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THE INVARIANT CONTINUOUS-TRACE C∗-ALGEBRAS

BY THE ACTIONS OF COMPACT ABELIAN GROUPS**
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Abstract

The author studies the relation of continuous-trace property between C∗-algebra A and the
fixed point C∗-algebra Aα in certain C∗-dynamic system (A,G, α) by introducing an α-invariant

continuous trace property. For separable C∗-dynamic system (A,G, α) with G compact and
abelian,A liminal, αt ∈ AutCb(Â)(A) and pointwise unitary, the necessary and sufficient condi-

tion for A to be continuous-trace, which contains Aα continuous-trace, is obtained.
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§1. Introduction

Let (A,G, α) be a C∗-dynamic system. The relation between A ×α G and A has been

studied for a long time, and considerable progress has been made. Specially if A is a

continuous-trace C∗-algebra, I. Raeburn and his collaborators got rich results several years

ago. For example, [17] and [19] say that if Â is paracompact, G is abelian and α is locally

unitary, then A is continuous-trace iff A ×α G is continuous-trace. In other direction, the

relation between A×αG and Aα with G compact has also been studied for many years. The

movement of this paper is to investigate the continuous-trace relation between A(A ×α G)

and Aα and to characterize the pointwise unitary property in a C∗-dynamic system (A,G, α)

with A continuous-trace. If A is separable and G is generated by a compact subset, then

α is locally unitary iff α is pointwise unitary by Rosenberg’s results.In this paper we prove

that the pointwise unitary property is equivalent to α-invariant continuous-trace property,

if G is compact and abelian, and αt ∈ AutCb(Â)(A). By the way, throughout the paper

we always assume αt ∈ AutCb(Â)(A), which enables us to consider the action in fiber level

and whose other equivalent description can be found in [16]. It is easy to see that if α is

pointwise unitary then αt ∈ AutCb(Â)(A).
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§2. α-Invariant Contionuous-Trace
Property and Pointwise Unitary Property

In this part, we give the definitions and some properties of α(·)-invariant Fell’s condition
and α-invariant continuous-trace C∗-algebra.

Definition 2.1. Let X be a locally compact Hausdoff space, A = (A(x),Λ) be a contin-

uous field of elementary C∗-algebras in the sense of [2]. For every x ∈ X, (A(x), G, α(x))

is a C∗-dynamic system such that ∀f(·) ∈ Λ,t ∈ G, α(·)t(f(·)) ∈ Λ, where α(·)t(f(·))(x) =
α(x)t(f(x)). We say that A satisfies α(·)-invariant Fell’s condition if for every x ∈ X there

is a neighbourhood N of x and a continuous field p(·) of projections of rank 1 over N such

that α(y)t(p(y)) = p(y), ∀y ∈ N , t ∈ G.

Naturally we want to know, when A is locally constructed by a continuous field of Hilbert

spaces as in [2], what is the group action.

Let A be an elementary C∗-algebra, G be a locally compact Hausdorff group, (A,G, α)

be a C∗-dynamic system, and p ∈ A be a projection of rank 1 which is invariant under the

action α. (H, ξ, U) is defiend by (A, p, α), where H = Ap is a Hilbert space, whose inner

product is given by ⟨a, b⟩ = tr(b∗a), ξ = p ∈ H, and Ut(ap) = αt(a)p, ∀t ∈ G. By

∥ap∥2H = tr(pa∗ap) = ∥pa∗ap∥A = ∥ap∥2A and αt(a)p = αt(ap),

we see that U is a strongly continuous homomorphism from G to U(H)(the unitary group

of H) and Utξ = ξ, ∀t ∈ G. We denote the map from (A, p, α) to (H, ξ, U) by β.

Let H be a Hilbert space, ξ be a unit vector in H, and U be a unitary representation of

G on H such that Utξ = ξ(∀t ∈ G). We get (A, p, α), where A = K(H), p is the projection

of rank 1 on Cξ, αt = AdUt. ∀η ∈ H,

αt(p)η = UtpU
∗
t η = ⟨U∗

t η, ξ⟩Utξ = ⟨η, ξ⟩ξ = pη.

So αt(p) = p,∀t ∈ G. Put γ(H, ξ, U) = (A, p, α).

Lemma 2.1. (i) Let H be a Hilbert space, U be a unitary representation of G on H, ξ

be a unit vector in H such that Utξ = ξ, ∀t ∈ G. Put

γ(H, ξ, U) = (A, p, α), β(A, p, α) = (H
′
, ξ

′
, U

′
).

Let φ(a) = aξ, for each a ∈ Ap = H
′
. Then φ is an isomorphism of the Hilbert spaces such

that φ(ξ
′
) = ξ, φU

′

t = Utφ .

(ii) Let A be an elementary C∗-algebra, (A,G, α) be a C∗-dynamic system, p be a projec-

tion of A of rank 1 such that αt(p) = p, ∀t ∈ G. Put

β(A, p, α) = (H, ξ, U), γ(H, ξ, U) = (A
′
, p′, α′).

For every a ∈ A, let ψ(a) be a linear operator on H = Ap defined by ψ(a)y = ay(∀y ∈ Ap).

Then ψ is an isomorphism from the C∗-algebra A onto C∗-algebra A
′
such that ψ(p) = p′,

ψαt = α′
tψ, ∀t ∈ G.

Proof. By [2, 10.6.6] and the discussion above, it is only necessary to check φU
′

t = Utφ

and ψαt = α′
tψ.

Let H = (H(x),Γ) be a continuous field of Hilbert space over locally compact space X

with a continuous vector field ξ(·) such that ∥ξ(x)∥ = 1, U(x) be a unitary representation

of G on H(x) such that ∀η(·) ∈ Γ, t ∈ G, U(·)t(η(·)) ∈ Γ and U(x)t(ξ(x)) = ξ(x),∀x ∈ X.
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We put γ(H, ξ(·), U(·)) = (A, p(·), α(·)) pointwise defined by discussion above in Lemma

2.1 and A is the continuous field of elementary C∗-algebras (A(x),Λ) over X,where Λ is

(closed) generated by all sections of the form θξ1(·),ξ2(·) + θξ3(·),ξ4(·) + · · ·+ θξ2n−1(·),ξ2n(·) as

in [2, 10.7], where ξi(·) ∈ Γ. Since for every ξ1(·), ξ2(·) ∈ Γ,x ∈ X, t ∈ G,

α(x)t(θξ1(x),ξ2(x)) = U(x)tθξ1(x),ξ2(x)U(x)∗t = θU(x)tξ1(x),U(x)tξ2(x),

for every f(·) ∈ Λ, t ∈ G, α(·)t(f(·)) ∈ Λ.

LetA = (A(x),Λ) be a continuous field of elementary C∗-algebras overX, (A(x), G, α(x))

be a C∗-dynamic system such that α(·)t(f(·)) ∈ Λ, ∀t ∈ G, f(·) ∈ Λ, p(·) be a continuous

section of projections of rank 1 such that α(x)t(p(x)) = p(x), ∀x ∈ X, t ∈ G. We put

β(A, p(·), α(·)) = (H, ξ(·), U(·)), pointwise defined by discussion above in Lemma 2.1, and

H = (H(x),Γ) is a continuous field of Hilbert spaces over X, where Γ is the set of all η(·) ∈ Λ

such that for every x ∈ X, η(x)p(x) = η(x). For every η(·) ∈ Γ, t ∈ G, x ∈ X,

(U(x)t(η(x)))p(x) = (α(x)t(η(x)))p(x) = α(x)t(η(x)) = U(x)t(η(x)),

and so clearly U(·)t(η(·)) ∈ Γ. We also have U(x)t(ξ(x)) = ξ(x), ∀x ∈ X.

Lemma 2.2. (i) Let H = (H(x),Γ) be a continuous field of Hilbert spaces over X, with a

continuous section ξ(·) such that ∥ξ(x)∥ = 1, U(x) be a unitary representation of G on H(x)

such that U(x)t(ξ(x)) = ξ(x) for every x ∈ X, and U(·)t(η(·)) ∈ Γ,for every η(·) ∈ Γ,t ∈ G.

Put (H
′
, ξ

′
(·), U ′

(·)) = βγ(H, ξ(·), U(·)), H
′
= (H

′
(x),Γ

′
). For every x ∈ X, let φx be an

isomorphism from H
′
(x) onto H(x) (Lemma 2.1). Then φ = (φx)x∈X is an isomorphism

from H
′
to H such that U(x)φx = φxU

′
(x).

(ii) Let A = (A(x),Λ) be a continuous field of elementary C∗-algebras over X with

a continuous section p(·) of projections of rank 1, (A(x), G, α(x)) be a C∗-dynamic sys-

tem such that for every t ∈ G, f(·) ∈ Λ, α(·)t(f(·)) ∈ Λ, and α(x)t(p(x)) = p(x). Let

(A
′
, p′(·), α′(·)) = γβ(A, p(·), α(·)), A′

= (A
′
(x),Λ

′
). For every x ∈ X, let ψx be the canon-

ical isomorphism from A(x) onto A
′
(x) (Lemma 2.1). Then ψ = (ψx)x∈X is an isomorphism

from A to A
′
such that ψx(p(x)) = p′(x), α′(x)tψx = ψxα(x)t, ∀x ∈ X, t ∈ G.

Proof. Use Lemma 2.1, the discussion above, and [2, 10.7.6].

Corollary 2.1. Let A = (A(x),Λ) be a continuous field of elementary C∗-algebras; for

every x ∈ X, (A(x), G, α(x)) be a C∗-dynamic system such that α(·)t(f(·)) ∈ Λ, ∀t ∈ G,

f(·) ∈ Λ. Then the following are equivalent:

(i) For every x0 ∈ X, there exist a neighbourhood V of x0, a continuous field of Hilbert

spaces H = (H(x),Γ) over V with a continuous vector field ξ(·) over V with ∥ξ(x)∥ =

1(∀x ∈ V ), and for every x ∈ V a unitary representation U(x) of G on H(x) satisfying

U(x)t(ξ(x)) = ξ(x), U(·)t(η(·)) ∈ Γ for every t ∈ G, η(·) ∈ Γ, such that A|V is isomorphic

to A(H) = γ(H) and the isomorphism maps α to AdU(·).
(ii) A satisfies the α(·)-invariant Fell’s condition.

Definition 2.2. Let A be a liminal C∗-algebra with Hausdoff spectrum, (A,G, α) be a

C∗-dynamic system. A is called α-invariant continuous-trace C∗-algebra if for every x0 ∈ Â,

there is a neighbourhood N of x0 and a p ∈ Aα, p ≥ 0, such that ∀x ∈ N , x(p) is a projection

of rank 1. It is clear that an α-invariant continuous-trace C∗-algebra is a continuous-trace

C∗-algebra.
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Lemma 2.3. Let A be a liminal C∗-algebra with Hausdorff spectrum, (A,G, α) be a

C∗-dynamic system such that for every t ∈ G, αt ∈ AutCb(Â)(A). Let A(A) = (A(x),Λ) be

the continuous field of elementary C∗-algebras over Â defined by A, and for every x ∈ Â,

a ∈ A, let α(x)t(a(x)) = x(αt(a)). Then for every f(·) ∈ Λ,t ∈ G, α(·)t(f(·)) ∈ Λ and A is

an α-invariant continuous-trace C∗-algebra if and only if A(A) satisfies the α(·)-invariant
Fell’s condition.

Proof. Λ is (closed) generated by {a(·)|a ∈ A} (see [2]), where a(x) = x(a), ∀x ∈ Â. So

α(·)t(f(·)) ∈ Λ, ∀f(·) ∈ Λ, t ∈ G. It is also clear that (A(x), G, α(x)) is a C∗-dynamic system

by [16, Lemma 1.4], and A ∼= Γ0(A) by [2, Lemma 10.5.4]. Denoting this isomorphism by

φ, we see φα = α(·)φ. If A is an α-invariant continuous-trace C∗-algebra, for every x0 ∈ Â

there exists a neighbourhood N of x0 and a p ∈ Aα such that for every x ∈ N , x(p) is a

projection of rank 1, then φ(p) is invariant under α(·) and φ(p)(x) = x(p) for every x ∈ N .

So A(A) satisfies the α(·)-invariant Fell’s condition. Conversely ∀x0 ∈ Â, there exists a

neighbourhood N1 of x0 and a continuous field of projections p1(·) of rank 1 over N1 such

that ∀x ∈ N1, t ∈ G, α(x)t(p1(x)) = p1(x) and N1 is compact. Taking a neighbourhood

N of x0 such that N ⊂ N ⊂ N1, we can choose a continuous function f on Â such that

f(x) = 1, if x ∈ N , and f(x) = 0, if x ∈ N c
1 . Let p(·) be the continuous field of projections

over Â, p(x) = f(x)p1(x) if x ∈ N1, and p(x) = 0 if x ∈ N c
1 . Then for every t ∈ G, x ∈ Â,

α(x)t(p(x)) = p(x), and for every x ∈ N , p(x) is a projection of rank 1. By φ, there is a

unique p ∈ Aα such that x(p) = p(x). So A is an α-invariant continuous-trace C∗-algebra.

Lemma 2.4. Let (A,G, α) be a C∗-dynamic system with αt ∈ AutCb(Â)(A),A α-invariant

continuous-trace. Then α is pointwise unitary.

Proof. By Lemma 2.3 and Corollory 2.1 for every x0 ∈ Â, there is a neighbourhood N

of x0 such that A(A)|N ∼= A(H), where H is a continuous field of Hilbert spaces. Let φ(·)
be this isomorphism. We also have φ(x)α(x)t = AdU(x)tφ(x),∀x ∈ N , t ∈ G. Specially let

x = x0. For every a ∈ A,

φ(x0)x0(αt(a)) = φ(x0)α(x0)t(x0(a)) = AdU(x0)t(φ(x0)x0(a)).

So (φ(x0)x0, U(x0)) is a covariant pair of representation of (A,G, α). Since φ(x0) is an

isomorphism from elementary C∗-algebra x0(A) onto K(H(x0)), φ(x0)x0 ∼= x0. So A is

pointwise unitary.

Theorem 2.1. Let (A,G, α) be a C∗-dynamic system with G compact and abelian,

αt ∈ AutCb(Â)(A)(∀t ∈ G). Then the following are equivalent:

(i) The closed ideal generated by m(A)∩Aα is A,and A is pointwise unitary,where m(A)

are the continuous-trace ideal of A.

(ii) For every x0 ∈ Â, there exists a ∈ m(A)∩Aα such that x0(a) ̸= 0, and A is pointwise

unitary.

(iii) A is an α-invariant continuous-trace C∗-algebra.

(iv) A is a continuous-trace C∗-algebra, and α is pointwise unitary.

(v) (A,G, α) is locally equivalent to (C0(Â), G, id) in the sense of [25].

Proof. The equivalence of (i) and (ii) is an easy consequence of the fact that for every

closed ideal I of A, I =
∩̂
A\Î

kerx. And the equivalence of (iv) and (v) is proved in Propsition
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4.3 of [25].

(iii)⇒(iv). Lemma 2.4.

(iii)⇒(ii). we only need to prove the first part. Since A is of continuous-trace, Â is

Hausdorff and A is liminal. ∀x0 ∈ Â, there is a neighbourhood N of x0 and a p ∈ Aα

such that ∀x ∈ N , x(p) is a projection of rank 1. Choosing an open set W such that

x0 ∈ W ⊂ W ⊂ N , we let I =
∩

x∈Â\W
kerx, so Î ∼= W . Since x0 ∈ W , by the theorem on

transitity, we can choose a ∈ I+ such that x0(a)x0(p) = x0(p). Replacing a by
∫
αt(a)dt

and using p ∈ Aα, we can assume a ∈ I+ ∩ Aα. Put b = p
1
2 ap

1
2 . Then b ∈ m(A) ∩ Aα, and

x0(b) = x0(p)x0(a)x0(p) = x0(p) ̸= 0.

(ii)⇒(iii). For every x0 ∈ Â, there exists a0 ∈ m(A) ∩ Aα, x0(a0) ̸= 0. We can assume

that a0 ∈ A+, and ∥x0(a0)∥ = 1. For x0(A) = K(H0), where H0 is the Hilbert space of

representation x0, the eigenspace H1 of x0(a0) corresponding to eigenvalue 1 is not zero.

Let α(x0)t(x0(a)) = x0(αt(a)) (∀t ∈ G, a ∈ A). By the pointwise unitary of A, there is a

unitary representation U(x0) of G on H0 such that x0(αt(a)) = AdU(x0)t(x0(a)). So

α(x0)t(x0(a)) = AdU(x0)t(x0(a)).

For every ξ ∈ H1, x0(a0)ξ = ξ. So

U(x0)t(x0(a0))U(x0)
∗
t ξ = x0(αt(a0))ξ = x0(a0)ξ = ξ,

i.e., x0(a0)U(x0)
∗
t ξ = U(x0)

∗
t ξ(∀t ∈ G). Therefore U(x0)tH1 = H1(∀t ∈ G). By the

compactness of x0(a0), we assume that the dimension of H1 is n < ∞. We assert that for

every t ∈ G, there is a µ(t) ∈ C, |µ(t)| = 1, such that {µ(t)U(x0)t|t ∈ G} have a common

nonzero fixed point in H1. In fact t ∈ G, the spectrum of U(x0)t|H1
is a point spectrum

and contained in the unit circle of C. Let µ(t) be a spectral point. Then µ(t)U(x0)t|H1

has a point spectrum 1. So µ(t)U(x0)t has fixed points in H1. We let Ht,µ(t) = {ξ ∈
H1, µ(t)U(x0)tξ = ξ}. Since G is abelian, U(x0)s commutes with µ(t)U(x0)t for every

t ∈ G. Choosing t1 ∈ G and µ(t1) as above, we see that Ht1,µ(t1) is a finite dimension

invariant subspace of U(x0)s(∀s ∈ G). Similiarly if there is s ∈ G such that every eigenspace

of U(x0)s|Ht1,µ(t1)
corresponding to one eigenvalue is not Ht1,µ(t1), we can choose t2 ∈ G,

µ(t2) ∈ C, |µ(t2)| = 1, such that

dim(Ht1,µ(t1)) > dim(Ht1,µ(t1))
∩
Ht2,µ(t2)) ̸= 0.

Continuing this process, we have two cases:

(1) There are t1, t2, · · · , tm ∈ G,µ(t1), µ(t2),· · · ,µ(tm) ∈ C, |µ(ti)| = 1 (1 ≤ i ≤ m) such

that for 1 ≤ i ≤ m− 1

dim
( i∩

j=1

Htj ,µ(tj)

)
> dim

( i+1∩
j=1

Htj ,µ(tj)

)
, dim

( m∩
j=1

Htj ,µ(tj)

)
= 1.

(2) There is an HG ⊂ H1, dimHG ≥ 2, and for every t ∈ G, there is µ(t) such that

Ht,µ(t) ⊃ HG. In case (2), the assertion is clear. In case (1), since Htj ,µ(tj) is an invariant

subspace of U(x0)t,so is
m∩
j=1

Htj ,µ(tj). But its dimension is 1, so there is

ξ ∈
m∩
j=1

Htj ,µ(tj), ∥ξ∥ = 1, U(x0)tξ = µ(t)ξ (t ∈ G).
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Therefore µ(t)U(x0)t has a fixed point ξ. This completes the assertion. Let ξ0 ̸= 0 be a

common fixed point of {µ(t)U(x0)t|t ∈ G} in H1, and p0 be the projection on Cξ0. Then

∀η ∈ H0,

α(x0)t(p0)η = AdU(x0)t(p0)η

= U(x0)tp0U(x0)
∗
t η

= µ(t)U(x0)t(⟨µ(t)U(x0)
∗
t η, ξ0⟩ξ0)

= ⟨η, µ(t)U(x0)tξ0⟩(µ(t)U(x0)tξ0)

= ⟨η, ξ0⟩ξ0 = p0η.

So p0 ∈ x0(A)
α(x0) = (K(H0))

α(x0) is a projection of rank 1. Let b ∈ A+ such that

x0(b) = p0. Replacing b by
∫
αt(b)dt, we can assume b ∈ Aα. Let b1 = f(b), where f(t) = t,

for 0 ≤ t ≤ 1; f(t) = 1, for t ≥ 1. Then 0 ≤ b1 ≤ 1, b1 ∈ Aα, and x0(b1) = f(x0(b)) =

f(p0) = p0. Let b2 = a
1
2
0 b1a

1
2
0 ∈ Aα. Then

x0(b2) = x0(a0)
1
2 p0x0(a0)

1
2 = p0.

Since b2 ≤ a0 (so b2 ∈ Aα ∩ m(A)+) and tr(x0(b2)) = 1,∥x0(b2)∥ = 1, there exists a

neighbourhood N of x0 such that for every x ∈ N , the largest eigenvalue of x(b2) is large

than 3
4 , while the others are less than

1
2 , and tr(x(b2)) < 2. Let p = g(b2), where g(t) ∈ C(R),

g(t) = 1,if t ≥ 3
4 ; g(t) = 0 if t ≤ 1

2 ; g(t) is linear if
1
2 ≤ t ≤ 3

4 . Then p ∈ m(A) ∩Aα, and for

every x ∈ N , x(p) is a projection of rank 1.

(iv)⇒(ii). If A is a continuous-trace C∗-algebra, for every x0 ∈ Â, there is a ∈ m(A)+

such that x0(a) ̸= 0. Because (A,G, α) is pointwise unitary, for every x ∈ Â, there is a

unitary representation U(x) of G such that α(x) = AdU(x). Let b =
∫
αt(a)dt ∈ Aα. Then

tr(x(b)) = tr
(∫

x(αt(a))dt
)
= tr

(∫
α(x)t(x(a))dt

)
=

∫
tr(AdU(x)t(x(a)))dt =

∫
tr(x(a))dt = tr(x(a)).

So b ∈ Aα ∩m(A), and clearly x0(b) ̸= 0.

Remark 2.1. The equivalence of (i) and (ii) does not require that G should be compact

abelian and αt ∈ AutCb(Â)(A); (iii)⇒(vi) does not require that G should be compact abelian;

(iii)⇒(ii) does not require that G should be abelian.

§3. α-invariant Continuous-Trace Property
of A and Continuous-Trace Property of Aα

In this part, we discuss the continuous-trace relation between Aα and A.

Lemma 3.1. Let A ⊂ K(H) be a nondegenerate C∗-algebra. Then H =
⊕
i

ni⊕
j=1

Hij (ni <

∞) such that (id,Hij) is an irreducible representation of A,and (id,Hij) is equivalent to

(id,Hil), (id,Hij) is disjoint with (id,Hkl)(i ̸= k), and for every π ∈ Â, π is equivalent to

some (id,Hij).

Proof. By [2, 5.4.13], (id,H) is equivalent to
⊕
i

ni⊕
j=1

(πij ,Kij), where ni < ∞, and

(πij ,Kij) is an irreducible representation of A, πij is equivalent to πil, πij is disjoint with
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πkl (i ̸= k). So (id,H) is equal to
⊕
i

ni⊕
j=1

(id,Hπij ). Denoting Hπij by Hij , we see that

H = ⊕Hij , and (id,Hij) is equivalent to (id,Hil), (id,Hij) is disjoint with (id,Hkl) (i ̸= k).

Let Eij ∈ A
′
be the projection corresponding to (id,Hij). Then EijH = Hij , and for fixed

i the central projections of Eij(j = 1, 2, · · · , ni) in A
′ ∩A′′

are the same, notated by Fi. By

irreducibility, if i ̸= k,Fi is orthogonal to Fk. Since∑
i

Fi ≥
∑
i,j

Eij = 1,
∑
i

Fi = 1.

Let (π,H0) be an irreducible representation of A. There is an irreducible representation

(π̃, H̃0) of K(H) such that π̃|H0 = π. By irreducibility, (π̃, H̃0) is equivalent to (id,H),

so there is an isometric isomorphism U from H onto H̃0 such that π̃ = (AdU)id. Let

Hπ = U∗H0. Then

AU∗H0 = U∗UAU∗H0 = U∗π̃(A)H0 = U∗π(A)H0 ⊂ U∗H0.

So (id,Hπ) is equivalent to (π,H0) as the irreducible representation of A. Let Eπ be the

projection corresponding to (id,Hπ), Fπ be the central projection of Eπ. By the irreducibil-

ity of (id,Hπ) and (id,Hij), there is an i0 such that Fi0 = Fπ. So (id,Hπ) is equivalent to

(id,Hi0j), i.e., (π,K) is equivalent to some (id,Hij).

The following lemma is well known (for example [24, Theorem 3.2] is essentially one of it

is generalized forms). For clearness we give it a simple proof.

Lemma 3.2. Let A be a C∗-algebra with Hausdorff spectrum, (A,G, α) be a C∗-dynamic

system with G compact,αt ∈ AutCb(Â)(A). Then Xα = {x ∈ Â|x(Aα) ̸= 0} = Î is an open

set of Â, where I is the closed ideal generated by Aα, and there exists a continuous open

mapping θ from Prim(Aα) onto Xα.

Proof. Let A = (A(x),Λ) be a continuous field of C∗-algebras defined by A. For every

x ∈ Xα, let Eα(x) = A(x)α(x) where α(x)t(x(a)) = x(αt(a)) for every a ∈ A, and let Λ0 be

the restriction of Λ on Xα in the sense of [2], and let

Λα = {a(·) ∈ Λ0|a(x) ∈ A(x)α(x), ∀x ∈ Xα}.

We assert that Aα = (Eα(x),Λα) is a continuous field of C∗-algebras over Xα.

Let φ be the homomorphism from Aα to Γ0(A
α)(the C∗-algebra defined by Aα) defined

by φ(a)(x) = x(a) (∀x ∈ Xα). By Dans-Hoffmann theorem and [2, 11.5.3.], Aα = Γ0(A
α)

and this completes the proof by [11, Theorem 4].

Remark 3.1. We have proved that Aα is isomorphic to the C∗-algebra defined by Aα.

Theorem 3.1. Let (A,G, α) be a C∗-dynamic system with A liminal, Â Hausdorff,

Aα continuous-trace, G compact and αt ∈ AutCb(Â)(A). Let I be the (closed) ideal of A

generated by Aα. If θ : Âα → Î (defined in Lemma 3.2) is a sheaf and for every x ∈ Î, every

minimal projection in (A(x)α(x)|
A(x)α(x)H(x)

)
′ ⊂ B(A(x)α(x)H(x)) is central, then I is an

α-invariant continuous-trace C∗-algebra.

Proof. Because Aα = Iα, we assume I = A. For x ∈ Â, there are an open set N ⊂ Âα

and p ∈ (Aα)+ such that θ(N) is a neighbourhood of x, θ|N is a homeomorphism, and for

every y ∈ N ,y(p) is a projection of rank 1, and for every y1 ∈ N c such that

θ(y1) ∈ θ(N), y1(p) = 0.
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By Remark 3.1, and the construction in Theorem 4 of [11], y(p) = π(θ(y)(p)), where π

is an irreducible representation of A(θ(y))α(θ(y))
△
= Ay. But A is liminal, so A(θ(y)) =

K(H(θ(y))). By Lemma 3.1, π ∼= (id,Hπ), where Hπ ⊂ Ay(H(θ(y)))
△
= Hy. So θ(y)(p)|Hπ

is a projection of rank 1. Let Eπ be the projection of Hy on Hπ. Then Eπ is a minimal

projection in (Ay|Hy )
′ ⊂ B(Hy) by the irreducibility of π. So Eπ is central. By the same

reason and Lemma 3.1, Hy = ⊕Hj , and letting Ej be the projection on Hj , we see that Ej

is orthogonal to Ei(i ̸= j), and Ej is central.

If there is a j0 such that Ej0 ̸= Eπ (so (id,Hj0) ̸∼= (id,Hπ)) and θ(y)(p)Ej0 ̸= 0, let

yj0 = (id,Hj0)θ(y) be an irreducible representation of Aα, then

θ(yj0) = θ(y) ∈ θ(N), yj0 ̸∈ N, and yj0(p) = θ(y)(p)Ej0 ̸= 0.

This is a contradiction, so θ(y)(p) is a projection in H(θ(y)) of rank 1, since θ(y)(p)|H⊥
y
= 0.

Corollary 3.1. Let (A,G, α) be a C∗-dynamic system with A liminal, Â Hausdorff, G

compact and αt ∈ AutCb(Â)(A), I be the closed ideal generated by Aα. If for every x ∈ Î,

x(Aα) = K(A(x)α(x)H(x)), then I is an α-invariant continuous-trace C∗-algebra iff Aα is

a continuous-trace C∗-algebra.

Proof. In this case, (A(x)α(x)|
A(x)α(x)(H(x))

)
′
is trival, and by Lemma 3.2, [11, Theorem

4], θ is a homeomorphism.

Theorem 3.2. Let (A,G, α) be a C∗-dynamic system with Aα continuous-trace,G com-

pact and abelian,αt ∈ AutCb(Â)(A) (∀t ∈ G). If I is an α-invariant continuous-trace C∗-

algebra, then θ : Âα → Î is a sheaf, and for every x ∈ Î, every minimal projection in

(A(x)α(x)|
A(x)α(x)H(x)

)
′ ⊂ B(A(x)α(x)H(x)) is central.

Proof. Since Aα = Iα, without loss of generality,we assume A = I. First for every

x ∈ Â, we see that θ−1(x) is discret in Âα. Otherwise because Âα is Hausdorff, there is a

net {zi} ⊂ θ−1(x), and z ∈ θ−1(x) such that zi → z, zi ̸= z. By Lemma 3.1,

zi ∼= (id,Hi)x, z ∼= (id,H0)x,

where H0, Hi ⊂ A(x)α(x)H(x) (notated by H(x, α)) and (id,Hi), (id,H0) are irreducible

representations of A(x)α(x). Let Fi and F respectively be the central projections in

(A(x)α(x)|H(x,α))
′
corresponding to (id,Hi) and (id,H0), U(x) be the unitary representation

of G on H(x) such that AdU(x)t = α(x)t. Then

ker zi = {a ∈ Aα|x(a)Fi = 0},

and for every a ∈ Aα,ξ ∈ H(x),

U(x)t(x(a)ξ) = x(a)(U(x)tξ).

So H(x, α) is invariant under U(x)t. Let U(x, α)t be the restriction of U(x)t on H(x, α) .

For every b ∈ Aα,

U(x, α)tx(b)U(x, α)∗t = U(x)tx(b)U(x)∗t |H(x,α) = x(b)|H(x,α),

i.e., U(x, α)t ∈ (A(x)α(x)|H(x,α))
′
. So

AdU(x, α)t(Fi) = Fi,

and so is it for F . Since Aα is a continuous-trace C∗-algebra, there is p ∈ Aα such that z(p)

is a projection of rank 1. So x(p)|FH(x,α) has eigenvalue 1, whose eigenspace is invariant
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under U(x, α)t(∀t ∈ G). By the same discussion as in the proof of Theorem 2.1. (ii)⇒(iii),

there is a ξ0 ∈ FH(x, α), ∥ξ0∥ = 1 such that

U(x)tξ0 = λ(x, t)ξ0,

where λ(x, t) is a complex number with module 1. Let p0 be the projection on Cξ0, a

be an element in A such that x(a) = p0. Since F⊥Fi, x(a)Fi = 0, x(a)F = p0. Let

b =
∫
αt(a)dt ∈ Aα. Then

x(b)Fi =

∫
U(x)tx(a)U(x)∗tFidt =

∫
U(x)tx(a)FiU(x, α)∗tFidt = 0,

x(b)F =

∫
U(x)tx(a)U(x)∗tFdt =

∫
U(x, α)tp0U(x, α)∗t dt = p0 ̸= 0.

So 0 ̸= b ∈ ker zi\ ker z, i.e., z ̸∈ {zi}, which is a contradiction.

Moreover using the notation in Lemma 3.1, by replacing H and A by H(x, α) and

A(x)α(x) = x(Aα), the proof above says that for every Fi =
ni∑
j=1

Eij , there is b ∈ Aα

such that

x(b)|Fi =

ni⊕
j=1

x(b)|Hij

(where ⊕Hij = H(x, α)) is a projection of rank 1. But (id,Hil) ∼= (id,Hik), so ni must be

1. From this it is easy to see every minimal projection in (x(Aα)|H(x,α))
′
is central.

For the completion of the proof, since θ is open and continuous, we need only to check that

for every z ∈ Âα, there is a neighbourhood N of z such that θ|N is injective. Otherwise since

θ−1(x) is discrete, where x = θ(z), there is a neighbourhood N1 of z such that θ−1(x)∩N1 =

z, and there are {zi}, {z′i} ⊂ N1 such that

zi → z, z′i → z and θ(zi) = θ(z′i), zi ̸= z′i.

Let xi = θ(zi). Then xi → x. Since Aα is a continuous-trace C∗-algebra, we can get a

positive element p ∈ Aα and a neighbourhood N of z such that N ⊂ N ⊂ N1, and for

every z′ ∈ N ,z′(p) is a projection of rank 1; for every z′ ∈ N c
1 , z

′(p) = 0. Without loss of

generality, we assume zi, z
′
i, z ∈ N . Then

x(p), xi(p) ∈ A(x)α(x), tr(x(p)) = 1, tr(xi(p)) ≥ 2.

But A is a continuous-trace C∗-algebra, p(·) is a continuous field over Â. Since x(p) = p(x)

is a projection, by spectral calculus we can assume that p ≥ 0 and p(y) is a projection for

every y near x. Let {ai} be a net converging to p with ai positive and of continuous-trace.

By spectral calculus again, we can get a positive continuous-trace element a0 ∈ A such that

a0(y) is a projection and |a0(y)− p(y)| < 1 for every y near x. So tr(p(y)) = tr(a0(y)). But

tr(a0(y)) is continuous, therefore tr(xi(p)) → tr(x(p)). This is a contradiction.

Corollary 3.2. Let (A,G, α) be a separable C∗-dynamic system with G compact and

abelian,A liminal,αt ∈ AutCb(Â)(A). Then A is of α-invariant continuous-trace iff the four

conditions below hold:

(i) Aα is a continuous-trace C∗-algebra;

(ii) the closed ideal I of A generated by Aα is A;

(iii) θ : Âα → Â is a sheaf;
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(iv) for every x ∈ Â, every minimal projection in (x(Aα)|
x(Aα)H(x)

)
′ ⊂ B(x(Aα)H(x)))

is central.

Proof. By Theorem 3.1. and Theorem 3.2., it is enough to prove that if A is an α-

invariant continuous-trace C∗-algebra,then Aα is a continuous-trace C∗-algebra. In fact,

since G is compact, Aα is strong Morita equivalent to a closed ideal I of A×αG(for example

[13, p.113]). So it is enough to prove I is a continuous-trace C∗-algebra, but it is clear.
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