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Abstract

Characterizations for elementary operators of length 2 to be invertibility-preserving,
spectrum-preserving or spectrum-compressing are obtained.
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§1. Introduction

Let X be an infinite dimensional complex Banach space and B(X ) the Banach algebra of

all bounded linear operators on X . For T ∈ B(X ), σ(T ), as usual, will denote the spectrum of

T . Let Φ be a linear map from B(X ) into itself. Φ is spectrum-preserving if σ(Φ(T )) = σ(T )

for all T ∈ B(X ); Φ is spectrum-compressing if σ(Φ(T )) ⊆ σ(T ) for all T ∈ B(X ). It is clear

that if Φ is unital (i.e., Φ(I) = I), then Φ is spectrum-preserving (spectrum-compressing)

if and only if Φ preserves invertibility in both directions (preserves invertibility), i.e., Φ(T )

is invertible if and only if T is (Φ(T ) is invertible if T is). Spectrum-preserving linear maps

have been studied by some authors, e.g., see [1, 2, 4-6] and the references therein. In fact,

this is one of the so-called linear preserver problems.

Jafarian and Sourour[4] proved that a spectrum-preserving linear map Φ from B(X ) onto

itself (i.e., Φ is surjective) is an automorphism or anti-automorphism, that is, there exists

an invertible operator A in B(X ) or B(X ,X ∗) such that Φ(T ) = A−1TA for all T or Φ(T ) =

A−1T ∗A for all T .

Note that Φ is assumed to be surjective is crucial for the results in [4]. So it is interesting

to ask if one can give a characterization for the structure of spectrum-preserving linear maps

which are not surjective. But this question seems very difficult to answer. An important class

of linear maps on B(X ) which contains many non-surjective maps is the class of elementary

operators. Recall that Φ is called an elementary operator if there exist operators A1, · · · , An,

B1, · · · , Bn in B(X ) such that

Φ(T ) =

n∑
i=1

AiTBi for all T ∈ B(X ).

Manuscript received January 8, 1996.

∗Department of Mathematics, Shanxi Teachers University, Linfen 041004, China.

∗∗Project supported by the National Natural Science Foundation of China and the Shanxi Provincial

Natrual Science Foundation of China.



512 CHIN. ANN. OF MATH. Vol.19 Ser.B

The number l(Φ) = inf{ n ; Φ(·) =
n∑

i=1

Ai(·)Bi} is called the length of Φ. For a Banach

space X and an operator T ∈ B(X ), R(T ) and kerT will denote the range and the null

space of T, respectively. Let X (n) = X ⊕ X ⊕ . . .⊕X , the direct sum of n copies of X and

T (n) = T ⊕ T ⊕ · · · ⊕ T ∈ B(X (n)).

M. Gao[1] considered the spectrum-preserving problem for elementary operators Φ(·) =

A1(·)B1 + A2(·)B2 of length 2. He proved that if R(A1) ∩ R(A2) = {0} and if I ∈ R(Φ),

then Φ is spectrum-preserving if and only if A = (A1 A2 ) ∈ B(X (2),X ) is invertible with

A−1 = Bt =

(
B1

B2

)
. In other words, Φ has the form of

Φ(T ) = AT (2)A−1, (1.1)

which is clearly an injective endomorphism of B(X ).

In the present paper, we show that the assumption R(A1) ∩ R(A2) = {0} in the Gao’s

result above can be omitted, and more generally, we discuss the invertibility-preserving and

spectrum-compressing elementary operators of length 2 and obtain the characterizations for

them respectively.

§2. Results and Proofs

The main result of this paper is the following theorem:

Theorem 2.1. Let Φ(·) = A1(·)B1 +A2(·)B2 be an elementary operator of length 2 with

I ∈ R(Φ). Then the following statements are equivalent.

(i) Φ is spectrum-compressing;

(ii) Φ is spectrum-preserving;

(iii) A = (A1 A2 ) is invertible with A−1 =

(
B1

B2

)
;

(iv) There exists an invertible operator A ∈ B(X (2),X ) such that Φ(T ) = AT (2)A−1 for

all T .

Remark 2.1. This theorem particularly improves the result in [1] mentioned in Intro-

duction by ommitting the assumption R(A1) ∩R(A2) = {0}.
To prove our main result we begin with a discussion of elementary operators of length

2 which preserve invertibility. Note that if operators T and S with rank great than 1 are

linearly independent, then there is a vector x such that Tx and Sx are linearly independent.

In fact, Tx and Sx are linearly dependent for all x if and only if T and S either are linearly

dependent or both are operators of rank one. This fact will be used frequently in the sequel

and a proof of it may be found in [3].

Lemma 2.1. Let Φ(·) = A1(·)B1 + A2(·)B2 be an elementary operator of length 2 on

B(X ). If Φ is invertibility-preserving, then the following statements are true:

(a) kerB1 ∩ kerB2 = {0},
(b) R(A1) +R(A2) = X ,

(c) Both A1 and A2 are injective,

(d) A1x is linearly independent to A2x for every nonzero vector x ∈ X ,

(e) R(A1) ∩R(A2) = {0}.



No.4 Hou, J. C. Sawyer SPECTRUM-PRESERVING ELEMENTARY OPERATORS 513

Proof. (a) and (b) are obvious.

(c) First note that {A1, A2} and {B1, B2} are linear independent sets of operators. So

there is a vector x0 such that B1x0 and B2x0 are linearly independent. Fix such an x0.

Claim 1. kerA1 ∩ kerA2 = {0}.
Assume, on the contrary, that N = kerA1∩kerA2 ̸= {0}; we shall induce a contradiction.

If dimN ≥ 2, take two vectors y1, y2 ∈ N such that they are linearly independent. For

any invertible operator T which sends Bix0 to yi, i = 1, 2, Φ(T ) can not be invertible since

Φ(T )x0 = 0. Hence, we must have dimN = 1, i.e., N = {λy0; λ ∈ C}, where C is the field

of complex numbers. We assert that

kerA1 = kerA2 = N .

In fact, if kerA1 ̸= N , and take y ∈ kerA1 \N , then there is an invertible operator T

satisfying TB1x0 = y and TB2x0 = y0. However, Φ(T )x0 = 0, contrary to the invertibiliy-

preserveness of Φ.

In the case that R(A1) ∩ R(A2) ̸= {0}, there exist vectors y1 and y2 which are linearly

independent such that A1y1 = −A2y2 ̸= 0. Thus for any invertible operator T satisfying

TBix0 = yi we have Φ(T )x0 = 0, which is impossible.

In the case that R(A1) ∩ R(A2) = {0}, both B1 and B2 are invertible. In fact, it is

obvious that B1 and B2 are surjective since, by (b), X = R(A1)+R(A2) is a direct sum. If

there is a nonzero vector x for which B2x = 0, then B1x ̸= 0 by (a). Let T be an invertible

operator such that TB1x = y0; we get Φ(T )x = A1TX1x + 0 = A1y0 = 0, a contradiction.

Therefore, B2, as well as B1, is injective. Because B∗
1 and B∗

2 are invertible and linearly

independent to each other, we can find f , g ∈ X ∗ such that f is linearly independent to g

and B∗
1f = −B∗

2g. Take h ∈ X ∗ such that A∗
1h and A∗

2h are linearly independent. Then

there exists an invertible operator T such that T ∗A∗
1h = f and T ∗A∗

2h = g. Now Φ(T ) is

invertible but

Φ(T )∗h = B∗
1T

∗A∗
1h+B∗

2T
∗A∗

2h = B∗
1f +B∗

2g = 0,

again a contradiction.

Claim 2. Either A1 or A2 is injective.

If, on the contrary, neither of A1 and A2 is injective, then there are nonzero vectors y1 ∈
kerA1 and y2 ∈ kerA2. It follows from Claim 1 that y1 and y2 are linearly independent. Then

for any invertible operator T satisfying TBix0 = yi, i = 1, 2, we would have Φ(T )x0 = 0;

this completes the proof of Claim 2.

Without loss of generality, we may assume that A2 is injective. We have to show that A1

is injective, too.

If kerA1 ̸= {0} and if R(A1) ∩ R(A2) ̸= {0}, then there exist vectors y1 and y2 so that

they are linearly independent and A1y1 = −A2y2. Now for any invertible operator T such

that TBix0 = yi, i = 1, 2, we would have Φ(T )x0 = 0, which is impossible.

If kerA1 ̸= {0} and if R(A1) ∩R(A2) = {0}, then B2 must be invertible. In fact, by (a)

and (b), Bi are obviously surjective. If B2x = 0 for some x, then B1x ̸= 0 and for invertible

T with TB1x ∈ kerA1, Φ(T ) would not be invertible since Φ(T )x = 0. Now, let T be an
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invertible operator. For any x ∈ X , there exists a vector y such that

A1x+A2x = Φ(T )y = A1TB1y +A2TB2y.

Since R(A1) ∩R(A2) = {0}, we get

Aix = AiTBiy, i = 1, 2.

Note that A2 is injective, so we have x = TB2y and A1x = A1TB1B
−1
2 T−1x since B2 is

invertible. By the arbitrariness of x, we must have A1 = A1TB1B
−1
2 T−1. Again, since T is

arbitrary, we get

A1T (B2 −B1) = 0

for all invertible operators T . But, this leads to B1 = B2 which is not the case. Hence we

must have kerA1 = {0}, completing the proof of (c).

(d) Let C1, C2 ∈ [A1, A2], the linear span of A1 and A2. If C1 and C2 are linearly

independent, then it is clear that there exist D1 and D2 ∈ [B1, B2] such that Φ(·) =

C1(·)D1 +C2(·)D2. By (c), both C1 and C2 are injective. This means that, for any nonzero

linear combination λ1A1+λ2A2 of A1 and A2, ker (λ1A1+λ2A2) = {0}, i.e., for each nonzero

vector x, A1x and A2x are linearly independent.

(e) Suppose, on the contrary, that R(A1)∩R(A2) ̸= {0}. Then there exist vectors y1 and

y2 such that A1y1 = −A2y2. By (d), y1 and y2 must be linearly independent. Now, for any

invertible operator T satisfying TBix0 = yi, i = 1, 2, Φ(T ) can not be invertible because

Φ(T )x0 = 0. This shows that (e) is true.

The theorem below is a characterization for the elementary operators of length 2 which

preserve invertibility.

Theorem 2.2. Let Φ be an elementary operator on B(X ) of length 2. Then Φ is

invertibility-preserving if and only if there exist invertible operators A = (A1 A2 ) and

B = (B1 B2 ) in B(X (2),X ) such that

Φ(T ) = AT (2)Bt for all T ∈ B(X ). (2.1)

Proof. There are operators Ai, Bi ∈ B(X ), i = 1, 2, such that

Φ(T ) = A1TB1 +A2TB2 = AT (2)Bt for all T ∈ B(X ).

Since Φ preserves invertibility, by Lemma 2.1, we have

kerA1 = kerA2 = {0}, R(A1) +R(A2) = X

and

R(A1) ∩R(A2) = {0}.

These together will imply that A = (A1 A2 ) ∈ B(X (2),X ) is invertible. Since ABt =

A1B1 +A2B2 = Φ(I) is invertible, Bt, as well as B, is invertible, too.

The converse is obvious.

Proof of Theorem 2.1. It is obvious that (iii) ⇒ (iv) ⇒ (ii) ⇒ (i). So we need only to

prove (i) ⇒ (iii).

Assume that Φ is spectrum-compressing. Then Φ preserves invertibility and by Theorem

2.2, A = (A1 A2 ) and B = (B1 B2 ) are invertible. Since I ∈ R(Φ), I = Φ(E) for some
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E. Let Ψ be the elementary operator defined by

Ψ(T ) = Φ(TE) = A1TEB1 +A2TEB2.

It is clear that Ψ(I) = I and Ψ(T ) = AT (2)A−1 with

A−1 =

(
EB1

EB2

)
= E(2)Bt.

Therefore, E is invertible and Ψ is spectrum-preserving. Now

σ(TE−1) = σ(Ψ(TE−1)) = σ(Φ(TE−1E)) = σ(Φ(T )),

which implies that σ(TE−1) ⊆ σ(T ) holds for every T ∈ B(X ). If E ̸= I, then there exists

f ∈ X ∗ such that E∗−1f ̸= f . Take x ∈ X such that

⟨x, f⟩ = 1 ̸= ⟨x,E∗−1f⟩ ̸= 0.

Let T = x⊗ f be the rank one operator defined by Ty = ⟨y, f⟩x. Then TE−1 = x⊗E∗−1f .

It is easily seen that

σ(TE−1) = {⟨x,E∗−1f⟩, 0} ̸⊆ {1, 0} = σ(T ).

So, we have E = I and Φ(I) = I. It follows that A−1 = Bt and Φ(T ) = AT (2)A−1 for all

T , i.e., (iii) is true.

It is worth to note that Theorem 2.1 says particularly that if Φ is a spectrum-compressing

elementary operator of length 2 with I ∈ R(Φ), then R(Φ) is a subalgebra of B(X ) and Φ

is in fact an endomorphism of B(X ). The next theorem explains what will happen for an

invertibility-preserving elementary operator of length 2 with the range a subalgebra.

Theorem 2.3. Let Φ be an elementary operator of length 2 on B(X ). Then Φ is

invertibility-preserving with R(Φ) a subalgebra of B(X ) if and only if there are invertible

operators A, B ∈ B(X (2),X ) and invertible operator E ∈ B(X ) such that

A−1 = E(2)−1
Bt and Φ(T ) = AT (2)Bt

for all T .

Proof. Suppose that A−1 = E(2)−1
Bt and Φ(T ) = AT (2)Bt. Then Φ preserves invert-

ibility and BiAj = δijE. Now for any operators T and S, we have

Φ(S)Φ(T ) = AS(2)BtAT (2)Bt = AS(2)E(2)T (2)Bt = Φ(SET ) ∈ R(Φ).

So R(Φ) is closed under the product computation and hence is a subalgebra. Note that

Φ(E−1) = I, i.e., R(Φ) is also unital.

Conversely, assume that Φ is invertibility-preserving with range a subalgebra. By Theo-

rem 2.2, there are invertible operators A = (A1 A2 ) and B = (B1 B2 ) from X (2) onto

X such that Φ(T ) = AT (2)Bt. Since R(Φ) is a subalgebra, for any S and T , there is an

operator W such that Φ(S)Φ(T ) = Φ(W ), that is,

AW (2)Bt = A

(
SB1A1T SB1A2T
SB2A1T SB2A2T

)
Bt.

Thus we have (
W 0
0 W

)
=

(
SB1A1T SB1A2T
SB2A1T SB2A2T

)
.

Since S and T are arbitrary, we must have

B1A2 = B2A1 = 0 and B1A1 = B2A2 = E.
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It is clear that E is invertible and Φ(S)Φ(T ) = Φ(SET ) for any S and T . Notice that

Φ(E−1)Φ(T ) = Φ(E−1ET ) = Φ(T ) = Φ(T )Φ(E−1).

Hence I = Φ(E−1) (i.e., R(Φ) is unital) and A−1 = E(2)−1
Bt.

The following corollary is immediate from Theorem 2.3.

Corollary 2.1. Let Φ be an elementary operator of length 2 on B(X ) with R(Φ) a

subalgebra. Then Φ is spectrum-compressing if and only if there exists an invertible operator

A ∈ B(X (2),X ) such that

Φ(T ) = AT (2)A−1 for all T.

Let H be a Hilbert space. Recall that an operator A ∈ B(H) is said to be positive if

A = A∗ and σ(A) ⊂ [0,+∞); an map Ψ: B(H) → B(H) is said to be positive if Ψ(A) is

positive whenever A is positive. The next corollary is also a generalization of a main result

(i.e., (ii) ⇔ (iii) ) due to Gao[1, Theorem 3.2], but the proof here is much simpler by virtue of

Theorem 2.1.

Corollary 2.2. Let Φ be an elementary operator of length 2 on B(H), where H is an

infinite dimensional complex Hilbert space. The following statements are equivalent.

(i) Φ is positive and spectrum-compressing;

(ii) Φ is positive and spectrum-preserving;

(iii) There exists a unitary operator U ∈ B(H(2),H) such that Φ(T ) = UT (2)U∗ for all

T ∈ B(H).

Proof. Since Φ is positive elementary operator of length 2, by a result in [2], Φ is

completely positive and there exist operators A1 and A2 ∈ B(H) such that

Φ(T ) = A1TA
∗
1 +A2TA

∗
2 for all T ∈ B(X ).

Let U = (A1 A2 ). If Φ is spectrum-compressing, then Φ(I) = I since Φ(I) is positive

and σ(Φ(I)) ⊆ {1}. Now it is clear from Theorem 2.1 that U ∈ B(H(2),H) is invertible and

U−1 = U∗, i.e., U is unitary.

Remark 2.2. We prove in [7] that Corollary 2.2 is true for elementary operator of any

length which answers affirmatively a problem in [1]. So a positive elementary operator which

compresses spectrum (preserves spectrum) on B(H) must be an injective ∗-endomorphism

of B(H). Similar questions for point spectrum preserving elementary operator is considered

in [8].
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