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§ 1. Introduction and statements of the main results.

Lot M" be an n;dimensional compaet C Riemann manifold, and Diff* (M") the
space of C* diffeomorphisms of M" endowed with the C* topology. A given f € Diff* (M)
is called structurally stable if every g in Diff*(M") nearby f is equivalent to f, and f
is called Q-stable if for every g nearby f, ¢g|Q2(g) is equivalentto f|Q(f), where (f)
denotes the nonwandering set of f. The main problem in the theory of ‘differentiable
discrete dynamics is to find characterizations of strueturally stable and Q-stable diffeom-
orphi.smsg_,’lfhis. problem appears difficult in general. Smale conjectured 'many years ago
that, a necessary and sufficient condition for f& Diff? (M™) to be Q-stable is that f
satisfles Axiom A4 and the né} eyele condition, and a necessary and sufficient condition
for f structurally stable is that f satisfies Axiom 4 and the strong transversality
condition. Later on, both of the sufficiency parts were proved respectively by Smale
[19] and Robbin-Robinson ([14], [15] ). However, the mnecessity parts in -case
dim M"=2, known as the stabilty conjecture, remain. open; only quite recently, Mafié
[8] proved the necessity for the case dim M"=2 under the additional assumption that
the nonwandering set Ql(, f). is exactly = M2,

One aim of the present paper is to prove the stability conjecture for the case
dim M"=2 (without the assumption that Q(f ) =M?). Our main results are as follows.

Theorem I. Let f€ Diff*(M?). Then, a necessary condition for f to be Q- stable 4s
that f satisfies Awiom A and the no cycle condition, and @ mnecessary condition fOfr f
structwrally stable is that f satisfies Awiom A and the strong tmnswmahtry condition.

Theorem IL. In order that f € Diff*(M?) is Q-stable, it s necessary and sufficient
that € F*(M?). |

Here, # *(M") denotes the set of all diffeomorphisms g € Diff*(M") such that there
is a neighbourhood G of g such that all periodic points of AEQG are hyperbolic (or
equivalently that each AE€G hag at most a countable number of periodic points). If
fEF *(M™), then the periodic points of f are dense in Q(f) [8].

Theorem II remains true, if the diffeoruorphism f € Diff*(M?) is replaced by one
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€Diff*(M*). In fact, for f € Diff!(M*), with the aid of arguments in [11, Chap. I]
it i3 a trivial matter to show that f €. *(M?) if and only if f is structurally stable, and
also, if and only if f is Q-stable. Thus, the problem mentioned in [8, p. 383] hasa
positive solution in case dim M"<2, and the similar version for diffeomorphisms of a
conjecture mentioned in [5, p. 818] is also verified.

Theorems I and IT will be proved in §6 and partially deduced via the usual technique
of suspension from diffeomorphisms to vector fields. Actually, we wish to establish in
this paper some analogous results for vector fields but under more restrictions.

§ 2. The class 2 of vector fields.

Let us recall first a result in [5] for later convenience. Lot
X = (U
be the set of all O* tangent vector fields (i. e., differential systems) X on M" for a given
n=2, endowed with the O norm | X |, and :
. . IH*=* (M)
the set of all X' € " such that there is a neighbourhood U of X such that all singularities
and all periodic orbits (different from singularities) of each ¥ €U are hyperbolic (or
equivalently, each ¥ in U has only a finite number of singularities and at most a
countable number of periodie orbits). We have made a study on the class 2™ in[5].
Consider an arbitrarily given § € %". § induces then a C* one-parameter transfor-
mation group ¢;: M">M"(—oco<t<o0), and induces therefore a one-parameter
transformation group on the tangent bundle % of M",
Gy =dps: €—>C  (—oo<t<0),
Denote respectively by & and & the-set of all singularites of § and thatof all-points
on periodic orbits of . Write _
M=Mr—P,,
Consider the conjugate bundle
' ' 9= 92,

: . veM
of §, which is the bundle with base space M and with fiber 9, over « € M consisting of
all tangent vectors at « orthogonal to S(2). For any (¢, u) € (—oo, o0) X D, take
W,(w) as the orthogonal projection of @;(u) on D,,,,. This gives a one-parameter

transformation group .
V:D—>D (—oo<lt<0),

W, maps- 2, linearly onto Dy [8,§1].
" For any given ¢ € £ write
D_(2) = {u€ 2,|lim |, (u) | =0},

D, (z)={u€D, IEE” @, (u)| =0} | (2.1)
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These are linear subspaces of @z, and e
T (D-(2)) =D_($:(2)), Te(Ds(2))=Ds($:())-
}so, for any given 2 € & and 0=t< oo write

o e BT i dim Do (@)=,
"7—(t, @) = 4 "EP-@ =1 |
—oo if dim D_()=0;

inf  log|%; (u) | if  dim Dy (z)=1,

. (t, o) = {uel?d(z) Juj=1
: co if dim Dy (e) =0,

Clea,rly, Dy —D_ (m) @D, (z) if Sca
" The following can be found in [5]. ,
Theorem 2.1. There exists an open covering B of X, and com"esPOndmg to each
H € F there ewist numbers ng>0 and Ty>0 such that: if VEX and SEV, then (i)
Whenever @ is a point on @ periedic orbit of S and Ty=t<oco, we have ‘ |

Linet, o) - - w>>22nv, - | @.2)

(iiy) Whenever P is a '_pefr’wdf&c crbit of S fwfbth pemod Ty, a EP and
O=to<ty<--+<t;=To
48 a division of <0, T satzsfymg ' -
_ -—tk_1>TV, k=1, 2, -, 1,

we have .
. o
R R O 2.3)
0 k=1
and ' '
l BN
’%— > Ns (e ti—1, Doy (@) Z 7w, (2.4)
0 k=1 . o

Corolla.ry 22. LetVeER dnd Se€V. Then ‘thefre is @ positive number n<ny such
that if P is a periodic orbit of S with period T, the absolute value of each characteristic
ewponent of P is= exp (—nT) or =exp (7T). |

§3. Contractible periodic orbits,

Write simply @ for the nonwandering set of ¢;(—oco<t<co), and write
. Qo=Q—P,. k

We want to prove in this section the following :

Theorem 8.1. Suppose S € X ™* and suppose that Qg is closed in M*". Then, there are
only a finite number of periodic orbits of S which are contractible positively or negatively -

In case SEZ™*, any such contractible periodic orbit P is characterized By the
property that dim D, () =0 or dim D_(«) =0 for € P, and then P is asymptotically
stable positively or negatively in the usual sense.

“We shall employ a theorem in [2] (Wlth slight modifications) to prove the theorem
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above. We recall first from [3, § 1] the one-parameter transformation groups @:, s,
# (—oo<t< o) induced by S on the bundles %,, #,, Z ¥ of n-frames, orthogonal
n-frames, orthonormal n-frames of M" respectively.

In fact, for any (¢, v)=(t, w1, *-+, %) € (—oo ©0) XU, pub

Dy (y) = (D (ur), Ds(ua), =+, Bs(thn)) € Une

This gives a one-parameter, fransformation group

' Gl -1, (—oco<i<oo),
Let m: 11 —.%, be the mapping obtained by the usual Gram-Schmidt orthogomzatlon
process, and .for any (¢, v) € (—o0, o) X F, put xt(y) w Dy (7) € ﬁ‘ This gives a
one- parameter transformatlon group -
o ‘ I T, (——oo<t<00)
Let ow#*: #, -->ﬂ_ F be the mapplng obtamed by

U ug ' dn |
[’ ’ W>’

and for any (t, 7) € (—oo ) X ﬁ' * put % (y) -—av’"“xt (y) ’I‘h1s glves a one-parameter

7 (ui’ Ug,. ***y u,.)——(

transformation group _
| f*—»gz‘# (— oo<t<00)
For y= (uy, ug, *, u,) Ell,,, write pro y;;y uy, k=1, 2,
For any v C.Z,, |projux:(v)| is continuously d1ﬂ’erentlab1e in ¢, and we define

_d“Projla<Xt(7>>|lv!, k=1,2 - n
di o T T Y

wn(y) =

[3, § 1], These are continuous functions on .#,. Moreover, for any
(t, ) € (—o0, ) X F ¥

we have
10g||p1‘0.7km(’)’)u Jt wk(x ('y))ds, (h=1, 2, ’ R, (3.1
We consider also the bundle | S ‘ S
£=Ua
veM

 with base M and with ﬁber Es over & consisting of all orthonormal (n—1) frames
y= (U1, Ug, **+, Up—1) Of M" at x, satlsfymg S(2), wey=0 for k=1, 2, +--, n—1. For
YESs sEM, lot 1*(y) = (8(=)/|S(2)]|, 7). This gives an imbedding .

o P EST :
As @,(S(@)) =8(¢:(w)) [3, 8§ 1], therefore the relation *0;(y) =" (y) defines a
one-parameter trngformation group .

’ O;: E—>E {—00<t<oo)
- Fer any T S (O oo); let us write

te@=7*wp1mmew

§-r (o) =x—- sup _log| ¢-r W],

UEDy Nl =1
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These are continuous funections on .M. From (8.1) and the construction of @,
(—oco<t<o0), we verify easily

%J i1 (0 (7)) dt<ér(a) for yEE, 0EM, (k=1, 2, -, n—1). (3.2)
Lemma 8.2. Let Fbea closed subset of M", imvariant under qﬁt(-—OO<75<OO),
andcomwmed in M. Suppose that Jor a certain T € (0, oo) there is @ normalized measwre

~ pon, F /mwrwnt under ¢;( —oo<l{<Lo0), such that ‘ ‘ ,
[ e@du<o or [ a@an<o @3

Thern,, F contains a pemod@c oa"b@t of S, contractible poswtwely or negat'wely acco'rd/mg as
 the first fmeqml@ty or the second, in (3.8) holds.

| Proof We consider the case when the first inequality in (3. 3) holds (the second -
one is reduced to the first by considering —S instead of §). Furthermore, since

JF fr(m>dM=JU p(da) L, €r(y) p (dy)
where U, denotes the set of all quasi-regular points & € F such that its individual measure
My I8 transitive with respect to ¢t(—oo<t<00) [9 Ohap VI], and hence there exists
at 1east one point o € Ur with ’

. @ (@) <0,

we may ‘agsume therefore without loss of generahty that u is 1tself transﬁwe under
$:(—o00<t<0). Letr:&~>M be the bundle projection. Clearly, +~*(F)is compact and
invariant under B, (—oco<t<<o0). Then, acooi*diﬁg to [2, p. 14], there is a normalized
measure w' on z7(F), invariant and transitive under @;( —oco<¢<<oo), and such that

J oy eV = [ x@aco
It follows Jshen from (3.2) and the invariance property of i’ that

e " o
0|, 7 s ns O WA~ [ ] O

ZJ w‘k"‘i(“*(’y))d/?b',l ]g:l’ 2’ °* ?’b'—l_
T .

Thus, by a theorem in [2, p. 2] modified to the case of C* vector fields (see a footnote
in [3, p. 192]), we can conclude that there is a per10d1o orbit P of S oontamed in F.
Moreover, by argumenfs in the proof of this theorem [2, p. 10] and using a corollary
in [2, p. 7], this periodic orbit can aetually be one which is contractlble positively. This
completes the proof.

Proof of ! Theorem 3.1. Suppose on the contrary that there are an infinite number
of distinet’ contraetible orblts Py, Py, P, -+ of 8. By choosing subsequences and
considering —§ instead of S if necessary, we may assume that all the P, ’s are contractible
positively, and that the sequence {P;} converges to a closed subset # of M"(i. e., for any
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given &>0, there i an %, such that for all 4>>4,, the e-neighbourhood of F (with respect
10 a given topological metric of M") contains P; and the g-neighbourhood of P; containg
F*). Since each P; is invariant under ¢,(—oco<i<oo), F is invariant under
Ps(—oo<lt<0).

For each 4, we can take an individual measure y; corresponding to'a point a; in P;
[9, Chap. VI]. By choosing subsequences if necessary, we may assume that in the svace
of all normalized measures on M" (which is compact and metrizable in a natural sense
[9, Chap. VI]), the sequence {u;} converges to a normalized measure w on M". Since
each p; isinvariant under ¢; (—co<f< o), w is invariant under ¢; (— oo <¢<<oo). Also,
since {P;} converges to F and each P;cQ, which is closed in M ”'by hypotheses of the
theorem, therefore F is a closed subset of Qo M, w is a measure on ¥, and

i | ér@)dp= [ €r@dn (3.9

for any T € (0, oo). o .
But each py is the individual measure corresponding to a; € P,, so that we have

[, &r@dp=1m = [ at@)s. (3.5)

We shall show that for sufficiently large 4, the left hand of (3.5) is <—7/2 for certain
numbers 7>0 and T'=7T>0. In fact, let T; be the p’eribd of P;. As 8 €27 by hypotheses
of the theorem, for each number 7" >0 there are only a finite number of periodic orbits
of S of period <T"[5], and hence i |

lim 7', = co, - (3.6)

1—')00

Also, by Theorem 2.1 there are numbers 7>0 and 7>0 such that (2.3) holds. But
now each P; is contractible positively. So

’%‘(g 55(95(#-1)‘-"'(‘”))+§T(¢mﬁ(w)) )é-—ﬁ for anyz€ P, B

where m; is the greatest positive integer with T—m{T=T, which eertainly exists by
(8.6)for sufficiently large 4. Therefore from (3.6), the continuity of the transformation
group qSt(-—oo<t<<>O) the compactness of Qo M and the fact P, Q,, we have

~

(2 Er(Ppa-nr(@)) >< —32—7— and hence

W(z br(Bar (@) )<—L, p=1, 2,3, -

for any €P; and su{ﬁclently large 4. It follows that

1 J' fT ((,‘bs (aa )ds pmel J‘(k+1>f

pme ST (¢s (“z) )ds .

—--—;—;J —_— %,, fﬁ(¢kr(¢t(“i)))dt<”“%"

p= 1,2,3,~

* This ig actually the-convergence in the sense of Hausdorff [1, §281.
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Now, in (3.5) with 7=7 we see easily that

~

J Er(m)dm=— -—2— for Suﬁlmently large @, | 3.7)
From (8.4) and (3.7),

|, @@du<o

§0 that by Lemma 3.2, F contains a periodic orbit P of S contractible positively and
hence asymptotically stable. But this is impossible, because the sequence {P;} of distinct
periodie orbits of § econverges to F>DP. We get therefore a coniradiction, which
completes the proof of Theorem 3.1. ' ' '

§ 4. The case Se2~?),

In this section and the next, we assume throughout dim M"=3. The aim of thege
two sections is to prove : :
Threorem 4. 1. Suppose S € X *(M3). Suppose dlso that 2 is closed in M*-and .9"" @s‘
dense in Qo. Then S has hyperbolic structure over Q. _
We shall proceed the proof by a number of lommas. Write
P ={w€cP|dimD_(z)=0 or dim D, (z) =0}, Q1=Q,—%.
Py and Q are clearly invariant under ¢;(—oo<¢<<o0). The conjugate bundle 9 of §
is metrizable. Write simpiy~ | ' ' ‘
| T ={u€D||u| =1}, =T N (2|2)).
Lemma 4.2. Under the same hypotheses of Theorem 4.1, Oy s closed in Qo (and
hence D s compact) , and for each © € Q1, D, has a unique direct decomposition
 Dy=D_(2)®D,(x), dimD_(z)=1=dimD, (z) (4.1)
such that: . . - ._ ' ‘ .
- (logl(w) | —logl s (0) ) 227 and

=+ (log| s () | —log e () ) 22, T=t<oo, | (4.2)

for u€D, @) N D, vED_(w) N D, where 71>0 and T=T,>0 are given as in Corollary
2.2 and Theorem 2.1 with V €A and S €V . Moreover, such a decomposition satisfies:
D) $(Ds) = D_($:(2)) DD+ ($1(2)).- '
(2) In case s EPN Q1, D_(&) and D, (@) are the same as given in (2. 1).
(8) The decomposition is contimuious in @ in the following sense, namely, in case when
{a} is a sequence im Q converges to zo € 1, the sequences {D_ () N D} and {D.(x) N D}
of sets also converge respectively to D_(we) NP and D (o) N D.
Proof If o€ %, is a closure point of Qy, and lies on a periodic orbit P of §, then
sinee & is denge in Q,, there are points arbitrarily near to 2, and lying on periodie orbits

of § different from P. But this is impossible, because P is contractible by hypotheses of
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the lemma, and hence is asymptotically stable, Therefore Q4 is closed in Q,. It follows
eagily that 9, is compact. |

, Consider any given x, € Q;. Since :@ is dense in Q,, wo can choose a sequence {z;}
of points in &, converging to @,. Butb from Theorem 3.1 we seo easily ‘that 2, is closed
in Q,. Tilerefore since S€Z2™(M®), we may assume dimD_(a;) =1=dim D, (@),
4=1, 2, 8, -+ Hence, for u;€ D, (@) N D, v €D (a;.-) N P, We have from Theorem 2.1

— (108' e () | = 109,’ [ (v > 1) Z277 and

——(109: H lﬁ—t (%) I —10g I ll'—t (uz) H ) >277 . - (4.3)

for T <t<oo. But 9 is compact. Therefore, by choosing subsequences if necessary, we
may assume that the sequences {u;} and {v;} converge respectively 10 1o and vo € Py, N 9,
and hence if we put D_(zo) and D, (2) to be the linear subspaces of ,, generated by
uo and v, respectively, then from-(4.8) and the continuity of the transformation group
Y (—oo<t<oo), we get a direct decomposition (4.1) for o=m, satisfying (4.2)."

" 'We assert that such a decomposition is unique. In fact, from (4.2) we verify easﬂy

[0 - gy Il
lim e 0= i e

go that for w—‘—?vwo-}-,wvo—O ‘with A, ,u,e(-oo ©0), we have

L () | | by (o) 4 RACHE "___‘

lim - Tog S~ lim (1°g""“°g ll Torao m TesT))=0
i AR0 (4.4)
and L ) | ,, |
lim s _—Lul,b_fw [0 1 o P

Thus if there are glven wand v € 9_,,0 N g satlsfymg (4 2) with y= u and V= v, then
clearly (u, v)# (Ewo, o), and we must have (u, v)= (Zuy, +vo), for otherwise,
using (4.4) and (4.5) we could see that at'least one of the two equalities

i Liog @ _g i L 10p =@ _g
tim - Jog- LT Gl ~ lim £ Tog (225

- holds, which contradicts to (4.2). This proves our assertion.

From Theorem 2.1, (4.8) remains true if % and »; are replaced respectively by
() and Y,(v;) for any given s& (—oo; o). Thus, by the continuity of the
transformation group Y, (—oco<t<o0) and the uniqueness of the decomposition (4.1),
~ we find that (i) holds. Again by Theorem 2.1 and the uniqueness of this decomposition,
(ii) is true. Using some similar arguments and the technique of choosing suitable
convergent sequences in the compact set 9D, we can verify easily (iii). This completes
the proof of Lemma 4.2, ‘

For any (¢, u) €9, let us put ¥ (u) = (u)/ || llft (u) |. Clearly, this gives a one-

parameter transformation group
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. Yp#: F—>F (—oo<Li<o),
We assert that for any u€ D, |;(w) | is continuously differentiable in . This is clear
if =0, because Y;(0) =0. If u+0E Z;, our assertion follows easily from arguments in
§ 3 by considering an orthogonal 3-frame y of M? with pro j1iy=8 (@), projay=u, so
that pro jax:(y) =y:(u). Write simply '
() - ALl

t=0
Then as in (3.1) we have

gl | = [, W@)ds for weP, (40
and from § 2, we see that w(u) is continuous in u€ 9. Also, since i is linear from
Dy 10 Dyy, Wo have 0 (u) =0 (—u). T

Now, let us consider the direet decomposition of Dy, €D, given in Lemma 4.2
(which is obtained under the same hypotheses of Theorem 4.1). By the p’roperfy @) of
the decomposﬂ;lon we See easily

# (D-(®) ND) =D-($:(=)) NP, # (D4 (2) ND) =D (de(2)) ND -
for (¢, @) € (—o0, 00) X 2. Also, if for each 2 €2, put {(2) = w(w) where u € 2 ND_(z),
then since w(—u) = @(w) and dim D_(z) =1, {(») is uniquely determined by «. Clearly,
{(p1(@)) =@ (u)) and | o
B Tog [ () | = [, L(hu(@))ds

foru E 2 N D_(w). By the property (iii) of the decomposition (4. 1), {(#) isa continuous
funetion over £;.
‘We shall eonsider the set

V={x691|JZC(.¢3(m))ds;O for all t€ (—oo, o)},

~ which is clearly a closed subset of ;.

Lemma 4.8. Under the same hypotheses of Theorem 4.1, let E and () be given
above. Let 11 be a closed subset of 24, imvariant under ¢y (—oo<t<o0), such that INE=0.
Then thefre are numbers n,>>0 and d,>0 such that

[* tou@)ir<—Tn, for o o€1 and Tzd.

Proof Tirst of all, we can apply a theorem in [4] to conelude the following™:

11 is the u nion of three mutually exclusive subsets II, II, and 1T of IT where the
first two are closed in II, each of which is invariant under ¢;(—oco<¢<o0), and such
that: ; '

(1) There is a closed subset II, of II, contained in 11, which is a section of 1T with
respeot t0 ¢p¢(—o0 << 00). This means that,

$.(t, D) =du(2) for (1, @) € (—oo, o) x1I,

* Seo also a paper of the present author, entitled ‘‘Obstruction sets. I”” (to appear).
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defines a topological mapping from (—oo, oo) X II, onto II.
(2) There are constants %,>0 and d,>0 such that

T —Tn, for all €Il and T=d,,
di< 4.7
Jo £(9e() _<{Tn* for all #€Il, and T=—d,, @0
T —Tn, for all «€Il,, s=0 and T=d,,
s dt< 4:.8
LC((# +(2)) {Tm for all #€1l,, s=0 and T'=-—d,, .8)

We assert that II . =0. In fact, from (4.6) and (4.7),
log|yis(v) | >tn. for v€D_(@) NG, z€1l,, t=d,.
This together with (4.2) gives also
log [s(u) | >tn, for w€D.(8) ND, «€I,, t=Max{T, d,}.
But from (4.2), the continuity of the transformation group y;(—oco<t<<oo) and the
compaetness of 9, we must have |
sup  |<u, v | <1,

ue D& NG,
vED(2)ND, wEL,

Combining these togother, we verify easily that there exists a number T= Max {7, d,}

such that inf  log|yr(w) llg%—-m, or eqlﬁvalently,

4€D N, €N+
tr@=—gn, o€l (4.9)

where £_7(z) is given as in § 3. Now, suppose that I, #0. Then, there exists certainly
at least a normalized measure u on II,, invariant under ¢;(—co<#<oo). Thus, in
view of (4.9), we can apply Lemma 8.2 to conclude that II,(<Q,) contains a
contractible periodic orbit of §. We get thus a contradiction to the definition of 2,
which proves our assertion. ’ T

From (4.7), (4.8) and the continuity of the function { («) and the transformation
group ¢;(—oo<t< o), we see that the a-limit set of each orbit of § through a pointin
II, is contained in IT,. Since £, is compact and metrizable, such a-limit sets are non-
empty. But now II,.=0. Therefore II «=0 also. It follows then from the property (1)of
IT that I =1II.. This proves Lemma 4.8,

Consider now any X € 2" (M?). As the same for S, X induces also one-parameter
transformation groups on M3 and on its tangent bundle ¥, which we shall denote
respectively by ¢z M3—>M? and Ox;=dpx;: €—>F.

Let %% be the set of all X € 2" (M?) which has the same singularities of §. As the
same for S, each X €% has its conjugate bundle, denoted by D%, with base space M
and with fiber 9Dx, over X € M, and induces naturally a one-parameter transformation
group Yz;: Dx—>Yx (—oo<i<oo). Write

' I'={(X, s, w) EZoX (—o0, ) XEC|wE Dx}
considered as a subspace of 2 X (—d0, 00) X € (which is metrizable), and let
H: I'>% '
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Yo defined by H(X, s, w) =xs(w). Then F is continuous at every (S, ¢, w) €I ™.
 If X €Z*(M?®) and o is a point on a periodic orbit of X, then as the same for
8, D, is decomposable into .
; ng%DX— (@) @DX;({U)
where . R ,

Dy () = {4 € Dx| 1}_)15 | rxe (u)," =0}, DX“lj (9;) =}z{u»€ Dxs| 1}}21” Yz (u) | =0},

, Lemma 4.4. Under the same '}hry'/potheses.of T heorem 4.1,let T bea non-empty.closed
subset of Q1, invariant under ¢;(—oo<t<o0), and lot ’77>0 be the same as in Lemma
4.2. Then, there is v, €D_(b,) N D with b€ II such that |

Tog [ (va) | =J: C(ps(by))ds=—1tn for all £=0, (4.10)
P%oof. Let a, €I be a nonwandering point of the transformation group
¢¢|H(900<t'<00); Then, for each j=1, 2, 3, -, there is X;EV N %o where V €EZ
is the same as considered in Lemma 4.2 with S€V, a;ﬁd'there is an |
| areTy= {u(@) |4 € by, tYCI (05 <tj<o0)
together with a mapping f; from L, into a periodic orhit Q; of X; such that

1 X—-8la<1/d, @
dist(a, f;(@))<1/j for all o€Iy fi(L)=Q, (4.12)
dist(a, do(a)) <1/j, dist(a, dul@)<1/f, &18)

where dist (,) denotes a preassigned topological metric on M3 (see [7]). Write simply
o;=Fipi,(a)) €Q;, m=dim Dy~ (e).

By choosing subsequences if necessary, we may assume that one of the following three
cases will oceur, '

(1) n;=1 for all §,

(2) n;=2 for all 3,

(8) m;j=0 for all j, , -

Let T'; be the period of Q;. Suppose 1j1£3 T, co. Then, by (4.11)—(4.13) a subse-

quence of {Q;}will converge to a periodic orbit @ of 8, Il ©Q4, and hence Q cannot be
contractible by the definition of O, i. e., dim D_ (w)=1for z€ Q. Thus, by corollary
9.2 and Lemma 4.2 we can find v, €D_(b,) N D with b, EQ satisfying (4.10). In the -
following, we assume lim T'j=oo. Then, T,=T for sufficiently large j where T>0is the

joroo
same ag considered in Lemma 4.2, so that applying Theorem 2.1 to X; we have
log|zr,(0) | =T n for sufficiently large j and
vE Dy, (@), |vl=1, 2€Q. (4.14)
In case (1), from (4.14) and Yx,(Dx,~ (@) =Dx,- (#) we can choose a point
b,;€Q; for sufficiently large j such that

# See Liao Shan-Tao, Acta Scientiarum Naturalium Universitatis Pekinensis, 12 (1966), 1—43.
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log|hxs(v) | = =7t for v,E€ Dy, (5)), ol =1, and all ¢=o0,
Also, we can apply Theorem 2.1 0 X ; and obtain

—:tl— (og |, (up) | ~log |z, (v)) |) =27 and

5 10812, 03) | ~Tog s () ) 227 for som

u€Dxyr (b)), v,€Dx, (b)), || =1=]o;, and all =7, s<-T,

In view of (4.11), (4.12) and the continuity property of H mentioned above, by
chobsing'subsequeneés if necessary, we may assume that the sequence {5,} converges to
a point b, € IT and {u;} and {o,} oonverge respectively to '

, ; U and v,€E2,,ND,
so that we haye (4.10) and also (4.2) (for u=u,, v=uv,). Here, we notice that from
- Lemma, 4. 2, v,must €D_(b,) N D. To sum up, we get v, which satisfies the requirement
in the conclusion of Lemma 4;4. ; _ _

- We say that the case (2) oaﬁnnot ocour. In fact, suppose on the contrary that n;=0
for all j. Then, ag in the proof of vTheo_xjez:ﬁ 3.1 we can see also now that

J'Q; Er(@)dvy= “%
where », is the individual méasui*eborfeépohaing to 6;€Q, with respect to the trans-
formation group ¢y, (—oco<t< o), and | '
| E(o) = 55 Wes@l, acat

Also, in view of (4.11) and (4.12) and the continuity property of H mentioned above,
by choosing subsequences if necessary, we may assume that, {Q;} converges to a closed
subset O of I, and in the space of all normalized measures on M 3, {v;} oonverges to a
normalized measure » on M3 with v (0) =1. It ig then eagy 0 see that both C and » are
invariant under ¢,(— oo <¢< o), and

J 2@ as=1im J, ér@an=-1
where £7(a) is the same as in § 3. Thus, ag in the proof of Theorem 3.1 ; we shall get

finally in O(<Q,)a contractible periodic orbit of S. But this contradicts to the definition
of Q. | |

The case (8) cannot oceur also, because this case is reduced to the case (2) if we
consider —8 and — X instead of §'and X. The proof of Lemma 4.4 is now complete.

§ 5. The “sifting” lemma and the proof of Theorem 4.1.

We shall now establish the following important “"sifti"ng’ > lemma, which we
formulate in a more situation for some future purpose.
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Lemma 5.1. Let F be acompact metric space, on which there is given a one-
parameter transformation group 0 (‘—— co<t<o0). Suppose that on F there is a continuous
fimc‘tféon f (@) and there is a number n>0 satisfying the following (1) —(2):

T here %s a f_po'mt @y € F such that

| re. (0))d5=0 forr al 20, 6.1
Q) if aEF is any rpormt such that o
| j F@u(@)dsz = for all 120, (5.2)

then the w-limit set of the orbit {0s(a) |s€ (—00, o)} conmms @ point b such that
| Jt f (93(5))ds-_<;_ %t.n for i =0, | | (5.3)

Then for each paw (1, k) of positive integers, we can pick wp 142 numbers
C0<(0, B) <t (1, k) <+ <t B) <53, k)
such that the following (B.4)—(5.7) holds:

t,(6, B) —t,(6—1, H)=k for =1,2, T . (5.4)
t . —t
JO f<9t‘<i~1’k)+s<q*>>dsé_£z and J'd f(etz(f,k)+s(“*))d3.—<=—t3n—'- |
for 0=t=t,(i, k)—t;(a}—l B, i=1,2, -, -1 . (5.5)
[0 #Ouasmmn(@)ds<—fL for 0=t<E(, B—t(=1,B), but
T2l k)~ (11, k)
.J'o ' f (Bra-,1+s(@) ) ds= = 0, B — tl(l L ZG)) (5.6)
ﬁ F Bugorions (@) ds= _3“7 for Oététl(z, k)—tl(l——l, k), but
k)~ (-1, k)
L fBua-1104s(as) ) ds= — (4, k) — t;(l L k)) (5.7)

Proof (by induction on 7). (5.1) implies (5.2) . Thus, the w-limit set of
{0s(a,) |s€ (— oo, o)} contains a point b= by satisfying (5.3). Then, by the continuity
of f (w)and the transformation group 6 — co<t < oo),we can take a point ¢o= qStl(o, INCAY
t1 (O k) >0, nearby bo such that

[l @ enas<—L for ozi<k,

But from (5.1),
lim inf J F(8,(e0) )ds=

P
So there are tl(l B >t.(1, lo)>t1(0 k) +k such that (5 6) and (5.7) holds. This
gives the required numbers #,(¢, &), 4,1, k) for I=1 and each &.

In general, suppose that for a given ! and each &, the numbers t,(4, k), t:(, k)
have been constracted o meet all the requirements (5.4)—(5.7). Then, for each k we
shall show the existence of a sufficiently large §>% such that between i @, 3) and
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(1, ju) we can insert certain t..1(l, §) <t (I+1, k) <Fp1(I+1, k) satisfying (5.6)
and (6.7) with I replaced by I-+1, and satisfying also
tua(+1, B) —ta, B) 2E, (5.8)

L NI (w*)dsé—%l- for 0=¢=t..{, k) —t0—1, 7). (5.9)

As soon as the existence of such j, is proved, it is quite easy} to see that the set of
numbers |
tur (8, k) =1,(8, 5) for 4=0,1, -, I—1,
tea(l, B), tua(@+1, k), Tua(I+1, k)
satisfies the requirements in the conclusion of the lemma for the pair (I+1, %).
To prove the existence of such 4, let 1,(t, §) € (4@, §), 7.(, 7)) be such that

T3 H=t:0~1, 5) .
.[o FOna-1,4e (a.))ds=— 1@, 3> é‘a 1, J ) (5.10)
j: f@ue))ds> 1 for 0<izs;  BAD

where a;=0;,4,;,(a,), s,——;fl(l ) —#(, ). The existence of such #,(l, §) follows from
(b.6), (5.7) and the continuity of f(fiq-1,5+s (a*)) with respect to s. Since from
(5.6), (5.10) and (5.4),

J £ (65 (a,))ds— 6, 5 — tl(l 1,9 n+ 4, 9= tla 1, .7)

_ -3s,+t,(z g)——tz(l 1, 1) >( _,-),,7
19 12 4)7"

and the continuity of f(#) and the compactness of F implies that f () is bounded on
F, we have
lim 8=

. jroo
Also, from the compactness of the metric space F', by choosing subsequences if necessary,
we may assume without loss of generality that {a;} converges to a point o € F. It follows
then from (5.11) and the continuity of the function f(z) and the transformation
group 6;(—oco<t<oo) that (5.2) holds, and hence by (2), the w-limit set of
{6s(a) |s€ (—oo, )} containg a point b satisfying (5.3). Then, by some similar
arguments, a sufficiently large 5, >% and 0<#,<t;-+k<s;, can be chosen such that the
arc {¢:(a;,) |0=t=s,,} containg @ point ¢=¢;,(a;,) satisfying

ﬂf(ﬁs(c»dsé—-tg— for 0=t=<h, (5.12)

We see eagily that
1@, o) >t tk+43, §) >t+5A, ) >0, G =6, Jk)tha 1, .7:0) +5.
Clearly, we can take always a number
b (@, B) €A, 51), tk+l‘7+tl(l )7
such that
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t - . : ‘ . R \ .
' JO f(Ht,ﬂ(z,kHs(a*))ds‘_:é_‘ ;77 for Oététk+k+tl<l, f)k) -—.tH'i,(l’ k), (5.13)

e g -
JO f(gt;+1(l,k)+s (“*))dsé'%]‘ fOI‘ O_S_.t.—<.=tl+1(z7 k) —tl(ly jk)- (5'14’)
But then from (5.12), certainly we have |
: tur(, B =HQA, §iu) - (5.15)
From (5.6), '

| J - h.‘)_h“a'k)f (O rr4s (@.))ds >- G 916) ball k> )

. 0 .
This together with (5.13), (5.15) and the’contmulty of f ((9tl+1(,,k)+s(a*)) with respect
to s gives two numbers ‘ |
. tl+1(z+1 k) <t (I+1, k) €<t1+1(l 70)+7f7 tz(z G6) Vs

satlsfymg (6.6) and (5.7) with 1 replaced by 1+1, and satisfying also (5.8). By (5.7)
and (5.14) we see that (5.9) is also sat1sﬁed. Now, the induction is complete, and
Lemma 5.1 is proved. o |

Corollary 5.2. Under the same hypotheses of Lemma 5. 1, foq‘ arbitrarily given
numbers 8>0 and d>0 we have a point wE F and @ number T=d such that '

(1) the distance of w and Or(w)is<9, | o

@ ﬁf(es(w»dss L and [ FGen@)ds< G for 05T

4
in particular, J f (9 ('w))ds> — Tg ,

Proof For the vcompact metric space F, we have an integer =2 such that among
any ! points of F, there are at least two of them are in a distance < 8. Take an integer
k=>d. We construct then the numbers #,1(4, &) as in Lemma 5.1. Using (5.5) we see
that for certain 0=4,<%;<l, the points

=046 (@), Or(w) with T'= (4—1%0)
satisfy the requirements of this corollary.

- Lemma 5.8. Let F and 0;(—oco<t<e0) be the same as in Lemma 5.1. Suppose
that Qt(—oo<t<00) has no fiwed poinits. T hen for any given numbers T>0 and >0,
there corfr@ﬁponds a number & >0 possessing the following property, namely. Lf T<T<oo
and g(t) is a continuous stricily increasing function on 0, T>, ¢(0) =0, and if @ and b
are such that ¢,(@) and ¢, (b) are in a distance <e for all t€0, T'), then

A—m)T<g(T)<(1+m)T.

Proof Clearly, we may assume that T is small so that 9,(——00<t<<>0) has no
periodic orbits of .period< 38T, Since <0, T can be divided into subintervals of length
between T and 2T, the conclusion of the lemma holds if it holds in case T<=T=2T.In
this case {¢:(a) |t E<(—3, T+8>} is always a simple arc for small constant d>0. It is
~ then easy to use usual arguments in dynamical systems to complete the proof.

Proof of Theorem 4.1. Under the hypotheses of Theorem 4.1, S has only a finite
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number of singularities, each being hyperbolic, and has only a finite number of
contratible periodic orbits by Theorem 3.1. So it remains to show that § has hyperbolic
structure over Q;. We shall show that B=0Q,N#=0. Then by Lemma 4.8, there are
numbers n; >0 and d; >0 such that

Tog |y (0) | = [, G @))ds = || £(u(0))ds
=—tp for vEPND_(v), v€Q; and i=d;,
Applying thig result to —8 we shall gef a similar inequality for u€ 2 N D, (), s€Q,,
i.e., there are numbers 1,>0 and d>>0 such that
log | (w) |=tns for w€DND.(w) and t=d,,

This gives the hyperbolic structure of § over Q; (see [4]), and the Theorem is proved.
" Therefore it remains to show & =0. To prove this, let us fix topological metrics p,
and p resPedtively on M2 and on its tangent bundle %, and for any K <% and any
number A>0 denote by U (K, A) the A-nieghbourhood of K in €. Under the hypotheses
of Theorem 4.1, by the continuity of the funection {(z) and the transformation group
¢:(—oo<t<oo) and by the compactness of Q;, there are ¢>0 and v>>0 such that if
po(, y) <€ for @, yE€ Qs and |6 —1'| <=t for T=¢=2T, then

[ @ is= [ et <22, sup 12y <L

with 9, T given as in Lemma 4.2. We may assume 7'=1 and choose ¢ 50 small that the
conclusion of Lemma 5.3 holds with respect to F=Q,, f;=¢;, T=T, z. Also, using
Theorem 3.1 and Lemma 4.2 we can. choose € so small that the e-neighbourhood of Q,

in M? contains no points of & and singularities of 8. We shall consider the so-called
(7/4, 2T; 1) quasi-hyperbolic orbit arc in the sense of the paper [6]. Then, by the
main theorem in that paper, there are numbers 6,>0 and 7',=27 such that: If § has
an orbit arc |
Q={¢:(a) |t1€40, TH}Qy, T, =T <oo, (5.16)
which is (7/4, 2T; 1) quasi-hyperbolic with respect to the decomposition
Dy=D_(a)®DD.(a)

Yr(D-(2)) N2 U (D-(a) N D, 8,), (5.17)
then there is a periodic orbit P of § through a point b together with a continuous
strictly increasing function 4(?). on <0, T, £(0) =0, such that

bury (0) =b, po(p:(@), Pnry(0))<e for €0, T.
Also, by Lemma 4.2 and the compactness of £y, there is >0 such that if py(a, y) <8
for  and yEQy, then D_(y) NP U (D-(x) N D, 8,).-
Now, suppose on the contrary that E+0. We shall show that a quasi-hyperbolic
are Q as above exists actually. In fact, let a, € E. Then

such that
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J (ps(a,))ds=0 for all ¢=0.
This together with Lemma 4.4 gives that i, ¢;(—oco<t<<o0) and (:(m) are the sort of

spaces, transformation groups and the functions considered in Lemma 5.1 with n=n.
Thus, by Corollary 5.2, we have @ point ¢€; and ¢ number T=T, such that
po(a, ¢r(@))<d and hence (5.17) holds, and that

~

@)l = [ LG NB=TFL for 0€D-@NT, 05T, (5.1

log“t,bT-t('u)H<—-72- for @eD (¢T(a))ﬂ.9 o=t=T,  (5.19)

logl[¢w<v>ll=J Z(qss(a))ds; _g’” fomep_(am@. (5.26)

From (5. 19) and (4.2), we have 10g||¢T..t(u) |=——+ 52577 for u€D, (qST(a)) ng and

T <t<T or equivalently,

log [t

Also from (4.2) and T=1,

log [t (w) | —log s (v) | =27 for w€D.(¢s(@))ND, )

vED_(¢p(a))ND and 0=<s<s+T=<s+t=s+2T<T. (6.22)
Combining (5.18), (5.21) and (5.22) we get thus an arc @ as in (5.16) which is
(n/4, 27 1) quasi-hyperbolic with respect to Z,=D-(a) DD, (a) such thab (5.17)
holds, and it is easy to see that {0, T» has a division

o O=t<y< <ty =T

with T<t,—t,_1<2T, fulfilling the requirements in the definition of quasi-
hyperbolicity™. Finally, there is a periodic orbit P of S together with a function A (¢)
on {0, T as described in the above paragraph. '

57577

for w€ D, (c,bT._t(u)) T<t=T, (5.21)

Due to the construction of the e-neighbourhood of @, in M? and the property of
the funection A (%), the periodie orbit P cannot be a contractible one, and thus ;.
Let T’y be the period of P. By the property of 2(¢), h(T)=pT, for a certain integer

p=1. Also, by the choice of € and the property of 2(¢) we have

Wy [ t@@is— [ tgu@nas|

(—,;3—1,5- DI t@nas [+5] [ et caeas)
o MO ST t@@as—[ tao)a|

k-1

A

ll/\

<vsup | {(w) HT ’g(tk—tk_i)'n/6<%/3.

This together with (5.20) gives

: 1 (T 2;} 3
(T Jo C(¢s<b>)d8>—__§_>_n)
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T T
vED-(a) ND.
But this contradics to Corollary 2.2. The proof of Theorem 4.1 is now complete.

or equivalently —1%—— log | ¥yr, (0) | > —7, and hence 1 log |, (v) | > —7 for
0 ] ’

§ 6. Proofs of Theorems I and II.

After establishing Theorem 4.1, it is now easy to prove the following theorems.

Theorem 6.1. Suppose that SE€ 2 (M®)has no singularities. Then, a necessary and
sufficient condition for S to be Q-stable is that S satisfies Axiom A and the mo cycle
condiition.

Proof Here, the sufficient part is known before by Pugh-Shub [18]. It remains
10 prove the necessity. Suppose that S is Q-stable. Then, § € Z*(M?3)™), and using the
closing lemma ([7], [12]), we see easily that & is dense in Q. But now, S has no
singularities. So we can apply Theorem 4.1 to conclude that § has hyperbolic structure
over Q. It follows that S satisfies Axiom A. So the proof of the theorem is complete, if
the following lemma is proved.

Lemma 6.2. Suppose that SE€ 2" (M?) has no singularities and satisfies Awiom
A. Then 8 satisfies the no cycle condition.

Proof Suppose on the contrary that there is a cycle By, By, «*, Bu, Bps1(m=1)
of basic sets § with B;= B; for 0=¢<j=m and Bo= By, such that, for each 0=i=m
there is a point b; in M®—Q, belonging to the intersection of the unstables manifold
W of an orbit in B; and the stable manifold W? of an orbit in B;.q (see [18] for
reference) . We can choose vectors u; and v;E &, tangent to Wi and W3 respectively,
Jus| =1={ . Then

tl_’lfg s (us) | =0, %EE | (o) | =0, (6.1)

‘We see easily that b;# b; for 0=i<j=m. For convenience write also b,,.1=0,. For
each 0=<¢=<m-+1, let Q; and R; be the positive half orbit {¢;:(8;) |t€ <0, o)} and the
negative half orbit {¢;(d;) |tE (—o0, 0>} respectively, and lot '

Fi=Q,UBi1URyyy for 0=Zism, F= | ] F,,

0sism
Then, since § satisfies Axiom A and a basic set of § is topologically transitive, therefore
F is a connected closed subset of M2, invariant under ¢;(—oco<<t<co), and contains
none of the contractible periodic orbits of § (which are finite in number by Theorem
8.1), and by arguments in stable manifold theory we can find always in an arbi’cra,rﬂy
given neighbourhood of F;, orbit arcs 4; of § with two end points of 4; arbitrarily near
to b; and b;44 for each 4=0, 1, «--, m; and in particular, in case that § has hyperbolic
structure over F, orbit ares A= {¢;(a) |t €0, T>}, T=1, can.be found with two end
points a and ¢r(a) arbitrarily near to b, (for the technique used to reach these



NO. 1 ON THE STABILITY CONJECTURE 27

conclusions, see’ e.g. . [10], [18]). -But this particular case cannot occur,v, because:
bo€ M3—Q. In the former general case, we can perturb § into a system Xy€ X (M8

for each mteger k>0 such that |S — Xy 1<-— and that Xy has a perlodlc orbit Py in the
,%—nelghbourhood of F and all the points bo, bl, «+, bn are in the %-nelghbourhood of

Py, (with respect to a preassigned topological metric on M 3) .

But, if there are infinitely many terms Py in the sequence {Py}, which is a
contractible periodic orbit of X3, then using Theorem 2.1, by the same method (na,mely,
taking certain limit processes) as in the proof of Lemma 4.4 we shall see that F contains
a contractible periodic orbit of S. Butb this is impossible, as shown in the above paragraph.
Therefore, there must be infinitely many terms Py which has exactly one characteristic
exponent of absolute value <1, and hence agam by the same method as in the proof

f Lemma 4.4 we see that there are u; and B,€ D, |w] =1=|ui],. such that

—<1og I ) | —Tog e B ||.> =27 aid

——(10g|l¢f—t(u) ll-logﬂtlf—t(m) 1|>>277 for th' - (6.2)

where 77/0 and T>O are the same as in (4 2)
Combmmg (6.1) and (6. 2) will lead to

fim (5| =0,  Tim ()| =0, =0, L, 1, m, 6. 3)
In faot -sinee d1m M?*=3 implies. d1m Dy, = 2. let us write fvz—m( i+ Si0;. If T; —-0 then
v;= v, and the first equality in (6.3) holds clearly If frﬁ&O then from (6.1) an(i
(6.2) the first equality still hold, because

G|
limp At l 0 and
b ey |

tiom log Hi (23t —toglnd +im tog | e+ phr G B | ~ogl
Slmllarly, we can verify the second equa,hty in (6. 3) Then from (6. 3) and the
‘hyperbolic structure of S over 2, we see easily that S has hyperbollo structure over ¥
by [4]. But this cannot oceur, as we have shown above already. This proves Lemma
| Theorem 6.3. Sup’ipbsé that S € X (M?) has no singularities. Then, a necessary anie
ssufficient condition for S to be structurally stable is that S satisfies Aziom A and the strong
tmnswrsahty condution.

Prroof The sufficiency par’o is known before by Robmson [16]. It remains to prove
the necessity. Suppose that S is structurally stable. Then S is also Q-stable, and hence
by Theorem 6.1, S satisfies Axiom 4. )

To show that S satisfies the strong transversality condition, suppose on the cortrary
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that there is'a point & € M3~ Q which lies on a stable ma;mfold W of an orbit P in-a
basic set Bg of S and lies algo on'an unstable manifold W* of an orbit @ in a basic set
By of. S; but. W“ and W* do not intersect transversally at b. ‘We must have By # By since
.b eM*—Q [13, P- 154]. Then, by arbltramly small 01 perturbatlon of §, we may assume
‘that P and Q are perlodlo orbits of §. Of course, , P and Q are not contractible and
hence dim W*=dimW"=2. Again by arbitrarily small C* perturbation of S around the
poinb'b we may assume further dim (W*NW*)=2. But then, using the theorem of
Kupka-Small [19,'p. 804], this will' lead to' a'contradiction to the structural stability
¢ of.§: Theorem 6.8 is'thus proved:: - e T "

‘We now prove the main results(ses § 1)"of our paper. -

Proof of Theorem 1.~ Apply the necessity conditions in Theorems 6.1 and 6.3 to
“the suspension’ of f € Diff*(M?)" (See Appendlx below) -The conclusions of Theorem- T
follow 1mmed1ate1y S e : ‘ O

Proof of Theorem 11, The condmon 1s necessary, beeause a Q-stable f € Diff*(M?)
and hence any conjugacy of f hag at most a countable number of periodic points. To
show that the condition is Suﬁiolent we note first that the periodie points of f € Diff* (M%)
are dense in Q(f) [8]. Consider the susPended vector ﬁeld Sf for f over the susPended
manifold M2. Then the periodic orbits of Sf are dense m the nonwandermg Set of S},
and Sfe (M3 3) has no Smgularlmes If folioWs then from Theorem 4.1 and Lemma
6.2 that S satisfies Axiom A and the no oycle condition. Hence applymg results in
‘1137 to thé vector field: 8y, and usmg propertles of Suspensmn, we conclude ‘that fis
‘Q-stable. This proves ’I‘heorem I, ‘ o .

' Appehdix o

Let.us say few words about the: d1ﬁ’erentlab1e structure of the. susPended manifold
(denoted by) M ntd of a glven f € Diff? (M ”) because there is somethmg which need be
“taken into consideration, and which’ Seems not exphclt in the literature ab present at
Teast.” As usual, M+ is the quot1ent manifeld ((—oe, oo) x M ")/~ where ~ is the
‘eqivalence relation (%, a;) ~(t+k, f*(@)) for integers &, and for coordmate neighbour-

1 1
72779

M2 in-a-natural fagshion. The suspensmn‘Sf of f is-the vector field on  M7** induced

/hoods U on M, ( ) U and (O 1. ><U after takmg quotlent glve an atlas on

‘from (:ZZ X > on (—oo oo) ><M” by Jﬁhe quot1ent mappmg We see thus that the

beeause f is 01

. However, this C* structure on Mj+? containg a 0= structure, with respect to which
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8, is a O vector field, and M" is a C= submanifold of M}*' (through identification of &
and (0, 2)). This can be shown as follows Smee Mm is compact there is a 6>0 such
that at any € M", the exponen’mal mappmg expx isa dlffeomorphlsm from
I~ {BE€a(@) |61 <3}

into M", where denotes the pro;eotlon of the tangent bundle of M". For any
yEexp, I, write B,& I, such that 4/=©xXPy By. - Lt n(t) be a O~ real function on
(—oo, oo) with values in <0, 1> and with n(¢) =0 for $<0, n(¢) =1 for ¢>1, and let
FoEDiff*(M") be such that F3'f (&) Cexp,I’, for all #E€M". Then, when f5'f is
suffieiently near to the identity in Diff*(M") (under C* topology), a. 0" diffeomorphism
from <0, 1> x M" onto itself can be-defined by ,

A(t, ©) = (t, exp,(n(t) Bf.,lf(z))) 4 _
and will induce a A.,O'l, diffeomorphism  from Mi+' onto MU', where the latter is &
differentiable manifold of class O because f; is O~. Then

d v d dn(t)-
(g 0), = (G g )
Where the rlght is a C* vector field on <O 1> M. It follows that 4 ‘earries the o=

structure on M3 into a O structure on M3+ satisfying all of our requirements. Our

eonstruetion here is aetually a generalization of that given in [17, p. 399] which deals
with O diffeomorphisms on circles, Clearly, a similar treatment can be done for any,
glven dﬂeomorphlsm f €Diff ’ (M”) W1th ¢>2 '
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WAL, WM R— n B H Y O Riemann 3, Difft (M) & M FJi4 C* MiR#H
TERBIZS I, RR DL OF #h, LB —IE 4N f C DIt (M), W, 78 n=2 W, & f
BEWBEN, WEHEAE A RBAKSN, &7 2 - HEw WEHEAH A RE
LM, RTXEMINLR, ANTSE 8], (191, [14], [41%. XEWESE
n=2 0T, HRRE, Mafi6™ #7E Q(f) = M* X— B &4 T ERSAEEHE
RXEQ) £ FREBGE. |
A EWEAHXENE =2 BRTRETER & QF) =M XK
). RIMWEBLERMT.
| EE1 HFEDIFN(MD), W, FEMBRENLELELEHEAT A BB IW

i FROBEMDELFGREBEAE A REKRMLME.

WA TR, LB AT A [14], (160, [19]. X B, RMNMBH T
FEDIff* (M?) ZifaE 5 Q-Fa i ISR,

B2 fEDIf (M) & Q-Fae, B EMNYE € F(UY). L

XE (M) £REBATRERN g€ Diff (M) R E4, B, ¢ 7E Difft (M)
HE—4 G 18, §— hEG WAL RSEENHN RENE, 5—hCEBELRE
WHEARPR) o WIE—LF AN, A5 F HMT fEDIff (MY, =8 2 KL ETR
ML, WA W, CERS, 883 W1 BB — A dmM <2 BR FTHRERY S
i, CRR D, 318 IR Bl — R MM MR S HE B R WS RMEETR. :
L OAXKRBANEESREFRHGERLT)ITRT M L O Naky, REEHTE
WNET WA SRR REE 1 &2 fIE,



