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Characterizations for elementary operators of length 2 to be invertibility-preserving,
spectrum-preserving or spectrum-compressing are obtained.
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¢1. Introduction

Let X be an infinite dimensional complex Banach space and B(X') the Banach algebra of
all bounded linear operators on X. For T' € B(X), o(T'), as usual, will denote the spectrum of
T. Let @ be a linear map from B(X) into itself. ® is spectrum-preserving if o(®(T)) = o(T)
for all T' € B(X); ® is spectrum-compressing if o(®(7")) C o(T) for all T € B(X). It is clear
that if @ is unital (i.e., ®(I) = I), then ® is spectrum-preserving (spectrum-compressing)
if and only if ® preserves invertibility in both directions (preserves invertibility), i.e., ®(T)
is invertible if and only if T is (®(T) is invertible if T is). Spectrum-preserving linear maps
have been studied by some authors, e.g., see [1, 2, 4-6] and the references therein. In fact,
this is one of the so-called linear preserver problems.

Jafarian and Sourour(¥ proved that a spectrum-preserving linear map ® from B(&X') onto
itself (i.e., ® is surjective) is an automorphism or anti-automorphism, that is, there exists
an invertible operator A in B(X) or B(X, X*) such that ®(T) = A~'T A for all T or ®(T) =
A7IT* A for all T.

Note that @ is assumed to be surjective is crucial for the results in [4]. So it is interesting
to ask if one can give a characterization for the structure of spectrum-preserving linear maps
which are not surjective. But this question seems very difficult to answer. An important class
of linear maps on B(X) which contains many non-surjective maps is the class of elementary
operators. Recall that @ is called an elementary operator if there exist operators Ay,--- , A,,
By, -+, By in B(X) such that

O(T) =Y ATB; forall T e B(X).
i=1
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The number I(®) = inf{ n ; ®(-) = > A;(-)B;} is called the length of ®. For a Banach
i=1

space X and an operator T € B(X), R(T) and ker T' will denote the range and the null
space of T, respectively. Let X" = X ¢ X @ ... ® X, the direct sum of n copies of X and

T =TeTo - -&TcBX™).

M. Gaol! considered the spectrum-preserving problem for elementary operators o) =
A1(-)B1 + Az()Bs of length 2. He proved that if R(A;) NR(As) = {0} and if I € R(P),
then ® is spectrum-preserving if and only if A = (A4; Ay) € B(XP, X) is invertible with

A"l =Bt = (gl ) In other words, ® has the form of
2

®(T)=ATPD A, (1.1)

which is clearly an injective endomorphism of B(X).

In the present paper, we show that the assumption R(A;) N R(Az) = {0} in the Gao’s
result above can be omitted, and more generally, we discuss the invertibility-preserving and
spectrum-compressing elementary operators of length 2 and obtain the characterizations for
them respectively.

§2. Results and Proofs

The main result of this paper is the following theorem:

Theorem 2.1. Let ®(-) = A;(-)By + As(-) B2 be an elementary operator of length 2 with
I € R(®). Then the following statements are equivalent.

(i) @ is spectrum-compressing;

(ii) @ is spectrum-preserving;

(iii) A = (A; Ay) is invertible with A=! = (gl > ;
2

(iv) There exists an invertible operator A € B(X?), X) such that ®(T) = AT® A~ for
all T.

Remark 2.1. This theorem particularly improves the result in [1] mentioned in Intro-
duction by ommitting the assumption R(A;) N R(A42) = {0}.

To prove our main result we begin with a discussion of elementary operators of length
2 which preserve invertibility. Note that if operators T' and S with rank great than 1 are
linearly independent, then there is a vector x such that Tz and Sx are linearly independent.
In fact, Tz and Sz are linearly dependent for all z if and only if 7" and S either are linearly
dependent or both are operators of rank one. This fact will be used frequently in the sequel
and a proof of it may be found in [3].

Lemma 2.1. Let ®(-) = A1(-)B1 + Ax(-)B2 be an elementary operator of length 2 on
B(X). If ® is invertibility-preserving, then the following statements are true:

(a) ker By Nker By = {O}

(b) R(A1) +R(Az) =

(¢) Both Ay and Ay are mjectwe

(d) Aqz is linearly independent to Asx for every nonzero vector x € X,

(e) R(A1) NR(A2) = {0}.
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Proof. (a) and (b) are obvious.

(c) First note that {A;, A2} and {B1, B2} are linear independent sets of operators. So
there is a vector xg such that Bizg and Bsxg are linearly independent. Fix such an xzg.

Claim 1. ker A; Nker Ay = {0}.

Assume, on the contrary, that A/ = ker A; Nker Ay # {0}; we shall induce a contradiction.

If dim N > 2, take two vectors y1, y2 € A such that they are linearly independent. For
any invertible operator T' which sends B;xq to y;, ¢ = 1, 2, ®(T) can not be invertible since
®(T)zg = 0. Hence, we must have dim N = 1, i.e., N' = {Ayo; A € C}, where C is the field
of complex numbers. We assert that

ker A; = ker Ay = N.

In fact, if ker A; # N, and take y € ker A; \ NV, then there is an invertible operator T
satisfying TBixo = y and T Bsxg = yo. However, ®(T)zo = 0, contrary to the invertibiliy-
preserveness of ®.

In the case that R(A;) N R(As) # {0}, there exist vectors y; and yo which are linearly
independent such that Ayy; = —Asys # 0. Thus for any invertible operator T' satisfying
TB;xg = y; we have ®(T)xzo = 0, which is impossible.

In the case that R(A41) N R(A2) = {0}, both By and By are invertible. In fact, it is
obvious that By and Bj are surjective since, by (b), X = R(A;1) + R(A42) is a direct sum. If
there is a nonzero vector z for which Box = 0, then Byz # 0 by (a). Let T be an invertible
operator such that TBix = yo; we get ®(T)x = AyT X1z + 0 = A1y = 0, a contradiction.
Therefore, Bs, as well as By, is injective. Because B} and Bj are invertible and linearly
independent to each other, we can find f, g € X* such that f is linearly independent to g
and Bff = —Bjg. Take h € X* such that Ajh and A5h are linearly independent. Then
there exists an invertible operator T such that T*A7h = f and T*A3h = g. Now ®(T) is
invertible but

O(T)*h=BiT*"ATh+ B5T*Ash = By f + B5g =0,
again a contradiction.

Claim 2. Either A; or A, is injective.

If, on the contrary, neither of A; and As is injective, then there are nonzero vectors y; €
ker A; and yy € ker As. It follows from Claim 1 that y; and ys are linearly independent. Then
for any invertible operator T satisfying T'B;xg = y;, ¢ = 1, 2, we would have ®(T)xq = 0;
this completes the proof of Claim 2.

Without loss of generality, we may assume that As is injective. We have to show that A;
is injective, too.

If ker A; # {0} and if R(A;1) NR(Az) # {0}, then there exist vectors y; and yo so that
they are linearly independent and Aiy; = —Asys. Now for any invertible operator T' such
that TB;xg = y;, ¢ = 1, 2, we would have ®(T")xzo = 0, which is impossible.

If ker A; # {0} and if R(A41) NR(Az) = {0}, then By must be invertible. In fact, by (a)

and (b), B; are obviously surjective. If Box = 0 for some x, then Byx # 0 and for invertible
T with TByz € ker Ay, ®(T) would not be invertible since ®(T)ax = 0. Now, let T be an
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invertible operator. For any x € X, there exists a vector y such that
Az + Asx = O(T)y = A1TB1y + AT Boy.
Since R(A1) N R(Az2) = {0}, we get
Aix=ATBy, i=1, 2.

Note that A, is injective, so we have x = T By and Ajxz = AlTBle_lT’lx since Bs is
invertible. By the arbitrariness of x, we must have A; = AlTBlBng_l. Again, since T is
arbitrary, we get

A\T(By — By) =0

for all invertible operators T. But, this leads to B; = By which is not the case. Hence we
must have ker 4; = {0}, completing the proof of (c).

(d) Let Cq, Cy € [A1, A3], the linear span of A; and As. If C; and Cy are linearly
independent, then it is clear that there exist Dy and D € [By, Bs] such that ®(-) =
C1(-)D1 + C3(-)D2. By (c), both Cy and Cy are injective. This means that, for any nonzero
linear combination A; A;+ A2 As of Ay and A, ker (A1 A1 +X2A45) = {0}, i.e., for each nonzero
vector x, Ajx and Asx are linearly independent.

(e) Suppose, on the contrary, that R(A;)NR(Az) # {0}. Then there exist vectors y; and
y2 such that 4151 = —Asys. By (d), y1 and y2 must be linearly independent. Now, for any
invertible operator T satisfying T'B;xg = v;, ¢ = 1, 2, ®(T) can not be invertible because
®(T)xo = 0. This shows that (e) is true.

The theorem below is a characterization for the elementary operators of length 2 which
preserve invertibility.

Theorem 2.2. Let ® be an elementary operator on B(X) of length 2. Then ® is

invertibility-preserving if and only if there exist invertible operators A = (A1 As) and
B= (B B)inBX® X) such that
®(T) = ATPB! for all T € B(X). (2.1)

Proof. There are operators A4;, B; € B(X), ¢ =1, 2, such that
®(T) = A\TB; + AyTBy = ATPB! for all T € B(X).
Since ® preserves invertibility, by Lemma 2.1, we have
ker A1 = ker A2 = {O}, R(Al) + R(A2) =X
and
R(A1) NR(Az) = {0}.

These together will imply that A = (A; Ay) € B(X® X) is invertible. Since AB! =
A1 B; + A3 By = ®(I) is invertible, B, as well as B, is invertible, too.

The converse is obvious.

Proof of Theorem 2.1. It is obvious that (iii) = (iv) = (ii) = (i). So we need only to
prove (i) = (iii).

Assume that @ is spectrum-compressing. Then ® preserves invertibility and by Theorem
22, A=(A; As)and B=(B; By) are invertible. Since I € R(®), I = ®(F) for some
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E. Let ¥ be the elementary operator defined by
U(T)=®(TE) = AyTEB; + AsTEBs.
It is clear that W(I) = I and ¥(T) = AT® A~ with
~1_ (EB1Y _ L@t
A7 = <EB2 = EY¥YB".

Therefore, E is invertible and ¥ is spectrum-preserving. Now

o(TE™") = o(V(TE™Y)) = 0(®(TE'E)) = o(®(T)),
which implies that o(TE~1) C o(T) holds for every T € B(X). If E # I, then there exists
f € X* such that E* 71 f # f. Take 2 € X such that

(z,f) =1# (x, B*" f) £ 0.
Let T = 2 ® f be the rank one operator defined by Ty = (y, f)z. Then TE~! =z @ E* ' f.
It is easily seen that

o(TE™") = {{x, E*7"f), 0} Z {1, 0} = o(T).
So, we have E = I and ®(I) = I. Tt follows that A~! = B and ®(T) = AT® A~ for all
T, i.e., (iii) is true.

It is worth to note that Theorem 2.1 says particularly that if ® is a spectrum-compressing
elementary operator of length 2 with I € R(®), then R(®) is a subalgebra of B(X) and ®
is in fact an endomorphism of B(X). The next theorem explains what will happen for an
invertibility-preserving elementary operator of length 2 with the range a subalgebra.

Theorem 2.3. Let & be an elementary operator of length 2 on B(X). Then ® is
invertibility-preserving with R(®) a subalgebra of B(X) if and only if there are invertible
operators A, B € B(X?) X) and invertible operator E € B(X) such that

A= E@7'B! and &(T) = ATPB!
for all T.

Proof. Suppose that A~! = E® "Bt and ®(T) = AT?B!. Then & preserves invert-

ibility and B;A; = 0;;F. Now for any operators 1" and .S, we have

B(S)B(T) = ASPBIATPB! = ASD EATAB! = &(SET) € R(®).
So R(®) is closed under the product computation and hence is a subalgebra. Note that
®(E~Y) =1, ie., R(P) is also unital.

Conversely, assume that ® is invertibility-preserving with range a subalgebra. By Theo-
rem 2.2, there are invertible operators A = (A; Ay ) and B = (B; By) from X® onto
X such that ®(T) = AT?B!. Since R(®) is a subalgebra, for any S and T, there is an
operator W such that ®(S)®(T") = (W), that is,

(2) t SBlAlT SBlAQT t
AWTB = A (SBgAlT sB,A,T ) B

Thus we have

W 0\ [ SBIAT SBiAT
0 W)=\ SBoAiT SBeAST )

Since S and T are arbitrary, we must have

B1As = ByA; =0 and B1A; = Bo Ay = E.
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It is clear that E is invertible and ®(S)®(T) = ®(SET) for any S and T. Notice that
®(ENH®(T) = ®(E'ET) = ®(T) = ®(T)(E™1).
Hence I = ®(E~1) (i.e., R(®) is unital) and A~ = E@ 7B,
The following corollary is immediate from Theorem 2.3.
Corollary 2.1. Let ® be an elementary operator of length 2 on B(X) with R(®) a

subalgebra. Then ® is spectrum-compressing if and only if there exists an invertible operator
A € B(X®? X) such that
O(T) = ATHA for all T.

Let ‘H be a Hilbert space. Recall that an operator A € B(H) is said to be positive if
A = A* and 0(A) C [0,+00); an map U: B(H) — B(H) is said to be positive if ¥(A) is
positive whenever A is positive. The next corollary is also a generalization of a main result
(i-e., (ii) < (iii) ) due to Gaoll> Theorem 3:2] "hyt the proof here is much simpler by virtue of
Theorem 2.1.

Corollary 2.2. Let ® be an elementary operator of length 2 on B(H), where H is an
infinite dimensional complex Hilbert space. The following statements are equivalent.

(i) @ is positive and spectrum-compressing;

(ii) @ is positive and spectrum-preserving;

(iii) There exists a unitary operator U € B(H®) M) such that ®(T) = UTAU* for all
T € B(H).

Proof. Since ® is positive elementary operator of length 2, by a result in [2], ® is
completely positive and there exist operators A; and As € B(#H) such that

O(T) = A1TA] + AT A5 forall T € B(X).

Let U = (A; Ay). If ® is spectrum-compressing, then ®(I) = I since ®(I) is positive
and o(®(I)) C {1}. Now it is clear from Theorem 2.1 that U € B(H?,H) is invertible and
U~! =U*, ie., U is unitary.

Remark 2.2. We prove in [7] that Corollary 2.2 is true for elementary operator of any
length which answers affirmatively a problem in [1]. So a positive elementary operator which
compresses spectrum (preserves spectrum) on B(#H) must be an injective x-endomorphism
of B(H). Similar questions for point spectrum preserving elementary operator is considered
in [8].
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