SPECTRUM-PRESERVING ELEMENTARY OPERATORS ON $\mathcal{B}(\mathcal{X})^{**}$

Hou Jinchuan*

Abstract

Characterizations for elementary operators of length 2 to be invertibility-preserving, spectrum-preserving or spectrum-compressing are obtained.

Keywords Elementary operators, Spectrum-preserving linear maps, Positive maps1991 MR Subject Classification 47A10, 47B47Chinese Library Classification 0177.2, 0177.3

§1. Introduction

Let \mathcal{X} be an infinite dimensional complex Banach space and $\mathcal{B}(\mathcal{X})$ the Banach algebra of all bounded linear operators on \mathcal{X} . For $T \in \mathcal{B}(\mathcal{X})$, $\sigma(T)$, as usual, will denote the spectrum of T. Let Φ be a linear map from $\mathcal{B}(\mathcal{X})$ into itself. Φ is spectrum-preserving if $\sigma(\Phi(T)) = \sigma(T)$ for all $T \in \mathcal{B}(\mathcal{X})$; Φ is spectrum-compressing if $\sigma(\Phi(T)) \subseteq \sigma(T)$ for all $T \in \mathcal{B}(\mathcal{X})$. It is clear that if Φ is unital (i.e., $\Phi(I) = I$), then Φ is spectrum-preserving (spectrum-compressing) if and only if Φ preserves invertibility in both directions (preserves invertibility), i.e., $\Phi(T)$ is invertible if and only if T is ($\Phi(T)$ is invertible if T is). Spectrum-preserving linear maps have been studied by some authors, e.g., see [1, 2, 4-6] and the references therein. In fact, this is one of the so-called linear preserver problems.

Jafarian and Sourour^[4] proved that a spectrum-preserving linear map Φ from $\mathcal{B}(\mathcal{X})$ onto itself (i.e., Φ is surjective) is an automorphism or anti-automorphism, that is, there exists an invertible operator A in $\mathcal{B}(\mathcal{X})$ or $\mathcal{B}(\mathcal{X}, \mathcal{X}^*)$ such that $\Phi(T) = A^{-1}TA$ for all T or $\Phi(T) = A^{-1}T^*A$ for all T.

Note that Φ is assumed to be surjective is crucial for the results in [4]. So it is interesting to ask if one can give a characterization for the structure of spectrum-preserving linear maps which are not surjective. But this question seems very difficult to answer. An important class of linear maps on $\mathcal{B}(\mathcal{X})$ which contains many non-surjective maps is the class of elementary operators. Recall that Φ is called an elementary operator if there exist operators A_1, \dots, A_n , B_1, \dots, B_n in $\mathcal{B}(\mathcal{X})$ such that

$$\Phi(T) = \sum_{i=1}^{n} A_i T B_i \text{ for all } T \in \mathcal{B}(\mathcal{X}).$$

Manuscript received January 8, 1996.

^{*}Department of Mathematics, Shanxi Teachers University, Linfen 041004, China.

^{**}Project supported by the National Natural Science Foundation of China and the Shanxi Provincial Natrual Science Foundation of China.

The number $l(\Phi) = \inf\{n; \Phi(\cdot) = \sum_{i=1}^{n} A_i(\cdot)B_i\}$ is called the length of Φ . For a Banach space \mathcal{X} and an operator $T \in \mathcal{B}(\mathcal{X}), \mathcal{R}(T)$ and ker T will denote the range and the null space of T, respectively. Let $\mathcal{X}^{(n)} = \mathcal{X} \oplus \mathcal{X} \oplus \ldots \oplus \mathcal{X}$, the direct sum of n copies of \mathcal{X} and

$$T^{(n)} = T \oplus T \oplus \cdots \oplus T \in \mathcal{B}(\mathcal{X}^{(n)}).$$

M. Gao^[1] considered the spectrum-preserving problem for elementary operators $\Phi(\cdot) = A_1(\cdot)B_1 + A_2(\cdot)B_2$ of length 2. He proved that if $\mathcal{R}(A_1) \cap \mathcal{R}(A_2) = \{0\}$ and if $I \in \mathcal{R}(\Phi)$, then Φ is spectrum-preserving if and only if $\mathbf{A} = (A_1 \ A_2) \in \mathcal{B}(\mathcal{X}^{(2)}, \mathcal{X})$ is invertible with $\mathbf{A}^{-1} = \mathbf{B}^t = \begin{pmatrix} B_1 \\ B_2 \end{pmatrix}$. In other words, Φ has the form of

$$\Phi(T) = \mathbf{A}T^{(2)}\mathbf{A}^{-1},\tag{1.1}$$

which is clearly an injective endomorphism of $\mathcal{B}(\mathcal{X})$.

In the present paper, we show that the assumption $\mathcal{R}(A_1) \cap \mathcal{R}(A_2) = \{0\}$ in the Gao's result above can be omitted, and more generally, we discuss the invertibility-preserving and spectrum-compressing elementary operators of length 2 and obtain the characterizations for them respectively.

§2. Results and Proofs

The main result of this paper is the following theorem:

Theorem 2.1. Let $\Phi(\cdot) = A_1(\cdot)B_1 + A_2(\cdot)B_2$ be an elementary operator of length 2 with $I \in \mathcal{R}(\Phi)$. Then the following statements are equivalent.

- (i) Φ is spectrum-compressing;
- (ii) Φ is spectrum-preserving;
- (iii) $\mathbf{A} = (A_1 \ A_2)$ is invertible with $\mathbf{A}^{-1} = \begin{pmatrix} B_1 \\ B_2 \end{pmatrix}$;

(iv) There exists an invertible operator $\mathbf{A} \in \mathcal{B}(\mathcal{X}^{(2)}, \mathcal{X})$ such that $\Phi(T) = \mathbf{A}T^{(2)}\mathbf{A}^{-1}$ for all T.

Remark 2.1. This theorem particularly improves the result in [1] mentioned in Introduction by ommitting the assumption $\mathcal{R}(A_1) \cap \mathcal{R}(A_2) = \{0\}.$

To prove our main result we begin with a discussion of elementary operators of length 2 which preserve invertibility. Note that if operators T and S with rank great than 1 are linearly independent, then there is a vector x such that Tx and Sx are linearly independent. In fact, Tx and Sx are linearly dependent for all x if and only if T and S either are linearly dependent or both are operators of rank one. This fact will be used frequently in the sequel and a proof of it may be found in [3].

Lemma 2.1. Let $\Phi(\cdot) = A_1(\cdot)B_1 + A_2(\cdot)B_2$ be an elementary operator of length 2 on $\mathcal{B}(\mathcal{X})$. If Φ is invertibility-preserving, then the following statements are true:

- (a) $\ker B_1 \cap \ker B_2 = \{0\},\$
- (b) $\mathcal{R}(A_1) + \mathcal{R}(A_2) = \mathcal{X},$
- (c) Both A_1 and A_2 are injective,
- (d) A_1x is linearly independent to A_2x for every nonzero vector $x \in \mathcal{X}$,
- (e) $\mathcal{R}(A_1) \cap \mathcal{R}(A_2) = \{0\}.$

Proof. (a) and (b) are obvious.

(c) First note that $\{A_1, A_2\}$ and $\{B_1, B_2\}$ are linear independent sets of operators. So there is a vector x_0 such that B_1x_0 and B_2x_0 are linearly independent. Fix such an x_0 .

Claim 1. ker $A_1 \cap \ker A_2 = \{0\}.$

Assume, on the contrary, that $\mathcal{N} = \ker A_1 \cap \ker A_2 \neq \{0\}$; we shall induce a contradiction.

If dim $\mathcal{N} \geq 2$, take two vectors $y_1, y_2 \in \mathcal{N}$ such that they are linearly independent. For any invertible operator T which sends $B_i x_0$ to $y_i, i = 1, 2, \Phi(T)$ can not be invertible since $\Phi(T)x_0 = 0$. Hence, we must have dim $\mathcal{N} = 1$, i.e., $\mathcal{N} = \{\lambda y_0; \lambda \in \mathbf{C}\}$, where \mathbf{C} is the field of complex numbers. We assert that

$$\ker A_1 = \ker A_2 = \mathcal{N}.$$

In fact, if ker $A_1 \neq \mathcal{N}$, and take $y \in \ker A_1 \setminus \mathcal{N}$, then there is an invertible operator T satisfying $TB_1x_0 = y$ and $TB_2x_0 = y_0$. However, $\Phi(T)x_0 = 0$, contrary to the invertibiliy-preserveness of Φ .

In the case that $\mathcal{R}(A_1) \cap \mathcal{R}(A_2) \neq \{0\}$, there exist vectors y_1 and y_2 which are linearly independent such that $A_1y_1 = -A_2y_2 \neq 0$. Thus for any invertible operator T satisfying $TB_ix_0 = y_i$ we have $\Phi(T)x_0 = 0$, which is impossible.

In the case that $\mathcal{R}(A_1) \cap \mathcal{R}(A_2) = \{0\}$, both B_1 and B_2 are invertible. In fact, it is obvious that B_1 and B_2 are surjective since, by (b), $\mathcal{X} = \mathcal{R}(A_1) + \mathcal{R}(A_2)$ is a direct sum. If there is a nonzero vector x for which $B_2x = 0$, then $B_1x \neq 0$ by (a). Let T be an invertible operator such that $TB_1x = y_0$; we get $\Phi(T)x = A_1TX_1x + 0 = A_1y_0 = 0$, a contradiction. Therefore, B_2 , as well as B_1 , is injective. Because B_1^* and B_2^* are invertible and linearly independent to each other, we can find $f, g \in \mathcal{X}^*$ such that f is linearly independent to gand $B_1^*f = -B_2^*g$. Take $h \in \mathcal{X}^*$ such that A_1^*h and A_2^*h are linearly independent. Then there exists an invertible operator T such that $T^*A_1^*h = f$ and $T^*A_2^*h = g$. Now $\Phi(T)$ is invertible but

$$\Phi(T)^*h = B_1^*T^*A_1^*h + B_2^*T^*A_2^*h = B_1^*f + B_2^*g = 0,$$

again a contradiction.

Claim 2. Either A_1 or A_2 is injective.

If, on the contrary, neither of A_1 and A_2 is injective, then there are nonzero vectors $y_1 \in \ker A_1$ and $y_2 \in \ker A_2$. It follows from Claim 1 that y_1 and y_2 are linearly independent. Then for any invertible operator T satisfying $TB_ix_0 = y_i$, i = 1, 2, we would have $\Phi(T)x_0 = 0$; this completes the proof of Claim 2.

Without loss of generality, we may assume that A_2 is injective. We have to show that A_1 is injective, too.

If ker $A_1 \neq \{0\}$ and if $\mathcal{R}(A_1) \cap \mathcal{R}(A_2) \neq \{0\}$, then there exist vectors y_1 and y_2 so that they are linearly independent and $A_1y_1 = -A_2y_2$. Now for any invertible operator T such that $TB_ix_0 = y_i$, i = 1, 2, we would have $\Phi(T)x_0 = 0$, which is impossible.

If ker $A_1 \neq \{0\}$ and if $\mathcal{R}(A_1) \cap \mathcal{R}(A_2) = \{0\}$, then B_2 must be invertible. In fact, by (a) and (b), B_i are obviously surjective. If $B_2x = 0$ for some x, then $B_1x \neq 0$ and for invertible T with $TB_1x \in \ker A_1$, $\Phi(T)$ would not be invertible since $\Phi(T)x = 0$. Now, let T be an

invertible operator. For any $x \in \mathcal{X}$, there exists a vector y such that

$$A_1x + A_2x = \Phi(T)y = A_1TB_1y + A_2TB_2y.$$

Since $\mathcal{R}(A_1) \cap \mathcal{R}(A_2) = \{0\}$, we get

$$A_i x = A_i T B_i y, \ i = 1, \ 2.$$

Note that A_2 is injective, so we have $x = TB_2y$ and $A_1x = A_1TB_1B_2^{-1}T^{-1}x$ since B_2 is invertible. By the arbitrariness of x, we must have $A_1 = A_1TB_1B_2^{-1}T^{-1}$. Again, since T is arbitrary, we get

$$A_1 T (B_2 - B_1) = 0$$

for all invertible operators T. But, this leads to $B_1 = B_2$ which is not the case. Hence we must have ker $A_1 = \{0\}$, completing the proof of (c).

(d) Let $C_1, C_2 \in [A_1, A_2]$, the linear span of A_1 and A_2 . If C_1 and C_2 are linearly independent, then it is clear that there exist D_1 and $D_2 \in [B_1, B_2]$ such that $\Phi(\cdot) = C_1(\cdot)D_1 + C_2(\cdot)D_2$. By (c), both C_1 and C_2 are injective. This means that, for any nonzero linear combination $\lambda_1 A_1 + \lambda_2 A_2$ of A_1 and A_2 , ker $(\lambda_1 A_1 + \lambda_2 A_2) = \{0\}$, i.e., for each nonzero vector x, A_1x and A_2x are linearly independent.

(e) Suppose, on the contrary, that $\mathcal{R}(A_1) \cap \mathcal{R}(A_2) \neq \{0\}$. Then there exist vectors y_1 and y_2 such that $A_1y_1 = -A_2y_2$. By (d), y_1 and y_2 must be linearly independent. Now, for any invertible operator T satisfying $TB_ix_0 = y_i$, $i = 1, 2, \Phi(T)$ can not be invertible because $\Phi(T)x_0 = 0$. This shows that (e) is true.

The theorem below is a characterization for the elementary operators of length 2 which preserve invertibility.

Theorem 2.2. Let Φ be an elementary operator on $\mathcal{B}(\mathcal{X})$ of length 2. Then Φ is invertibility-preserving if and only if there exist invertible operators $\mathbf{A} = (A_1 \ A_2)$ and $\mathbf{B} = (B_1 \ B_2)$ in $\mathcal{B}(\mathcal{X}^{(2)}, \mathcal{X})$ such that

$$\Phi(T) = \mathbf{A}T^{(2)}\mathbf{B}^t \text{ for all } T \in \mathcal{B}(\mathcal{X}).$$
(2.1)

Proof. There are operators $A_i, B_i \in \mathcal{B}(\mathcal{X}), i = 1, 2$, such that

 $\Phi(T) = A_1 T B_1 + A_2 T B_2 = \mathbf{A} T^{(2)} \mathbf{B}^t \quad \text{for all} \ T \in \mathcal{B}(\mathcal{X}).$

Since Φ preserves invertibility, by Lemma 2.1, we have

$$\ker A_1 = \ker A_2 = \{0\}, \quad \mathcal{R}(A_1) + \mathcal{R}(A_2) = \mathcal{X}$$

and

$$\mathcal{R}(A_1) \cap \mathcal{R}(A_2) = \{0\}.$$

These together will imply that $\mathbf{A} = (A_1 \ A_2) \in \mathcal{B}(\mathcal{X}^{(2)}, \mathcal{X})$ is invertible. Since $\mathbf{AB}^t = A_1B_1 + A_2B_2 = \Phi(I)$ is invertible, \mathbf{B}^t , as well as \mathbf{B} , is invertible, too.

The converse is obvious.

Proof of Theorem 2.1. It is obvious that (iii) \Rightarrow (iv) \Rightarrow (ii) \Rightarrow (i). So we need only to prove (i) \Rightarrow (iii).

Assume that Φ is spectrum-compressing. Then Φ preserves invertibility and by Theorem 2.2, $\mathbf{A} = (A_1 \ A_2)$ and $\mathbf{B} = (B_1 \ B_2)$ are invertible. Since $I \in \mathcal{R}(\Phi)$, $I = \Phi(E)$ for some

E. Let Ψ be the elementary operator defined by

$$\Psi(T) = \Phi(TE) = A_1 TEB_1 + A_2 TEB_2.$$

It is clear that $\Psi(I) = I$ and $\Psi(T) = \mathbf{A}T^{(2)}\mathbf{A}^{-1}$ with

$$\mathbf{A}^{-1} = \begin{pmatrix} EB_1\\ EB_2 \end{pmatrix} = E^{(2)}\mathbf{B}^t.$$

Therefore, E is invertible and Ψ is spectrum-preserving. Now

$$\sigma(TE^{-1}) = \sigma(\Psi(TE^{-1})) = \sigma(\Phi(TE^{-1}E)) = \sigma(\Phi(T)),$$

which implies that $\sigma(TE^{-1}) \subseteq \sigma(T)$ holds for every $T \in \mathcal{B}(\mathcal{X})$. If $E \neq I$, then there exists $f \in \mathcal{X}^*$ such that $E^{*-1}f \neq f$. Take $x \in \mathcal{X}$ such that

$$\langle x, f \rangle = 1 \neq \langle x, E^{*-1}f \rangle \neq 0.$$

Let $T = x \otimes f$ be the rank one operator defined by $Ty = \langle y, f \rangle x$. Then $TE^{-1} = x \otimes E^{*-1}f$. It is easily seen that

$$\sigma(TE^{-1}) = \{ \langle x, E^{*-1}f \rangle, \ 0 \} \not\subseteq \{1, \ 0\} = \sigma(T).$$

So, we have E = I and $\Phi(I) = I$. It follows that $\mathbf{A}^{-1} = \mathbf{B}^t$ and $\Phi(T) = \mathbf{A}T^{(2)}\mathbf{A}^{-1}$ for all T, i.e., (iii) is true.

It is worth to note that Theorem 2.1 says particularly that if Φ is a spectrum-compressing elementary operator of length 2 with $I \in \mathcal{R}(\Phi)$, then $\mathcal{R}(\Phi)$ is a subalgebra of $\mathcal{B}(\mathcal{X})$ and Φ is in fact an endomorphism of $\mathcal{B}(\mathcal{X})$. The next theorem explains what will happen for an invertibility-preserving elementary operator of length 2 with the range a subalgebra.

Theorem 2.3. Let Φ be an elementary operator of length 2 on $\mathcal{B}(\mathcal{X})$. Then Φ is invertibility-preserving with $\mathcal{R}(\Phi)$ a subalgebra of $\mathcal{B}(\mathcal{X})$ if and only if there are invertible operators $\mathbf{A}, \mathbf{B} \in \mathcal{B}(\mathcal{X}^{(2)}, \mathcal{X})$ and invertible operator $E \in \mathcal{B}(\mathcal{X})$ such that

$$\mathbf{A}^{-1} = E^{(2)^{-1}} \mathbf{B}^t$$
 and $\Phi(T) = \mathbf{A} T^{(2)} \mathbf{B}^t$

for all T.

Proof. Suppose that $\mathbf{A}^{-1} = E^{(2)^{-1}} \mathbf{B}^t$ and $\Phi(T) = \mathbf{A}T^{(2)} \mathbf{B}^t$. Then Φ preserves invertibility and $B_i A_j = \delta_{ij} E$. Now for any operators T and S, we have

$$\Phi(S)\Phi(T) = \mathbf{A}S^{(2)}\mathbf{B}^t\mathbf{A}T^{(2)}\mathbf{B}^t = \mathbf{A}S^{(2)}E^{(2)}T^{(2)}\mathbf{B}^t = \Phi(SET) \in \mathcal{R}(\Phi).$$

So $\mathcal{R}(\Phi)$ is closed under the product computation and hence is a subalgebra. Note that $\Phi(E^{-1}) = I$, i.e., $\mathcal{R}(\Phi)$ is also unital.

Conversely, assume that Φ is invertibility-preserving with range a subalgebra. By Theorem 2.2, there are invertible operators $\mathbf{A} = (A_1 \ A_2)$ and $\mathbf{B} = (B_1 \ B_2)$ from $\mathcal{X}^{(2)}$ onto \mathcal{X} such that $\Phi(T) = \mathbf{A}T^{(2)}\mathbf{B}^t$. Since $\mathcal{R}(\Phi)$ is a subalgebra, for any S and T, there is an operator W such that $\Phi(S)\Phi(T) = \Phi(W)$, that is,

$$\mathbf{A}W^{(2)}\mathbf{B}^{t} = \mathbf{A}\begin{pmatrix} SB_{1}A_{1}T & SB_{1}A_{2}T\\ SB_{2}A_{1}T & SB_{2}A_{2}T \end{pmatrix}\mathbf{B}^{t}.$$

Thus we have

$$\begin{pmatrix} W & 0 \\ 0 & W \end{pmatrix} = \begin{pmatrix} SB_1A_1T & SB_1A_2T \\ SB_2A_1T & SB_2A_2T \end{pmatrix}.$$

Since S and T are arbitrary, we must have

$$B_1A_2 = B_2A_1 = 0$$
 and $B_1A_1 = B_2A_2 = E$

It is clear that E is invertible and $\Phi(S)\Phi(T) = \Phi(SET)$ for any S and T. Notice that

$$\Phi(E^{-1})\Phi(T) = \Phi(E^{-1}ET) = \Phi(T) = \Phi(T)\Phi(E^{-1}).$$

Hence $I = \Phi(E^{-1})$ (i.e., $\mathcal{R}(\Phi)$ is unital) and $\mathbf{A}^{-1} = E^{(2)^{-1}} \mathbf{B}^t$.

The following corollary is immediate from Theorem 2.3.

Corollary 2.1. Let Φ be an elementary operator of length 2 on $\mathcal{B}(\mathcal{X})$ with $\mathcal{R}(\Phi)$ a subalgebra. Then Φ is spectrum-compressing if and only if there exists an invertible operator $\mathbf{A} \in \mathcal{B}(\mathcal{X}^{(2)}, \mathcal{X})$ such that

$$\Phi(T) = \mathbf{A}T^{(2)}\mathbf{A}^{-1} \quad for \ all \ T.$$

Let \mathcal{H} be a Hilbert space. Recall that an operator $A \in \mathcal{B}(\mathcal{H})$ is said to be positive if $A = A^*$ and $\sigma(A) \subset [0, +\infty)$; an map $\Psi: \mathcal{B}(\mathcal{H}) \to \mathcal{B}(\mathcal{H})$ is said to be positive if $\Psi(A)$ is positive whenever A is positive. The next corollary is also a generalization of a main result (i.e., (ii) \Leftrightarrow (iii)) due to $\operatorname{Gao}^{[1, \text{ Theorem } 3.2]}$, but the proof here is much simpler by virtue of Theorem 2.1.

Corollary 2.2. Let Φ be an elementary operator of length 2 on $\mathcal{B}(\mathcal{H})$, where \mathcal{H} is an infinite dimensional complex Hilbert space. The following statements are equivalent.

(i) Φ is positive and spectrum-compressing;

(ii) Φ is positive and spectrum-preserving;

(iii) There exists a unitary operator $\mathbf{U} \in \mathcal{B}(\mathcal{H}^{(2)}, \mathcal{H})$ such that $\Phi(T) = \mathbf{U}T^{(2)}\mathbf{U}^*$ for all $T \in \mathcal{B}(\mathcal{H})$.

Proof. Since Φ is positive elementary operator of length 2, by a result in [2], Φ is completely positive and there exist operators A_1 and $A_2 \in \mathcal{B}(\mathcal{H})$ such that

$$\Phi(T) = A_1 T A_1^* + A_2 T A_2^* \quad \text{for all} \ T \in \mathcal{B}(\mathcal{X}).$$

Let $\mathbf{U} = (A_1 \ A_2)$. If Φ is spectrum-compressing, then $\Phi(I) = I$ since $\Phi(I)$ is positive and $\sigma(\Phi(I)) \subseteq \{1\}$. Now it is clear from Theorem 2.1 that $\mathbf{U} \in \mathcal{B}(\mathcal{H}^{(2)}, \mathcal{H})$ is invertible and $\mathbf{U}^{-1} = \mathbf{U}^*$, i.e., \mathbf{U} is unitary.

Remark 2.2. We prove in [7] that Corollary 2.2 is true for elementary operator of any length which answers affirmatively a problem in [1]. So a positive elementary operator which compresses spectrum (preserves spectrum) on $\mathcal{B}(\mathcal{H})$ must be an injective *-endomorphism of $\mathcal{B}(\mathcal{H})$. Similar questions for point spectrum preserving elementary operator is considered in [8].

References

- Gao Mingchu, Numerical range-preserving linear maps and spectrum-preserving elementary operators on B(H), Chin. Ann. Math., 14A:3(1993), 295–301.
- [2] Hou Jinchuan, Rank-preserving linear maps on B(X), Science in China, **32A**(1989), 929–940.
- [3] Hou Jinchuan, Linear interpolation and the elementary operators on $\mathcal{B}(\mathcal{X})$, Science in China, **36A** (1993), 1025–1035.
- [4] Jafarian, A. A. & Sourour, A. R., Spectrum-preserving linear maps, J. Funct. Anal., 66(1986), 255–261.
 [5] Li Chikwong & Tsing Namkiu, Linear preserver problems: A brief introduction and some special techniques, Lin. Alg. Appl., 162-164(1992), 217–235.
- [6] Šemrl, P., Two characterizations of automorphisms on B(X), Studia Math., 105:2(1993), 143–149.
- [7] Zhang Xiuling & Hou Jinchuan, Positive elementary operators compressing spectrum, Chin. Sci. Bull., 42:4(1997), 270–273.
- [8] Wang Qin & Hou Jinchuan, Point specrum preserving elementary operators on B(H), Proc. Amer. Math. Soc., 126(1998), 2083–2088.