy. Then

AU*Hy = U*UAU* Hy = U*F(A)Hy = U*n(A)Hy C U*H.

So (id, H,) is equivalent to (m, Hp) as the irreducible representation of A. Let E. be the
projection corresponding to (id, H), F; be the central projection of E,. By the irreducibil-
ity of (id, H;) and (id, H;;), there is an ig such that F;, = F. So (id, H.) is equivalent to
(id, Hyj), i-e., (m, K) is equivalent to some (id, H;;).

The following lemma is well known (for example [24, Theorem 3.2] is essentially one of it
is generalized forms). For clearness we give it a simple proof.

Lemma 3.2. Let A be a C*-algebra with Hausdorff spectrum, (A, G, a) be a C*-dynamic
system with G compact,ay € Aute, 4)(A). Then Xo = {z € Alz(A*) # 0} = I is an open
set of A, where I is the closed ideal generated by A%, and there exists a continuous open
mapping 0 from Prim(A%) onto X,.

Proof. Let A = (A(z),A) be a continuous field of C*-algebras defined by A. For every
T € X, let Ey(x) = A(z)*®) where a(x)(x(a)) = x(as(a)) for every a € A, and let Ag be
the restriction of A on X, in the sense of [2], and let

Ao = {a(-) € Agla(z) € A(x)*™ Vo € X,}.

We assert that A* = (E,(z),Ay) is a continuous field of C*-algebras over X,.

Let ¢ be the homomorphism from A% to I'g(A“)(the C*-algebra defined by A®) defined
by ¢(a)(z) = z(a) (Vz € X,). By Dans-Hoffmann theorem and [2, 11.5.3.], A* = I'j(A%)
and this completes the proof by [11, Theorem 4].

Remark 3.1. We have proved that A® is isomorphic to the C*-algebra defined by A®.

Theorem 3.1. Let (A, G,a) be a C*-dynamic system with A liminal, A Hausdorff,
A% continuous-trace, G compact and oy € Aut, 4)(A). Let I be the (closed) ideal of A

generated by A“. If 0 : Ao | (defined in Lemma 3.2) is a sheaf and for every x € I, every
minimal projection in (A(x)*® |W)l C B(A(z)**) H(x)) is central, then I is an
a-invariant continuous-trace C*-algebra.

Proof. Because A% = I“, we assume I = A. For x € ;1\, there are an open set N C A
and p € (A*)" such that §(N) is a neighbourhood of z, |y is a homeomorphism, and for

every y € N,y(p) is a projection of rank 1, and for every y; € N€ such that
0(y1) € O(N), w1(p) =0.
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By Remark 3.1, and the construction in Theorem 4 of [11], y(p) = 7(6(y)(p)), where 7
is an irreducible representation of A(f(y))*®)) 2 Av. But A is liminal, so A(8(y)) =
K(H(0(y))). By Lemma 3.1, 7 = (id, H,), where H, C Av(H(0(y))) 2 Hy. So 0(y)(p)|u.
is a projection of rank 1. Let E, be the projection of H, on H,. Then E is a minimal
projection in (Ay|Hy)/ C B(H,) by the irreducibility of 7. So E is central. By the same
reason and Lemma 3.1, H, = ®©Hj, and letting F; be the projection on H;, we see that F;
is orthogonal to E;(i # j), and E; is central.

If there is a jo such that Ej;, # E. (so (id, Hj;,) % (id,Hy)) and 0(y)(p)E;, # 0, let
Yj, = (id, Hj,)0(y) be an irreducible representation of A%, then

0(yjo) = 0(y) € O(N), yj, € N, and y;,(p) = 0(y)(p) Ej, # 0.

This is a contradiction, so 6(y)(p) is a projection in H(6(y)) of rank 1, since 6(y)(p)|m+ = 0.

Corollary 3.1. Let (A,G,a) be a C*-dynamic system with A liminal, A Hausdorff, G
compact and oy € AUtcb(A) (A), I be the closed ideal generated by A®. If for every x € I,
2(A%) = K(A(z)*@) H(x)), then I is an a-invariant continuous-trace C*-algebra iff A is
a continuous-trace C*-algebra.

Proof. In this case, (A(z)
4], 0 is a homeomorphism.

a(z) ‘W)I is trival, and by Lemma 3.2, [11, Theorem

Theorem 3.2. Let (A, G,a) be a C*-dynamic system with A“ continuous-trace,G com-
pact and abelian,ay € Autg, 4 (A) (Vt € G). If I is an a-invariant continuous-trace C*-

algebra, then 6 : Ax & [ s a sheaf, and for every x € f, every mintmal projection in
(A(;E)O‘(w)\m) C B(A(z)*®) H(x)) is central.
Proof. Since A* = I¢, without loss of generality,we assume A = [. First for every

z € A, we see that §~'(x) is discret in A%, Otherwise because A% is Hausdorff, there is a
net {z;} C 071(x), and 2z € 071 () such that z; — z, 2; # 2. By Lemma 3.1,

z; & (id, H))x, 2z = (id, Hp)x,
where Hy, H; C A(z)**) H(x) (notated by H(z,«)) and (id, H;), (id, Hp) are irreducible
representations of A(x)a(z). Let F; and F respectively be the central projections in
(A(z)o@ \H(x,a))' corresponding to (id, H;) and (id, Hy), U(x) be the unitary representation
of G on H(z) such that AdU(z); = a(x):. Then

ker z; = {a € A%|z(a)F; = 0},
and for every a € A*,¢ € H(z),

Ux)i(x(a)§) = z(a)(U(2):).-
So H(x,«) is invariant under U(x);. Let U(x, a); be the restriction of U(z); on H(z,«) .
For every b € A%,

Uz, 0)z(b)U(x, ) = U(2)ew(0)U ()} | H(z.0) = (0)|H(2.0),
ie., Uz, a); € (A@)*@|g(p.a) - So
AdU(l’, Ot)t(Fz) = Fz

and so is it for F. Since A* is a continuous-trace C*-algebra, there is p € A* such that z(p)
is a projection of rank 1. So 2(p)|pg(z,a) has eigenvalue 1, whose eigenspace is invariant
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under U(z, «);(Vt € G). By the same discussion as in the proof of Theorem 2.1. (ii)=-(iii),
there is a & € FH(z,a), ||&]|| = 1 such that

U(z)e§o = Az, t)&o,
where A(z,t) is a complex number with module 1. Let py be the projection on C&, a
be an element in A such that z(a) = pg. Since FLF;, z(a)F; = 0, z(a)F = pg. Let
b—fat )dt € A®. Then

z(b)F; = /U(m)tsc( VWU (z); Fydt = /U(x)t:v(a)Fl-U(x,a)fFidt: 0,

/U x)ix(a)U(z); Fdt = /U(x,a)tpoU(x,a)f{dt =po # 0.

So 0 # b € ker z;\ ker 2, i.e., z & {z;}, which is a contradiction.

Moreover using the notation in Lemma 3.1, by replacing H and A by H(z,a) and
A(x)*®) = z(A%), the proof above says that for every F; = Z E;;, there is b € A“
Jj=1
such that

N4

2(b)| F; = @ = (b)

j=1
(where @H;; = H(z,)) is a projection of rank 1. But (id, H;;) = (id, H;i), so n; must be
1. From this it is easy to see every minimal projection in (z(A4 )|H(x7a))' is central.

Hij

For the completion of the proof, since 6 is open and continuous, we need only to check that
for every z € ;1\0‘, there is a neighbourhood N of z such that 6] is injective. Otherwise since
§~1(x) is discrete, where x = 6(z), there is a neighbourhood Ny of z such that 6~1(z)NN; =
z, and there are {z;}, {#}} C Ny such that

zi =z, zi =z and 0(z;) =0(2)), =z # z..

Let ; = 0(z). Then x; — x. Since A% is a continuous-trace C*-algebra, we can get a
positive element p € A® and a neighbourhood N of z such that N ¢ N C Nj, and for
every z' € N,z'(p) is a projection of rank 1; for every z’ € Nf, z/(p) = 0. Without loss of
generality, we assume z;, 2}, z € N. Then

2(p),zi(p) € A@)*™), tr(z(p)) =1, tr(zi(p)) = 2.
But A is a continuous-trace C*-algebra, p(-) is a continuous field over A. Since z(p) = p(z)
is a projection, by spectral calculus we can assume that p > 0 and p(y) is a projection for
every y near z. Let {a;} be a net converging to p with a; positive and of continuous-trace.
By spectral calculus again, we can get a positive continuous-trace element ag € A such that
ap(y) is a projection and |ag(y) — p(y)| < 1 for every y near . So tr(p(y)) = tr(ao(y)). But
tr(ao(y)) is continuous, therefore tr(z;(p)) — tr(z(p)). This is a contradiction.

Corollary 3.2. Let (A, G,a) be a separable C*-dynamic system with G compact and
abelian,A liminal,ay € Autcb(A)(A)~ Then A is of a-invariant continuous-trace iff the four
conditions below hold:

(i) A% is a continuous-trace C*-algebra;

(ii) the closed ideal I of A generated by A% is A;

(i) 0 : A* — A is a sheaf;
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(iv) for every = € A, every minimal projection in (x(Aa)\m)/ C B(x(A*)H(z)))
is central.

Proof. By Theorem 3.1. and Theorem 3.2., it is enough to prove that if A is an «-
invariant continuous-trace C*-algebra,then A% is a continuous-trace C*-algebra. In fact,
since G is compact, A% is strong Morita equivalent to a closed ideal I of A x,, G(for example
[13, p.113]). So it is enough to prove I is a continuous-trace C*-algebra, but it is clear.
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