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ON THE CHARACTERISTICF UNCTION
OF SEMI- HYPONORMAL OPERATOR
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1. In the previous paperm, we consniered the spectral propertles of the class of
quasi-hyponormal operators and in partlcula,r semi-hyponormal operators. In this paper,
we shall investigate the characteristic function of these operators, using the same
notations ag in the previous paper. _

We shall give the relation between the unitary equivalence of the characteristic
functions and the unitary equivalence of two semi-hyponormal operators or quasi-
hyponormal operators and consider the Riemann- Hilbert’s problem related to the
eharacterlstlc function and the determinant of the value of characteristic function.

2. Let A= U]AI, be a quasi- hyponormal operator, U be a unitary operator and

|A[+ {AI_ be the polar difference operator of 4. We congider the pr1n01pa1
domam B(A)=A(B) of A. The operafcor-valued functlon

W) =W0s 4)=I-B* \I-A)-UB, acpa) ()
is called the characteristic function of A, Ttig obv1ous that

W(?»)B?= B7(AI —A_ )M (AI—A4,), BTW()\) =AL—4,) (M- A-) 1B2 (2)
We can easily prove that W (1)~ exists and

W\ 1=I+B \—4,)-BF | 3)
for )LEG'(.A+> UO'(A ). The operator A4 i called simple, if there does not exist a
non-trivial subspace which containg Z(A4) and is invariant with respeot to |A4],,
|4|-, U and U™, Let ¢ be a scale function.
Theorem 1. Lot A=U|A|, and A’ —U | A'|, be the @-quasi-hyponormal operators
and the operators U and U’ be unitary operators.

(1) If there is an unitary operator T from H onto H' such that

A.=TALT, U=TUT, | @)
then there is a unitary operator S from the principle domain B (A) onto B(A") such thai
W AN =8W (A A)S for AEo(4.) = G(A’) (5)

(ii) Conversely, if A and A' are simple and there is a unitary operator 8 from
F(A) onto B(A") such that (B) holds, then there is a unitary operator T from H onto
H' such that (4) holds. .
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Proof The first part of this theorem can be easily proved by taking §=1'| 44 and
we shall omit the details.
We have to prove (ii). The subspace Z(A4) reduces the operator U, since the
operator U and the operator B are commutative. From (5), it is easy to prove that
' S8U | za)8*=TU"| s, (6)
‘We can also prove that

S(B%(MI——AQ"I(MI—A~)”1-"'(MI A7 (ual —A )"‘UB%)S‘1

- B Qul— 4 (u — A (T~ A) NI —ADPTBE, ()
for Ay, =+, MEP(4L), M1, +*, W Ep(4-). In fact, we have
BE (M= 4.) (eI~ A)UBE = (W ()W () —I) (u—1) ™ (8)

for A, wE€p(4-) and A# . From (6), we obtain (7) for n=1. By the similar calcula-
{ion, we can prove the formula (7) for all n.
Let .#(4) be the linear manifold spanned by all the vectors

‘ IAIE‘IAIT‘---iAI‘J:'lAI’l’”U"B% yeH
for non-negative integers ls, my, -, l., m, andinteger 5. We construct the operator T
from M(A) to A (A’ ) by the followmg formula |

T ALl | A7 | ]| A|2T*Bl) = | 4[4] 4|70 | 4[] 4| 2 0SBy,
From (6—T7), we know that the operator T is isometric. But the manifolds .#(4) and
M (A" are dense in the spaces H and H' respectively. Thus the operator T’ can be
uniquely extended to a unitary operator from H onto H' and then (2.4) holds.

In the following, we shall only consider- +the case when the operator A in the Hilbert
" gpace H is semi-hyponormal. Let 2 be an auxiliary separable Hilbert space, K be a
linear operator from 9 to H such that the polar difference operator @= | A|,— | A|, satisfies
Q=KK?*. If. A is the singular integral operator in [3], then we take
K.aa(")a, a€2,
In this case, K*f=Po(af). We define an analytic function® Y (z, A) of Complex
variables A€ p(4) and 2 for |z|+1

Y(s, A) =I—2K*(I— U*)—i(A —AD-K, (8)
Trom [A—AI, I—2U*] =2Q, we obfain o ‘
Y (5, A)~t=I+2K*(A—A) (I —U" K, 9)
KY (2, &) = (I—2U*) (A—AI) (I—2U*)"*(A—M) 'K, (10)
and . R :
Y, WVE*=EK*(I—2U") " (A— M) (I -0 (A=MD), (11)

Theorem 9. Lot A=U|A|, and A'=T"|A'|, be the semi-hyponormal operators of
Hilbert spaces H and H' respectively, U and U' be unitary operators. (i) If there is a

@ Here the domain of definition is not connected.
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wmtafry opemtar T. H—>H' such that A o :
- A'=TAT, U= TUT 1, - (12)

then there is a unitary operator S from 9 onto D' such that ‘
Y'(z, M®=8Y (z; M)S™, (13>

for AEp(4) and [z| #+1. (i) Conversely, if the operators A and A’ are S’mele and, there
is @ unitary operator S from D onto D' such that (18) holds for A in a neighborhood of oo
and 2 in the neighborhood of 2=0 or z=oo, then there is a unitary operator T from H
onto H' such that (12) holds.
Proof ‘We only have to prove (ii) From (8—11), we obtain ,
K*(I—2U0*) " (A—AM)Y(I =2 U)K = (I-Y (, A)Y(z’ MY/ (- z’)
By (18), we can prove that
KU AR —SKUTATUTK S
for natural number I and integers m and n. NOW we construct the operator 7',
U“Ka—)U'"K’Sa, . eaED ,
and then extend itg domam of definition so that T becomes a umtary operator from H A,
onto H' and satlsﬁes (12). ’ |
This theorem 1s S1m11ar to some results in [2] : - : v
Theorem 8. If the operator K isa Hilbert-Schmidt opemtor then the dete'rmmwm&'
of Y (z, M) edwists for AEp(4) and - :
|2| #1 and det(¥ (2, A)) = det((I—zU*) (A AI) (I—2U*) "1 (A~ AI) -1, (’1”‘4) "
Proof We denote X = (I—2U%) (4— AI‘) (I—2U*)"1(4—AI)~. Then" '
X=I+KK*'C and Y(z, \)=I+K*CK,
where C and C' are bounded linear operators. We take prOJeotlons P, and Q, with rank
n such that KP,=Q,K =Q,K P, and that | K P, ~-K lo=>0 as n—>oc0. Let
X,=I+Q,KK'CQ,. and Y,=I+P,K*C'KP,.
From (10), it is obvious that
| Q.KP,Y,=X,Q.KP,.
Thus det (Y n) =det(X,) for sufficiently large n. Then (14) holds since
’11_1)133 ”X"—X”1=1,,1_I£ 1Yo—Y (2, A)[1=0,

3. Now wé shall consider the singular integral model of the semihyponormal
operator 4. We suppose that A is completély nonnormal. In this éase, ‘_f»rohn quqll‘_ary
5 in [8], we may suppose that the measure x in the function model is th'e"L;ébésglie
meastire m. In this case, W (A, 4) is a multiplicative operator in L*(2) and |

| W (2, DF) (@) =W(e*, Df (&), fEIND), .
Where W (e?, A) =I—a(e?)(he I — ,B(e“’) ) a(e“’) ‘The funotlon W(e"’ A) i also called
the characteristic functlon of A. Let P_=1—P,. '

@ Here 2/ and Y’ (2,)\)are respectively the auxiliazy domain and the function correéponding'to the operator
A ‘ '
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Lemma 1. Let f, g€ L*(2) and AEp(4-). If
(A—AD)f =By, (15)

W (&, 1) (g—€°P. (af)) =g+¢"P_(af), (16)
Conversely, if the null space of the operator B is {0} then (16) implies (15).
Proof By calculation, we find that (15) is equivalent to

B (A_—AI)~* [(A—AI) f—Big] =0,

then

So we have Lemma 1.
Let H2(9D), 1<p<oo be the Barach space of all analytic functions of the form

) f(z)':,%fn Zi"

{fs} =D with

3|

7la= s ([ I e 00 .
It is obvious that the space Ho(2)=H2(2)NH2(2) is the space of all constant
functions with values in 9. The H2 (%) is simply denoted by H2, when 2 is the field
of complex numbers. The boundary value of the function f € H2(2) is denoted by
f(e“’) = lm f(re®). If fEH2 (2), then llm Ilf(a"( DENAC )ﬂp—-O

" For ﬁxed ?\,Ep(A) and aE@ we have B2 (A—AI) ‘1BzaEL2 (2). Hence the
function 2 Y (2, A) as @ function in |2] <1 (|z|>1) is @ functionin HZ(9P) (H3(2)
respectively). It has boundary value function |

Y. (e?, A.)a:— E}no Y'(rre“’,”h)a,
We can prove that
R Y.(é%, Ma=aFe P, (BZ(A A B¥a).

We take g=a and f=(A4—AI )‘1B"a, in (8.1). By Lemma 1, we have immediately the
following theorem. :
Theorem 4. For fivzed AEp(A)and a €D, the bowndary 'ualue ffwnctfbon Y. (e, A)a
is the solution of the Riemann-Hilbert’s problem
Y_(6%, Na=W (¢, MY .(¢°, x)a ’ an
Let Z(D) be the Banach space of all bounded Vinear operaiors in 9. Let f(¢°) be an
opemtor—mhwd fmwm(m I f there are funct@ons UAQ ) €HL (3 (D)) with ¢>2 such that
w_(+) is invertible and u_ (%) u, (¢°) =Ff (¢) then the function f 4s called factomsable
We notice that if D is n-dimensional and the functions & and B are in & R-ring™, then
W (e®, A is fatorisable for NEp(4) (¢f. [31). |
Theorem 5. If ithe characteristic function W (€°, Ao) of A is factorisable for
M€ p(4), then ¥ (2, k) 4s uniquely determmed by W (6", Ao). If there is a neighborhood
N w Of mﬁmty such that W (¥, h) is factorisable for every AE AN N p (4), then
operator A is uniquely determined in the sense of unitary equivalence by the characteristic
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function of ‘A.

Proof There are functions u, € HL (£ (2)) such that W(e"’ Ao) =u_ () e, (e‘“’)
since W (-, 7»0) is factorisable. From (17), we have
' u_ ()Y _(e", ho)a=u,(e9)Y (", M)a. (18)
However, (u.(e®)Y .(¢®)a, b) is the boundary value of ¢ function in H% for every
bED and k=2¢/(2+¢)>1. From (18), we have u.(*)¥ (- Da€ Hy(D). There is an
operator Lc¥ (@) such that Uy (z)Y(z A)=L. Hence L=u_ (0), since Y(O }\) I.
We notice that Y(z AL ex1sts for |2[ #1, so u (2)7" also ex1sts and '

Yo 0= {u+(z) u_(0), for | K >1
u (z) “u_(0), for |z| <1,
Thus the function Y (2, M) is determmed by W (e®, ?»)

The seeond part of this theorem is obtained by the first part of this theorem and
Theorem 2. L _ -

4. In thefollowing, we suppose further that in Johe functlon model of the semi-
hyponormal operator- 4, the space & is n-dimensional and the matrix-functions' a and
B are continuous. In this case, 4 is called an opérator of O"-type. We write '

| Ay=FA A+ (A—B)A.
Theorem 6. Let A be a semi-hyponormal operator of C"-type. If 0k, then
‘ o(kdi+(1—k)A_ )CU(A) , (19)

Proof For any nxn Hermite matrix R, let A;(R) < -+ <A (R) be the eigen-values
of the matrix R. Let . L Ce
AL(6) =B A] (6% + (L—F) [ 4]- ().

Sinee | A|_(e?) <<|A|x(e?) <|A]+(e?), we have
A(]A]-(69) <M (| 4 [(e?)) <M (IAl (@), (G=1,2, -, n),
From Corollary 7 of [3], we have . '

{plpe‘eea(A) p>0}DUD»(|A| €)), M(| 4|4 (e“’))]

Hence A;( | 43(e?))e® €Eo(4). However, we have _
o(d5) = (| A[3(6%))e?|0<0<2m, j=1, -, n}.
Thus (19) holds. o
It is conjectured that (19) holds for any quasi-hyponormal operator.
Theorem 7. If the semi-hyponormal operator A is of C"-type and
' R(A) =ind (det W (-, 1)),

then
1 > R(pe®)e¥zdpdl
der s, 1) =oxpf [ ] LI ] @)
and o |
Ak @, 1) oo’ B, 1)

for AEp(4) and |2]| +1.
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Proof Let Ax(e¥) =kA,(e?)+ (A —k)A_(¢?), u=2re", a=a(e?) and B=pB(e"?).
By theorem B, the operator (AL — A4y(¢¥))~" exists for A€ p(4). On the otherhand, we
have
(I—ka(p—PB) ") =I+ka(u—B—ka®) " (22)
From the formula (1.14) of ch. IV in [4] and (22), we have

In det W (e, A) = trJ a(B+ka’— p) *adk, (23)

Let the function of 1 on the right side of the equality (23) be f(u). We can prove
that (1) this () is analytic in the whole plane except a finite interval in the real a,kis,
(i) Sudf(w)=>0, and (iii) there is a piece- -wise continuous function R(pe®) which
vanishes beyond a bounded subset of the complex plane and sueh that

fa=|7 R@‘”)d“

Th1s implies (21). From (21) we can easily prove that
R(M) —-md(det W(, M),
'Let oz, A) be the function on the rlght side of the equa,hty (20) By calculation, we
obtain -
- (e" ) =deb(W(6?, 1))@ (e, M),

But the formula (17) implies
{ det (Y _(e¥, A)) =det(W (¢, A))det (Y (e, A)).
‘Henoe the functions ¢(z, A) and Y (2, A) are the same solution of the Riemann-Hilbert
problem. Thus ¢(z, A) =det(Y (2, A)).

Further, we can pro%re that B(A) is the principal function G (A) in the sense of [1].
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TR % S RS SR W 4) BUSRER T, |
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