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Abstract

This paper constructs from the record values an estimator of the extreme-value index. It is

proved that the estimator is consistent in the domain of attraction of extreme-value distribu-
tions, and that under very mild conditions the estimator is asymptotically normal.
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§1. Introduction

Let {Xn, n ≥ 1} be a sequence of iid rv’s with a nondegenerate distribution function

F (x). Suppose there exist some constants an > 0, bn ∈ R and some γ ∈ R such that

lim
n→∞

P
( max

1≤i≤n
Xi − bn

an
≤ x

)
= Gγ(x), x ∈ R, (1.1)

where Gγ stands for one of the extreme value distributions:

Gγ(x) = exp{−(1 + γx)−1/γ} for x satisfying 1 + γx > 0.

Here the index γ ∈ R is a real parameter (interpret (1 + γx)−1/γ as e−x for γ = 0).

The estimation of the extreme-value index γ is very important both in the extreme value

theory and in practice. Many statistics, such as Hill estimator (for case γ > 0), Pickands

estimator and Dekkers-Einmahl-de Haan’s moment estimator which are based on a finite

sample, have been proposed to estimate γ. The studies of asymptotic behavior of these

estimators have also attracted much attention, e.g., [2–7, 10, 11], and [13–15].

Recently, Berred[1] constructed from record values two estimators of γ in case γ > 0.

From now on we always assume that F is continuous. Define the sequences of record times

and record values, τ(n) and X(n), by

τ(1) = 1, τ(n+ 1) = min{j : Xj > Xτ(n)}, n ≥ 1

and

X(n) = Xτ(n), n ≥ 1.
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Then Berred’s estimators can be written as

R1
k,n =

1

k
(logX(n)− logX(n− k)),

R2
k,n =

1

nk − k(k − 1)/2

k∑
j=1

logX(n− i+ 1),

where the integers k = k(n) involved in R1
k,n satisfy k(n) → ∞ and k(n)

n → 0 as n → ∞ and

in R2
k,n, 1 ≤ k < n is fixed. Berred[1] proved that both R1

k,n and R2
k,n are consistent and

under very mild conditions they are asymtotically normal.

Berred’s estimators are convenient for dealing with censored data containing only record

values. The purpose of this paper is to consider the problem of estimation in the general

case (1.1) with γ ∈ R. We use the statistic

Q(k, n) =
1

k
log

X(n)−X(n− k)

X(n− k)−X(n− 2k)

as an estimator of γ. Here k = k(n) satisfy

k(n) → ∞ as n → ∞ and lim sup
n→∞

k(n)

n
<

1

2
. (1.2)

The paper is organized as follows. Section 2 gives out its main results, including the

consistency and the asymptotic normality of Q(k, n), and the proofs appear in Section 3.

Finally, some examples and numerical results are given in Section 4.

§2. Main Results

Theorem 2.1. Assume that (1.1) and (1.2) hold. Then Q(k, n) converges in probability

to γ. If, additionally, k(n)
logn → ∞, then Q(k, n) converges to γ almost surely.

Denote ωF as the endpoint of F by ωF = sup{x : F (x) < 1} and define the inverse

function of F by F−(u) = inf{x : F (x) ≥ u}, 0 < u < 1. And set U(x) = F−(1− 1
x ), x > 1.

It is well known from extreme value theory (c.f., [8]) that (1.1) holds if and only if one of

the following conditions holds:

1− F (x) = x− 1
γ L1(x), γ > 0, (2.1)

ωF < ∞ and 1− F (ωF − 1

x
) = x

1
γ L2(x), γ < 0, (2.2)

lim
t→∞

U(tx)− U(t)

U(t)− 1
t

∫ t

1
U(s)ds

= log x, for x > 0. (2.3)

Here L1(x), L2(x) and U(x)− 1
x

∫ x

1
U(s)ds are slowly varying functions.

A slowly varying function h(x) is said to be (SRi) (i=1,2, or 3) with remainder term g if

one of the following conditions holds:

(SR1) ∀λ > 1, h(λt)
h(t) − 1 = O(g(t)), as t → ∞,

(SR2) ∀λ > 1, h(λt)
h(t) − 1 ∼ K(λ)g(t), as t → ∞,

(SR3) ∀λ > 1, h(λt)
h(t) − 1 = o(g(t)), as t → ∞,

where g(x) ↓ 0 as x → ∞.

Assume that {En, n ≥ 1} is a sequence of iid rv’s with unit exponential distribution. Set

Γn =
n∑

j=1

Ej for each n ≥ 1.
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Theorem 2.2. Assume that (1.1) holds with γ > 0 and (1.2) holds, and L1(x) is defined

in (2.1). Then
√
k

γ
(Q(k, n)− γ)

d→ N(0, 1) (2.4)

provided that one of the following conditions holds:

(a) lim
y→∞

sup
x>c

| log L1(xy)

L1(x)
|

√
log y

= 0 for some c > 0.

(b) L1(x) is (SRi) (i = 1, 2, or 3) with a remainder term g such that
√
kg(U(exp(Γn−k))) → di in probability,

where, if i = 1 or 2 then di = 0 and if i = 3 then di ∈ [0,∞).

(c) L1(x) = L
(1)
1 (x)L

(2)
1 (x) for large x with L

(1)
1 (x) satisfying (a) and L

(2)
1 (x) satisfying

(b).

Theorem 2.3. Assume that (1.1) holds with γ < 0 and (1.2) holds, and L2(x) is defined

in (2.2). Then
√
k

−γ
(Q(k, n)− γ)

d→ N(0, 1) (2.5)

provided that one of the following conditions holds:

(d) lim
y→∞

sup
x>c

| log L2(xy)

L2(y)
|

√
log y

= 0 for some c > 0.

(e) L2(x) is (SRi)(i = 1, 2, or 3) with a remainder term g such that
√
kg(U(exp(Γn−2k))) → di in probability,

where, if i = 1 or 2 then di = 0 and if i = 3 then di ∈ [0,∞).

(f) L2(x) = L
(1)
2 (x)L

(2)
2 (x) for large x with L

(1)
2 (x) satisfying (d) and L

(2)
2 (x) satisfying

(e).

In the case γ = 0, the estimator Q(k, n) converges in probability to γ at a very fast rate

under a mild condition.

Theorem 2.4. Assume that (1.1) holds with γ = 0 and (1.2) holds, and

L(x) = U(x)− 1

x

∫ x

1

U(s)ds.

(g) If lim
x→∞

L(x) = c ∈ (0,∞), then

k(Q(k, n)− γ) → 0 in probability as n → ∞. (2.6)

(h) If lim
y→∞

sup
x>c

| log L(xy)
L(y)

|
√
log y

= 0 for some c > 0, then

√
k(Q(k, n)− γ) → 0 in probability as n → ∞. (2.7)

(i) If L(x) is (SRi)(i = 1, 2, or 3) with a remainder term g such that
√
kg(exp(Γn−k)) → di in probability,

where di = 0 for i = 1 or 2 and di ∈ [0,∞) for i = 3, then (2.7) holds.

(j) If L(x) = L(1)(x)L(2)(x) for large x with L(1)(x) satisfying (h) and L(2)(x) satisfying

(i), then (2.7) remains true.

Remark 2.1. In Theorems 2.2 and 2.3 we have used the condition
√
kg(U(exp(Γn−2k))) → di in probability,
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which, in case that g(U(ex)) is regularly varying, is implied by

lim
n→∞

√
kg(U(en−2k))) = di.

Similarly, if we assume g(ex) is regularly varying, then we can use the condition

lim
n→∞

√
kg(en−k) = di

to replace the condition of Theorem 2.4:
√
kg(exp(Γn−k)) → di in probability.

Under somewhat stronger constraint, we show that Q(k, n) is also asymptotically normal.

To this end, set G(x) = U(ex) for x > 0. Assume that G is a regularly varying function

at infinity with index β ∈ R, and G satisfies a condition of second order variation, i.e., for

some function a(t) > 0 and g(t) > 0 with lim
t→∞

g(t) = 0,

G(tx)−G(t)

a(t)
− xβ − 1

β
= O(g(t)) as t → ∞ (2.8)

holds locally uniformly on x > 0.

Theorem 2.5. Assume that (2.8) holds, and

kn → ∞ as n → ∞ and lim
n→∞

kn
n2/3

= 0. (2.9)

If
n√
k
g(Γn−k) → 0 in probability, (2.10)

then

k3/2√
2
Q(k, n)

d→ N(0, 1). (2.11)

Remark 2.2. The properties of second order variationial functions like G in (2.8) can be

found in [9]. An equivalence to (2.8) can be expressed in terms of F . If g in (2.8) is assumed

to be regularly varying, then (2.10) can be replaced by lim
n→∞

ng(n)√
k

= 0, which is satisfied if

lim sup
n→∞

ng(n) < ∞.

Remark 2.3. In order to construct a confidence interval for γ, we write (2.4), (2.5) and

(2.11) into a unified form
√
k(1− e−k|γ|/

√
2)

|γ|
(Q(k, n)− γ)

d→ N(0, 1), (2.12)

where 1−e−k|γ|/
√

2

|γ| for γ = 0 is defined as lim
γ→0

1−e−k|γ|/
√

2

|γ| = k√
2
. Furthermore, we use

√
k(1−e−k|Q(k,n)|/

√
2)

|Q(k,n)| to replace
√
k(1−e−k|γ|/

√
2)

|γ| in the left-hand side of (2.12). Note that

P (Q(k, n) = 0) = 0 because of the continuity of F . In case γ ̸= 0, it is obvious that

(1− e−k|Q(k,n)|/
√
2)/|Q(k, n)|

(1− e−k|γ|/
√
2)/|γ|

→ 1 in probability. (2.13)

For γ = 0, (2.11) implies kQ(k, n) = o(1) in probability, which yields (2.13). Thus, from

(2.12) we see
√
k(1− e−k|Q(k,n)|/

√
2)

|Q(k, n)|
(Q(k, n)− γ)

d→ N(0, 1).

Via this result one can construct a confidence interval for γ.
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§3. Proofs

Keep in mind that {En, n ≥ 1} is a sequence of i.i.d. random variables with unit expo-

nential distribution and Γn =
n∑

j=1

Ej for each n ≥ 1. Then from [1] or [10], {X(n), n ≥ 1} is

distributed the same as {U(exp(Γn)), n ≥ 1}. For simplicity write X(n) = U(exp(Γn)) for

all n ≥ 1. Thus, Q(k, n) can be rewritten as

Q(k, n) =
1

k
log

U(exp(Γn))− U(exp(Γn−k))

U(exp(Γn−k))− U(exp(Γn−2k))
.

Lemma 3.1. Suppose that (1.1) holds with γ > 0. If (1.2) holds, then

Q(k, n) =
1

k
log

U(exp(Γn))

U(exp(Γn−k))
+ o(

1

k
) in probability, (3.1)

and additionally, if lim
n→∞

kn

logn = ∞, then

Q(k, n) =
1

k
log

U(exp(Γn))

U(exp(Γn−k))
+ o(

1

k
) almost surely. (3.2)

Proof. From [8], U(x) is regularly varying at infinity with index γ > 0. From properties

of regular variation we see that if lim
x→∞

h(x)
x = ∞,

U(h(x))

U(x)
→ ∞ as n → ∞. (3.3)

By the law of large numbers, if (1.2) holds, then

Γn − Γn−k

k
→ 1 and

Γn−k − Γn−2k

k
→ 1 in probability. (3.4)

Additionally, if kn

logn → ∞ as n → ∞, then by [12],

Γn − Γn−k

k
→ 1 and

Γn−k − Γn−2k

k
→ 1 almost surely. (3.5)

In view of (3.3) and (3.4), if (1.1) and (1.2) hold, then

U(exp(Γn−k))

U(exp(Γn))
→ 0 and

U(exp(Γn−2k))

U(exp(Γn−k))
→ 0 in probability.

Since

Q(k, n) =
1

k
log

U(exp(Γn))

U(exp(Γn−k))
+

1

k
log

(
1− U(exp(Γn−k))

U(exp(Γn))

)
− 1

k
log

(
1− U(exp(Γn−2k))

U(exp(Γn−k))

)
,

(3.1) follows from the Taylor’s expansion. Likewise, if kn

logn → ∞ as n → ∞, one can

conclude (3.2) from (3.3) and (3.5). That completes the proof of the lemma.

Lemma 3.2. If (1.1) holds with γ < 0 and (1.2) holds, then

Q(k, n) =
1

k
log

U(∞)− U(exp(Γn−k))

U(∞)− U(exp(Γn−2k))
+ o

(1
k

)
in probability.

Furthermore, if lim
n→∞

kn

logn = ∞, then

Q(k, n) =
1

k
log

U(∞)− U(exp(Γn−k))

U(∞)− U(exp(Γn−2k))
+ o

(1
k

)
almost surely.

Proof. It is easily seen that U(∞) = ωF < ∞. Set
∼
U(x) =

1

U(∞)− U(x)
. (3.6)
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Note that (2.2) holds in the case. Thus
∼
U(x) is regularly varying with index −γ > 0.

According to the proof of Lemma 3.1 we see under (1.2) that
∼
U(exp(Γn−k))
∼
U(exp(Γn))

→ 0 and

∼
U(exp(Γn−2k))
∼
U(exp(Γn−k))

→ 0 in probability,

and under the additional condition lim
n→∞

kn

logn = ∞ the wording “in probability” can be

replaced by the wording “almost surely”.

Rewrite

Q(k, n) =
1

k
log

∼
U(exp(Γn−2k))
∼
U(exp(Γn−k))

+
1

k
log

(
1−

∼
U(exp(Γn−k))
∼
U(exp(Γn))

)
− 1

k
log

(
1−

∼
U(exp(Γn−2k))
∼
U(exp(Γn−k))

)
.

The lemma immediately follows from the Taylor’s expansion.

Lemma 3.3. Assume that (1.1) holds with γ = 0. Let xn, yn and zn be positive constants

such that

lim
n→∞

xn = ∞, lim
n→∞

yn
xn

= 1, lim inf
n→∞

zn
xn

> 0.

Set L(x) = U(x)− 1
x

∫ x

1
U(s)ds. Then

min
t∈[0,xn]

L(et+yn+zn)

max
t∈[0,yn]

L(et+zn)
(1 + o(1)) ≤ U(exn+yn+zn)− U(eyn+zn)

U(eyn+zn)− U(ezn)

≤
max

t∈[0,xn]
L(et+yn+zn)

min
t∈[0,yn]

L(et+zn)
(1 + o(1)) (3.7)

holds for all large n.

Proof. Note that (2.3) holds under (1.1) with γ = 0 and the convergence in (2.3) is

locally uniform, i.e., for any T > 1 and the sequence {tn} with lim
n→∞

tn = ∞, there exists a

sequence {εn}, εn ↓ 0 such that, for all large n∣∣∣U(xt)− U(t)

L(t)
− log x

∣∣∣ ≤ εn for all x ∈ [T−1, T ], t ≥ tn. (3.8)

Set tn = ezn . By choosing x = e
yn
[yn] and x = e

xn
[xn] in (3.8) respectively, where [x] denotes

the integer part of x, we get( yn
[yn]

− εn

)
L(e(i−1) yn

[yn]
+zn) ≤ U(ei

yn
[yn]

+zn)− U(e(i−1) yn
[yn]

+zn)

≤
( yn
[yn]

+ εn

)
L(e(i−1) yn

[yn]
+zn)

for i = 1, 2, · · · , [yn] and( xn

[xn]
− εn

)
L(e(j−1) xn

[xn]
+yn+zn) ≤ U(ej

xn
[xn]

+yn+zn)− U(e(j−1) xn
[xn]

+yn+zn)

≤
( xn

[xn]
+ εn

)
L(e(j−1) xn

[xn]
+yn+zn)

for j = 1, 2, · · · , [xn]. By taking simply summations on each side of the above inequalities

one can easily get the lemma.

Proof of Theorem 2.1 If γ > 0, then the conclusions of Theorem 2.1 immediately follow

from Lemma 3.1 and Theorem 4 of [1].
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Assume γ < 0 and define
∼
U as in (3.6). As we have known,

∼
U(x) is regularly varying with

index −γ > 0. Hence
∼
U(x) can be written as

∼
U(x) = x−γh(x), where h is slowly varying.

From [17, p.18],

lim
x→∞

log h(x)

log x
= 0.

Therefore, it is easily proved from (3.4) and (3.5) that

log

∼
U(exp(Γn−k))
∼
U(exp(Γn−2k))

→ −γ in probability

and under the additional condition kn

logn → ∞ as n → ∞

log

∼
U(exp(Γn−k))
∼
U(exp(Γn−2k))

→ −γ almost surely,

which, coupled with Lemma 3.2, yields the theorem.

Assume now γ = 0. Note that L(x) is a slowly varying function. By Karamata’s repre-

sentation theorem (see e.g. [8] or [17])

L(x) = c(x) exp
{∫ x

1

b(u)

u
du

}
with lim

x→∞
c(x) = c > 0 and lim

x→∞
b(x) = 0,

from which one can easily show that

lim
y→∞

sup
x≥ye

∣∣∣ log L(x)
L(y)
x
y

∣∣∣ = 0.

Then under the conditions of Lemma 3.3 we conclude from (3.7) that

log
U(exn+yn+zn)− U(eyn+zn)

U(eyn+zn)− U(ezn)
= o(xn). (3.9)

Now set xn = Γn − Γn−k, yn = Γn−k − Γn−2k and zn = Γn−2k. Then

Q(k, n) =
1

k
log

U(exn+yn+zn)− U(eyn+zn)

U(eyn+zn)− U(ezn)
. (3.10)

The conclusions of Theorem 2.1 immediately follow from (3.4), (3.5) and (3.9). That com-

pletes the proof of Theorem 2.1.

Proof of Theorem 2.2 According to Lemma 3.1, to prove Theorem 2.2 it suffices to

show √
k

γ

(1
k
log

U(exp(Γn)))

U(exp(Γn−k))
− γ

)
d→ N(0, 1). (3.11)

Note that U(x) is a regularly varying function with index γ. Write U(x) = xγJ(x), where

J(x) is slowly varying. Since

U(x) = inf
{
y :

1

1− F (y)
≥ x

}
=

( 1

1− F

)−
(x),

we have 1
1−F (U(x)) ∼ x as x → ∞, i.e.,

Jγ(x) ∼ L1(x) as x → ∞. (3.12)

Assume that (a) holds. It is obvious that for some c1 > 0,

lim
y→∞

sup
x>c1

∣∣∣ log L1(xy)
L1(y)√

logU(x)

∣∣∣ = 0.
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Thus from (3.12) and the fact

lim
x→∞

U(x)

log x
= γ

we have

lim
y→∞

sup
x>c1

∣∣∣ log J(xy)
J(y)√

log x

∣∣∣ = 0. (3.13)

It is clear from the central limit theorem that
1√
k
(Γn − Γn−k − k)

d→ N(0, 1), (3.14)

and from (3.13) and (3.4) that

1

γ
√
k
log

J(exp(Γn))

J(exp(Γn−k))
→ 0 in probability.

Then (3.11) follows from the identity
√
k

γ

(1
k
log

U(exp(Γn)))

U(exp(Γn−k))
− γ

)
=

Γn − Γn−k − k√
k

+
1

γ
√
k
log

J(exp(Γn))

J(exp(Γn−k))
. (3.15)

If (b) holds, (3.11) can be proved along the lines of the proof of Theorem 5 of [1]. The

detail is omitted.

Suppose now (c) holds. Then from (3.12)

Jγ(x)

L
(1)
1 (x)L

(2)
1 (x)

∼ 1 as x → ∞.

Then

1√
k
log

J(exp(Γn))

J(exp(Γn−k))

=
1√
k
log

L
(1)
1 (exp(Γn))

L
(1)
1 (exp(Γn−k))

+
1√
k
log

L
(2)
1 (exp(Γn))

L
(2)
1 (exp(Γn−k))

+ op

( 1√
k

)
. (3.16)

The first term on the right-hand side of (3.16) is obviously of the same order as op(1), and

by Lemma 6 of [1], the second term is also of the order op(1). Consequently, (3.11) follows

from (3.14)–(3.16).

Proof of Theorem 2.3. In view of Lemma 3.2 it suffices to show
√
k

−γ

(1
k
log

∼
U(exp(Γn−2k)))
∼
U(exp(Γn−k))

− γ
)

d→ N(0, 1),

which can be proved along the the lines of the proof of Theorem 2.2.

Proof of Theorem 2.4. Like the proof of Theorem 2.1, set

xn = Γn − Γn−k, yn = Γn−k − Γn−2k, zn = Γn−2k.

Then (3.10) holds. If (g) holds, then by applying Lemma 3.3, (2.6) is valid; and if (h) holds,

then (2.7) holds.

Suppose now that (i) holds. Due to Theorem 2.2.2 of [7],

(1) L is SR1 if and only if

L(x) = exp
{
C +O(g(x)) +

∫ x

1

O(g(t))t−1dt
}
; (3.17)
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(2) L is SR2 if and only if

L(x) = exp{C + o(g(x)) +

∫ x

1

(C + o(1))g(t)t−1dt};

(3) L is SR3 if and only if

L(x) = exp{C + o(g(x)) +

∫ x

1

o(g(t))t−1dt}.

We only prove (2.7) under (3.17). From (3.7) and (3.10), for some D > 0,

1

k

(
op(1)−D

∫ exp(Γn)

exp(Γn−2k)

g(t)t−1dt
)
≤ Q(k, n) ≤ 1

k

(
op(1) +D

∫ exp(Γn)

exp(Γn−2k)

g(t)t−1dt
)
.

Since ∫ exp(Γn)

exp(Γn−2k)

g(t)t−1dt ≤ g(exp(Γn−2k))(Γn − Γn−2k) = Op(k)g(exp(Γn−2k))

and from (2.6),
√
kg(exp(Γn−2k)) → 0 in probability,

we get
√
kQ(k, n) = op(1),

which proves (2.7).

If (j) holds, then one can show (2.7) in a similar way. The dertail is omitted here.

The proof of Theorem 2.4 is completed.

Proof of Theorem 2.5. Note that

Q(k, n) =
1

k
log

G(Γn)−G(Γn−k)

G(Γn−k)−G(Γn−2k)
.

Setting t = Γn−k in (2.8) and mentioning that Γn−k

n−k → 1 in probability, we have

Γn − Γn−k

a(Γn−k)
=

( Γn

Γn−k
)β − 1

β
+Op(g(Γn−k)),

Γn−2k − Γn−k

a(Γn−k)
=

(Γn−2k

Γn−k
)β − 1

β
+Op(g(Γn−k)).

Using Taylor’s expansion one can easily show

k3/2Q(k, n) =
Γn − Γn−k − k√

k
− Γn−k − Γn−2k − k√

k
+ op(1)

d→ N(0, 2),

yielding (2.11).

§4. Examples and Numerical Results

First of all we give some examples satisfying the conditions of Theorems 2.2 and 2.3.

Example 4.1. Assume that

1− F (x) = c(x)x− 1
γ (log x)β

for large x, where γ > 0, β ∈ R and lim
x→∞

c(x) = c > 0. Then the condition (a) holds. Thus,

if {kn} satisfy (1.2), then
√
kn
γ

(Q(kn, n)− γ)
d→ N(0, 1).
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Example 4.2. Set

1− F (x) = cx− 1
γ exp{(log x)β}

for all large x, where γ > 0, c > 0, β ∈ (0, 1). In this case,

L1(x) = c exp{(log x)β}.
It is easily seen that L1(x) is (SR2) with g(t) = (log t)−(1−β) and K(λ) = β log λ (see also

[1]). If (1.2) holds and

kn = o(n2(1−β)) as n → ∞,

then the condition (b) is satisfied. Hence, we have
√
kn
γ

(Q(kn, n)− γ)
d→ N(0, 1).

Example 4.3. Take

1− F (x) = c(x)x− 1
γ (log x)−β1 exp{(log x)β2}

for all large x, where γ > 0, β1 ∈ R, β2 ∈ (0, 1) and lim
x→∞

c(x) = c > 0. Put

L
(1)
1 (x) = c(x)(log x)β1 and L

(2)
1 (x) = exp{(log x)β2}.

Then L1(x) = L
(1)
1 (x)L

(2)
1 (x) satisfies the condition (c) of Theorem 2.2 if kn = o(n2(1−β2)).

Therefore, if (1.2) holds and

kn = o(n2(1−β2)) as n → ∞,

then √
kn
γ

(Q(kn, n)− γ)
d→ N(0, 1).

Example 4.4. Assume

1− F (x0 −
1

x
) = c(x)x

1
γ (log x)−β1 exp{(log x)β2}

for all large x, where γ < 0, x0 ∈ R, β1 ∈ R, β2 ∈ (0, 1) and lim
x→∞

c(x) = c > 0. Then,

according to Theorem 2.3, if (1.2) holds and

kn = o(n2(1−β)) as n → ∞,

then √
kn
γ

(Q(kn, n)− γ)
d→ N(0, 1).

Example 4.5. Assume

1− F (x) = e−x for x > 0.

Then it is obvious that the condition (g) is satisfied. Hence, if (1.2) holds, then knQ(kn, n) →
0 in probability. Note that U(x) = log x for x > 0. Thus, it is easily seen fron Section 3 that

k3/2n Q(kn, n)
d→ N(0, 2).

Some numerical results for the estimator Q(k, n) and the Berred’s estimator R1
k,n are

listed below. The distribution functions utilized here can also be found in [1]. In the tables,

Q̂(k, n) and R̂1
k,n are the averages of 500 estimates of Q(k, n) and R1

k,n; V (Q) and V (R) are

the corresponding standard errors, σ is the asymptotic standard deviation for Q(k, n) (also

for R1
k,n in Table 1).
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Table 1

1− F (x) γ n k Q̂(k, n) R̂1
k,n V (Q) V (R) σ

x− 1
γ 0.5 10 3 0.4924 0.4955 0.4094 0.2903 0.2886

0.5 20 7 0.5057 0.5062 0.2046 0.1963 0.1889
1.0 10 3 1.0283 1.0231 0.6357 0.5765 0.5773
1.0 20 7 0.9740 0.9741 0.3733 0.3714 0.3779
1.5 10 3 1.5195 1.5203 0.8878 0.8577 0.8660
1.5 20 7 1.4959 1.4961 0.5974 0.5969 0.5669

7x− 1
γ 0.5 10 3 0.4894 0.4940 0.3974 0.2885 0.2886

0.5 20 7 0.4895 0.4901 0.1911 0.1811 0.1889
1.0 10 3 1.0375 1.0195 0.5986 0.5503 0.5773
1.0 20 7 1.0071 1.0071 0.3908 0.3890 0.3779
1.5 10 3 1.5190 1.5158 0.9187 0.8910 0.8660
1.5 20 7 1.5122 1.5121 0.5626 0.5623 0.5669

x− 1
γ (1 + 2x−2) 0.5 10 3 0.5334 0.5211 0.4227 0.3142 0.2886

0.5 20 7 0.5092 0.5088 0.1963 0.1883 0.1889
1.0 10 3 1.0382 1.0355 0.6431 0.5905 0.5773
1.0 20 7 1.0082 1.0080 0.3776 0.3769 0.3779
1.5 10 3 1.5189 1.5196 0.9175 0.8818 0.8660
1.5 20 7 1.4930 1.4929 0.5565 0.5562 0.5669

Table 2

1− F (ωF − 1
x ) γ n k Q̂(k, n) V (Q) σ

x
1
γ −0.5 10 3 −0.49073 0.39665 0.28867

−0.5 20 7 −0.50420 0.20005 0.18898
−1.0 10 3 −1.01256 0.67874 0.57735
−1.0 20 7 −0.99525 0.38733 0.37796
−1.5 10 3 −1.48508 0.85813 0.86602
−1.5 20 7 −1.50848 0.54982 0.56694

7x
1
γ −0.5 10 3 −0.48963 0.38434 0.28867

−0.5 20 7 −0.49981 0.19443 0.18898
−1.0 10 3 −1.03351 0.60076 0.57735
−1.0 20 7 −0.99875 0.35944 0.37796
−1.5 10 3 −1.53061 0.88645 0.86602
−1.5 20 7 −1.51652 0.58206 0.56694

x
1
γ (1 + 2x−2) −0.5 10 3 −0.49609 0.37922 0.28867

−0.5 20 7 −0.49274 0.20316 0.18898
−1.0 10 3 −1.02106 0.66302 0.57735
−1.0 20 7 −0.99861 0.39331 0.37796
−1.5 10 3 −1.53080 0.88346 0.86602
−1.5 20 7 −1.51161 0.55880 0.56694
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Table 3 (γ = 0)

1− F (x) β n k Q̂(k, n) V (Q) σ

exp(x−β) 0.5 10 3 0.15068 0.31420 0.27216
10 3 +0.13306 0.32554 0.27216
20 7 +0.07977 0.08233 0.07636
20 7 +0.07815 0.08295 0.07636

1 10 3 +0.00916 0.28984 0.27216
10 3 −0.00677 0.29122 0.27216
20 7 −0.00056 0.08052 0.07636
20 7 +0.00015 0.08055 0.07636

2 10 3 −0.07387 0.29031 0.27216
10 3 −0.09409 0.28928 0.27216
20 7 −0.04312 0.07727 0.07636
20 7 −0.04115 0.08016 0.07636
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