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Abstract

The authors prove the global existence of weak solutions to 2-D incompressible Navier-Stokes

equations (in vorticity-stream formulation) with initial vorticity in L
4
3 .It may be the best result

that can be obtained for initial vorticity in Lp form. Moreover,the uniqueness is to be proved
here.
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§1. Introduction

Consider the following homogeneous 2-D incompressible Navier-Stokes equations:
∂tV + (V · ∇)V = −∇P + ν△V,

divV = 0,

V |t=0 = V0, divV0 = 0,

(1.1)

where V = (V1(t, x), V2(t, x)) is the velocity of the fluid, P is the scalar pressure, V · ∇ =

V1∂1 + V2∂2, and the constant ν > 0 is the kinetic viscosity of the fluid (when ν = 0, this

system is called Euler equations, and we denote it by (1.1)). By acting the operation of

curl on (1.1), we can obtain the evolution equation for vorticity ω = (∂1V2 − ∂2V1) :

∂tω + (V · ∇)ω = ν△ω,

V = K ∗ ω, K(x) =
1

2π

(
−x2

x1

)
|x|2

,

ω(t, x)|t=0 = ω0.

(1.2)

It is the vorticity-stream form of (1.1) (when ν = 0, we denote it by (1.2)). For (1.1), in [4], R.

Diperna and A. Majda proved the global existence of weak solutions for initial velocity with

vorticity ω0 ∈ Lp∩L1, 1 < p < +∞; in [3], D. H. Chae obtained the global existence of weak

solutions for initial velocity with vorticity ω0 ∈ L(logL)
1
2 (R2), and having compact support

(his proof may be simplified by directly applying div-curl Lemma). Obviously, when V and
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ω are smooth enough, (1.1) and (1.2) are equivalent. However, in the sense of weak solutions,

the vorticity-stream formulation places a more strinent requirement on the regularity of the

velocity field than the primitive-variable weak formulation since the former requires that

the product V · ω define a distribution , while ω is a first derivative of V . In [9], A. Majda

claimed that (1.2) has a global weak solution for ω0 ∈ Lp with p > 4
3 , but its uniqueness is

not known. We have not seen his proof about the above existence.Nevertheless, it can be

obtained easily by constructing approximate solution sequence and a straight-forward use of

Sobolev inequality. Using the same approach, we can also obtain the same result for (1.2).

As for the critical case, i.e., ω0 ∈ L
4
3 , to the author’s knowledge, there is not any result even

for (1.2). We will deal with such a case in this paper. Moreover, inspired by the proof of this

paper, we can also prove that (1.2) has a unique global weak solutions for ω0 ∈ Lp, p > 4
3 .

Since it is more cumbersome, we omit it here.

Before we give the main result of this paper, let us recall the definitions of weak solution

to (1.2). By definition the vorticity ω(t, x) and velocity V (t, x) is a weak solution of (1.2)

with initial vorticity ω0, provided that V (t, x) = K ∗ ω, K(x) = 1
2π|x|2

(
−x2

x1

)
, and for

any smooth scalar test function ϕ which is rapidly decreasing in x and vanishing for large t,∫ ∞

0

∫
R2

ω · ϕt + ωV · ∇ϕdx dt+ ν

∫ ∞

0

∫
R2

△ϕ · ω dx dt+

∫
ϕ(0, x)ω0(x) dx = 0, (1.3)

where we must require that ωV have meaning as a distribution.

The main result of this paper is as follows.

Theorem 1.1. Let ω0 ∈ L
4
3 (R2). Then, (1.2) has a unique global weak solution (V (t, x), ω

(t, x)) in the sense of (1.3). Moreover,

V (t, x) ∈ C(R+,W
1, 43
loc (R2)) ∩ C(R+, L4) ∩ C1(R+,W

−1, 43
loc (R2)),

ω(t, x) ∈ C(R+, L
4
3 (R2)) ∩ C1(R+,W

−2, 43
loc (R2)).

Remark 1.1. If ω0(x) ∈ Lp, p < 4
3 , then by Riesz potential theory the corresponding

velocity V0(x) ∈ Lq, 1
q = 1

p − 1
2 , but

1
p + 1

q > 1. Thus V0(x) · ω0(x) has no meaning as a

distribution in general, and, in this sense the result in this paper is optimal.

In our following estimate, C is used as a generic constant and may change from line to

line, Cν is also a generic constant depending only on ν.

§2. The Existence of Weak Solutions

Let ρϵ(x) be the standard molifier in R2, i.e.

ρϵ(x) =
1

ϵ2
ρ
( |x|

ϵ

)
, ρ(x) ∈ C∞

0 (R+), ρ ≥ 0, suppρ ⊂ {x||x| ≤ 1},
∫
R2

ρ dx = 1.

We also define a cutoff function ξϵ by ξϵ(x) = ξ(xϵ ), where ξ(x) ∈ C∞
0 (R2), 0 ≤ ξ ≤ 1,

ξ(x) = 1 on {|x| ≤ 1}, and ξ(x) = 0 on {|x| ≥ 2}.
Then, for the initial vorticity ω0(x) given in Theorem 1.1, we construct

ωϵ
0 = ξϵ(x) · (ρ ∗ ω0)(x). (2.1)

Obviously, ωϵ
0 ∈ C∞

0 and tends to ω0(x) in L
4
3 .It should be noted that |V ϵ

0 (x)| ≤
∫

1
|x−y| ·

ωϵ
0(y) dy, and V ϵ

0 (x) = ∇⊥△−1ω0(x), where V ϵ
0 (x) is the velocity corresponding to ωϵ

0 by
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Biot-Sarvart law. Hence according to Riesz potential theory and singular integral operator

theory,we can know that V ϵ
0 ∈ H∞ (see p. 75 of [11] for more details.)

Following the proof of Theorem 1 in [1] and the results in [13], there exists a smooth

solution sequence {V ϵ(t, x)} corresponding to the initial velocity {V ϵ
0 },such that∫

R2

|ωϵ(t, x)| 43 dx ≤
∫
R2

|ωϵ
0(x)|

4
3 dx ≤

∫
R2

|ω0(x)|
4
3 dx ≡ M, (2.2)

and by Riesz potential theory,

∥V ϵ(t, ·)∥L4 ≤ C∥ωϵ(t, ·)∥
L

4
3
≤ C∥ω0(·)∥

L
4
3
. (2.3)

Since

{
∂tω

ϵ(t, x)− ν△ωϵ(t, x) = −V ϵ · ∇ωϵ(t, x),

ωϵ(t, x)|t=0 = ωϵ
0(x),

using the foundamental solution F (t, x) = (2πνt)−1H(t)exp(− |x|2
4νt ) of two dimensional heat

conductive operator ∂t − ν△, where H(t) is the Heaviside function, we see that

ωϵ(t, x) =
1

π

2∑
i=1

∫ t

0

∫
R2

(2(t− s)ν)−2(xi − yi)exp
(
− |x− y|2

4ν(t− s)

)
(V ϵ

i ω
ϵ)(s, y) ds dy

+

∫
R2

(2πνt)−1exp
(
− |x− y|2

4νt

)
ωϵ
0(y) dy ≡ ω1,ϵ(t, x) + ω2,ϵ(t, x).

(2.4)

In the above equality, we have applied the properties that divV ϵ(t, ·) = 0, F (t, x) is rapidly

decreasing in x, and that V ϵ
i (t, x) · ωϵ(t, x) ∈ L∞(R+, L1(R2)) by (2.2) and (2.3).

Now we will prove that {V ϵ(t, x)} and {ωϵ(t, x)}are compact subsets of Cloc(R+ , L4(R2))

and Cloc(R+, L
4
3 ) respectively. To this end ,we first establish:

Lemma 2.1. For any T > 0, {ω2,ϵ(t, x)} is convergent in C(R+, L
4
3 (R2)).

Proof. In fact, by Young inequality,(∫
R2

∣∣∣ ∫
R2

(2πνt)−1exp
(
− |x− y|2

4νt

)
(ωϵ

0(·)− ω0(·)) dy
∣∣∣ 4
3

dx
) 3

4

≤
(∥∥∥(2πνt)−1exp

(
− | · |2

4νt

)∥∥∥ 4
3

L1
· ∥ωϵ

0(·)− ω0(·)∥
4
3

L
4
3

) 3
4

= ∥ωϵ
0(·)− ω0(·)∥

L
4
3
→ 0, as ϵ → 0.

(2.5)

Lemma 2.2. For any T > 0, and t ∈ [0, T ], {|ω1,ϵ(t, x)| 43 } is a weakly compact subset of

L1
loc(R2).

Proof. By Dunford-Pettis Theorem[6], we only need to prove that, for any θ > 0, there

exists some η > 0 such that for any measurable subset B of R2, with measB ≤ η, we have

sup
t∈[0,T ]

∫
B

|ω1,ϵ(t, x)| 43 dx ≤ θ. (2.6)

By (2.4), (∫
B

|ω1,ϵ(t, x)| 43 dx
) 3

4

≤ 1

π

2∑
i=1

(∫
R2

∣∣∣ ∫ t

o

∫
R2

1B(x)(2(t− s)ν)−2(xi − yi)exp
(
− |x− y|2

4ν(t− s)

)
· (V ϵ

i · ωϵ)(s, y) ds dy
∣∣∣ 4
3

dx
) 3

4

,

(2.7)
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where 1B(x) is the character function of the set B.

By applying Minkowski inequality for (2.7), we find

(2.7) ≤ 1

π

2∑
i=1

∫ t

0

∫
R2

ds dy
∣∣∣ ∫

R2

1B(x)
∣∣∣(2(t− s)ν)−2(xi − yi)

· exp
(
− |x− y|2

4ν(t− s)

)
(V ϵ

i · ωϵ)(s, y)
∣∣∣ 4
3

dx
∣∣∣ 3
4

≤ 2M2

π
sup
y∈R2

∫ t

0

∣∣∣ ∫
R2

1B(x)
∣∣∣(2(t− s)ν)−

8
3 (xi − yi)

4
3 exp

(
− |x− y|2

3ν(t− s)

)∣∣∣ dx∣∣∣ 3
4

ds.

Hence, we only need to prove that for any θ > 0 there exists some η > 0 such that when

measB ≤ η,

sup
t∈[0,T ]

y∈R2

∫ t

0

∣∣∣ ∫
R2

1B(x)
∣∣∣(2(t− s)ν)−

8
3 (xi − yi)

4
3 exp

(
− |x− y|2

3ν(t− s)

)∣∣∣ dx∣∣∣ 3
4

ds ≤ πθ

2M2
. (2.8)

In fact ∫ t

0

∣∣∣ ∫
R2

1B(x)
∣∣∣(2(t− s)ν)−

8
3 (xi − yi)

4
3 exp

(
− |x− y|2

3ν(t− s)

)∣∣∣ dx∣∣∣ 3
4

ds

=
(∫ δ∧t

0

+

∫ t

δ∧t

)∣∣∣ ∫
R2

1B(x)(2sν)
− 8

3 (xi − yi)
4
3 · exp

(
− |x− y|2

3νs

)
dx

∣∣∣ 3
4

ds

≤ Cνδ
1
4 + C(νδ)−

3
2TmeasB

3
4 ,

(2.9)

where we have applied the property that (x)
4
3 exp(−x2) ≤ C, and δ ∧ t = min(δ, t). Then

(2.6) is satisfied by taking η = ( πθ
4CM2T )

4
3 (νδ)2, and δ = ( πθ

4CνM2 )
4. In view of (2.7),(2.8) and

(2.9), we obtain (2.6). Thus Lemma 2.2 is verified.

Remark 2.1. Following the proof of Lemma 2.2 , we may not take η independent

of ν, such that (2.6) holds. Thus the proof of this paper can not be used to prove the

corresponding case for (1.2) by viscosity vanishing method. In addition, we can see this by

the proof of the following lemma, where we may not take a positive number T1 independent

of ν, such that (2.14) holds.

Lemma 2.3. For any T > 0, we have

lim
R→∞

sup
ϵ>0

t∈[0,T ]

∫
|x|≥R

|ω1,ϵ(t, x)| 43 dx = 0.

proof. Firstly, as the proof of Lemma 2.2, by Minkowski inequality,(∫
|x|≥R

1

π

∣∣∣ ∫ t

0

∫
R2

2∑
i=1

(V ϵ
i ω

ϵ)(s, y)(2ν(t− s))−2(xi − yi)exp
(
− |x− y|2

4ν(t− s)

)
ds dy

∣∣∣ 4
3

dx
) 3

4

≤ 1

π

2∑
i=1

(∫ δ∧t

0

+

∫ t

δ∧t

)∫
R2

|V ϵ
i ω

ϵ|(s, y)
∣∣∣ ∫

|x|≥R

(2νs)−
8
3

· (xi − yi)
4
3 exp

(
− |x− y|2

3νs

)
dx

∣∣∣ 3
4

ds dy = (D) + (E).
(2.10)

By a similar proof of (2.9), we find

(D) ≤ Cνδ
1
4 . (2.11)
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A very simple calculation tells that

lim
R→∞

∫
|x|≥R

(2νt)−
8
3 |xi|

4
3 exp

(
− |x|2

3νt

)
dx = 0, uniformly for T ≥ t ≥ δ,∫ T

0

∣∣∣ ∫
R2

(2νt)−
8
3 |xi|

4
3 exp

(
− |x|2

3νt

)
dx

∣∣∣ 3
4

ds ≤ CνT
1
4 .

(2.12)

Then

(E) ≤ 2M2

π

∫ T

δ

∣∣∣ ∫
|x|≥R

2

(2νs)−
8
3 |xi|

4
3 exp

(
− |x|2

3νt

)
dx

∣∣∣ 3
4

ds

+
2M

π
sup

s∈[0,T ]

(∫
|y|≥R

2

|ωϵ(s, y)| 43 dy
) 3

4 ·
∫ T

0

∣∣∣ ∫
R2

(2νs)
8
3 |xi|

4
3 exp

(
− |x|2

3νt

)
dx

∣∣∣ 3
4

ds.

(2.13)

Summing up (2.7)–(2.13), we find

lim
R→∞

sup
ϵ>0

t∈[0,T ]

(∫
|x|≥R

|ωϵ(t, x)| 43 dx
) 3

4 ≤ Cνδ
1
4 + CνT

1
4 lim
R→∞

sup
ϵ>0

t∈[0,T ]

(∫
|y|≥R

2

|ωϵ(s, y)| 43 dy
) 3

4

.

Thus, when we take T1 = (2Cν)
− 1

4 and let δ tend to 0+, we find

lim
R→∞

sup
ϵ>0

t∈[0,T ]

(∫ T1

0

∫
|y|≥R

|ωϵ(s, y)| 43 ds dy
) 3

4

= 0. (2.14)

By the induction method, we conclude the proof of Lemma 2.3.

Lemma 2.4. For any T > 0, {ω1,ϵ(t, x)} is a compact subset of C([0, T ], L
4
3 (R2)).

Proof. First, by Lemma 2.3,

lim
R→∞

sup
ϵ>0

t∈[0,T ]

(∫
|x|≥R

|ωϵ(s, y)| 43 dy
) 3

4

= 0.

We find by Cauchy-Schwartz inequality,

lim
R→∞

sup
ϵ>0

t∈[0,T ]

∫
|x|≥R

|V ϵ
i (t.·)ωϵ(t, ·)| dx ≤ M lim

R→∞
sup

ϵ>0∈[0,T ]

(∫
|x|≥R

|ωϵ(s, y)| 43 dy
) 3

4

= 0.

Moreover, following (2.2) and (2.3), we see that V ϵ(t, x) · ωϵ(t, x) is uniformly bounded

in L∞(R+, L1(R2)). Hence,there exists some sequence {ϵj} such that ϵj goes to 0 as j

tends to ∞,and {(V ϵj
i · ωϵj )(t, x)} converges tightly in [0, T ]×R2 to some Randon measure

µi(t, x), i = 1, 2. Thus,when we construct function ϕδ(τ) ∈ C∞
0 (R) such that ϕδ(τ) = 0 for

τ ≤ δ, ϕδ(τ) = 1 for τ ≥ 2δ, 0 ≤ ϕδ(τ) ≤ 1, and set

gϵδ =
1

π

2∑
i=1

∫ t

0

∫
R2

ϕδ(t− s)(2ν(t− s))−2(xi − yi)exp
(
− |x− y|2

4ν(t− s)

)
(V ϵ

i ω
ϵ)(s, y) ds dy,

we have

g
ϵj
δ → 1

π

2∑
i=1

∫ t

0

∫
R2

ϕδ(t− s)(2ν(t− s))−2(xi − yi)exp
(
− |x− y|2

4ν(t− s)

)
dµi(s, y)

for every (t, x) ∈ [0, T ]× R2 as j → ∞.

(2.15)
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Moreover,

sup
ϵ>0

t∈[0,T ]

∥(gϵδ − gϵ)(t, ·)∥
L

4
3 (R2)

→ 0 as δ → 0+. (2.16)

In fact, by Minkowski inequality,(∫
R2

|gϵδ − gϵ| 43 (t, x) dx
) 3

4

≤ 1

π

2∑
i=1

sup
s∈[0,T ]

∫
R2

|V ϵ
i ω

ϵ)(s, y)| dy sup
y∈R2

∫ t

0

∫
R2

(1− ϕδ(t− s))
4
3 (2ν(t− s))−

8
3

· |xi − yi|
4
3 · exp

(
− |x− y|2

3ν(t− s)

)
dx| 34 ds ≤ 2

π
M22δ

1
4 · Cν .

Thus, (2.16) holds.

On the other hand, by the definition of gϵδ(t, x) and Lemma 2.3, we find that for any θ > 0

there exists some positive number R such that

sup
t∈[0,T ]

∫
|x|≥R

|gϵδ(t, x)|
4
3 dx ≤ θ

8
, (2.17)

while by (2.15), Egorov Theorem and Lemma 2.1, for θ taken as above, there exist some

η > 0, a positive integer N and some measurable subset B of {x||x| ≤ R}, such that

measB ≤ η and

sup
t∈[0,T ]

∫
B

|gϵjδ (t, x)| 43 dx ≤ θ

8
for j ≥ N, (2.18)

and g
ϵj
δ (t, x) converges uniformly in {x||x| ≤ R} \B. And then

sup
t∈[0,T ]

|gϵjδ (t, x)− gϵkδ (t, x)|
L

4
3 (R2)

≤ θ for j, k > N. (2.19)

Thus, for every t ∈ [0, T ], g
ϵj
δ (t, x)is a compact subset of L

4
3 (R2).

On the other hand, by applying Minkowski inequality and a similar calculation as the

proof of Lemma 2.3, we find

∥gϵ(t1, ·)− gϵ(t2, ·)∥
L

4
3 (R2)

≤ |t
1
4
1 − t

1
4
2 |. (2.20)

Hence by Ascoli-Arzela Theorem, (2.15) holds strongly in C([0, T ], L
4
3R2). Combining this

and (2.16) and using triangle inquality, we conclude the proof of Lemma 2.4.

In view of, Lemma 2.4, by taking T = n, (2.2) and a diagnoal process,there exists some

ω(t, x) ∈ C(R+, L
4
3 (R2)), and some subsequence of {ωϵ(t, x)} (without arousing ambiguity,

we still denote it by {ωϵ(t, x)}), such that {ωϵ(t, x)} tends to {ω(t, x)} in Cloc(R+, L
4
3 (R2)).

Thus, there exists some velocity field V (t, x) in R2 corresponding to the vorticity ω(t, x).

Moreover, owing to

|V ϵ(t, x)− V (t, x)| =
∣∣∣ ∫

R2

K(x− y)(ωϵ(t, y)− ω(t, y)) dy
∣∣∣

≤
∫
R2

1

|x− y|
|ωϵ(t, y)− ω(t, y)| dy,

and Riesz potential theory (Chapter V of [11]), V ϵ(t, x) tends to V (t, x) in Cloc(R+ , L4), and

V (t, x) ∈ C(R+, L4(R2)). Rewriting V (t, x) = ∇⊥△−1ω(t, x), ∂iV (t, x) = ∂i∇⊥△−1ω(t, x),
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and noting that
ξiξj
|ξ|2 is a multiplier which is homogeneous of degree zero and infinitely

differentiable on the unit sphere (see p.75 of [11] for details), we conclude that ∂iV (t, x) ∈
C(R+, L

4
3 (R2)), and then V (t, x) ∈ C(R+,W

1, 43
loc (R2)).On the other hand, for any T > 0, by

Cauchy Schwartz inequality,∫ T

0

∫
R2

|V ϵ(t, x)ωϵ(t, x)− V (t, x)ω(t, x)| dt dx → 0, as ϵ → 0. (2.21)

Thus

lim
ϵ→0

∫∫
ϕ(t, x)V ϵ

i (t, x)ω
ϵ(t, x) dt dx =

∫∫
ϕ(t, x)V ϵ

i (t, x)ω
ϵ(t, x) dt dx,

for every ϕ(t, x) as the correspondence in (1.3).

It implies that (V (t, x), ω(t, x)) is a weak solution of (1.2) in the sense of (1.3).

Thus, in order to finish the proof of the existence part of Theorem 1.1, we only need to

prove that

V (t, x) ∈ C1(R+,W
−1, 43
loc (R2)), and ω(t, x) ∈ C1(R+,W

−2, 43
loc (R2)). (2.22)

By the result of [1], the first equation of (1.1) can be rewritten as

∂tV = −∇(V ⊗ V ) + ν△V +∇
2∑

i=1

△−1(∂i∂j(ViVj)). (2.23)

Since Vi(t, x), Vj(t, x) ∈ C(R+, L4(R2)), (ViVj)(t, x) ∈ C(R+, L2(R2)), by a similar intepre-

tation as above (2.21), we find

−∇(V ⊗ V ) +∇
2∑

i=1

△−1(∂i∂j(ViVj)) ∈ C(R+,W−1,2).

Obviously, △V ∈ C(R+,W
−1, 43
loc ), and W−1,2 ↪→ W

−1, 43
loc , so (2.22) is proved when we note

that ω(t, x) is a combination of the first order derivatives of V (t, x).

§3. The Uniqueness of Weak Solutions

Let {V j(t, x), ωj(t, x)}j=1,2 be two weak solutions of (1.2) with the same initial data, and

V j(t, x) ∈ C(R+, L4), ωj(t, x) ∈ C(R+, L
4
3 ), then, if we set W ϵ(t, x) = jϵ(·) ∗ (ω1(t, ·) −

ω2(t, ·)), W ϵ(t, x) must satisfy ∂tW
ϵ(t, x)− ν△W ϵ(t, x) =

2∑
i=1

jϵ ∗ ((V 1
i ∂iω

1)(t, ·)− (V 2
i ∂iω

2)(t, ·)),

W ϵ(t, x)|t=0 = 0.

Then, by a similar reason as that in the proof of (2.4)

W ϵ(t, x) =
1

π

2∑
i=1

∫ t

0

∫
R2

(2(t− s)ν)−2(xi − yi)exp
(
− |x− y|2

4ν(t− s)

)
jϵ(·)

∗ ((V 1
i − V 2

i )ω
1(s, ·) + V 2

i (ω
1 − ω2)(s, ·)) ds dy

= W ϵ
1 (t, x) +W ϵ

2 (t, x).

(3.1)
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And

∥W ϵ
1 (t, ·)∥L 4

3
≤ 1

π

2∑
i=1

sup
s∈[0,T ]

∫
R2

|jϵ(·) ∗ ((V 1
i − V 2

i )ω1)(s, y)|

·
∫ T

0

(∫
R2

1(t>s)(2(t− s)ν)−
8
3 (xi − yi)

4
3 exp

(
− |x− y|2

3ν(t− s)

)
dx

) 3
4

dt dy

≤ CνT
1
4 sup
s∈[0,T ]

∥ω1(s, ·)− ω2(s, ·)∥
L

4
3
· ∥ω1(s, ·)∥

L∞(R+,L
4
3 )
,

(3.2)

where 1t>s is the character function of the set {(t, s, x, y)|t > s}. Similarly

∥W ϵ
2 (t, ·)∥L 4

3
≤ CνT

1
4 ∥V 2(t, x)∥L∞(R+,L4) · sups∈[0,T ]∥ω1(s, ·)− ω2(s, ·)∥

L
4
3
. (3.3)

Thus, by (2.23),(3.1) and (3.2)

∥W ϵ(t, x)∥
L∞([0,T ],L

4
3 )

≤ CνT
1
4 (∥ω1(s, ·)∥

L∞(R+,L
4
3 )

+ ∥V 2(t, x)∥L∞(R+,L4))

· sup
s∈[0,T ]

∥(ω1 − ω2)(t, x)∥
L

4
3
.

(3.4)

Hence, when we take T1 = 1
(4(∥ω1(t,·)∥

L∞(R+,L
4
3 )

+∥V2(t,x)∥L∞(R+,L4)))
4C4

ν
, and let ϵ go to 0, we

immediately have sup
t∈[0,T1]

∥(ω2−ω2)(t, x)∥
L

4
3 (R2))

= 0. Then, again by the induction method,

we can prove the uniqueness assertion of Theorem 1.1.
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