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1. Introduction

A Y_ang—_Mil_ls field is called parallel if all gauge derivatives of its field strength are"
zero. Parallel gauge fields are generalizatiorls of the symmetric spaces in differential
geometry and are special solutions of the Yang-Mills equations. In the 2-dimensional
case all solutions of the Yang—Mllls equations are parallel. They can be determmedj
cornpletely In the preSent paper we consider the 4-dimensional case. The main results
-are the following two theorems.

Theorem 1 4 4-dimensional Riemannian space admfbtt@ng nontrivial parallel |
Yang-Mills fields. maust be Zocally Kahlerian or half—symmetmc .

Here a half—symmetrm manifold is defined as a Riémannian mamfold satisfying .

, Rijam=0(0r Blym=0), (1)
where . R, are the antl-Self dual and self-dual parts of the curvature. tensor
respectively™, and the semicolon is the symbol for covariant derivatives.

 Theorem 2 4 hdf—symmetr@a space which is not symmetric must be a Kéhler
E'mstem space or @ conformally half— _ﬂat Einstein space. |

Here the conformal half- ﬁatness means that the anti- self dual or self-dual part of
the Weyl tensor vamshes 2 '

2. The abelian case

Let M be a 4-dimensional Riemannian manifold and F a Yang-Mills field over M.
We use moving orthonormal frames o express all geometncal and physical quantities.
Let G be the gauge group and g its Lie algebra For a parallel Yang—MlllS field we have
' Fa= . @)
where fi; is the field strength and ““|” the Symbol for gauge derivatives.
If & is Abelian, then (2) is reduced to
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Sux=0, 3)
Consequently, M admits a parallel skew symmetric tensor field. Let =A%, =M% be the
eigenvalues of f;;, It is obvious that if |As] # |As|, then the local holonomy™ group
of M keeps two 2-dimensional tangent subspaces unchanged and that if [As| = |A| %
0, then there exists a parallel tensor field

"0 0 1 0
7 0 0 0 1
A o 0 0|

0o -1 0 0
provided the frames are suitably chosen. In both cases M admits Kihlerian structure™®,
at least locally. . '

Remark If is easily seen that in the 2—-dlmenS10na,1 case the Yang-Mills equations
are equlvalant to (2) and can be solved completely The field strength takes value in an
Abelian subalgebra and equals to the area form of the Riemannian metric up to a
constant factor such that. the qua.nﬁization condition be satisfled, or equivalently, the
first Chern number should be an integer, if the manifold is compact and oriented.

3. The proof of theorem 1

For the general cases we recall the generalized Rlcc1 1dent1ty[5’ for a g-valued skew
symmetric tensor ¢;; ' - ' '

buter— Pusiie = Rrsruni-+ Brguben -+ [y bul, | 4)
Replacing ¢y by fy and using (2) we obtain ,
B fri+ Bagafn+ [ f i#] =0, - ®
The differentiation of (5) gives o »
SanBhirum— im;ﬁf % =0, - (6)

Let P be an arbitrary point and ¥ the subalgebra of so, generated by the set of 4
% 4 skew symmetric matrices; {({fy, @) |a€g}. Here {fy;, a) is the invariant inner
product of fi;(P) and a ,
Suppose that P is a generic point in the sense that X is of maximal dimension,
If X is so; and keeps o 8-dimensional pléne unchanged, from (6) we see that
' Rujp;m=0, (N
Consequently, the space is a symme’oﬁo space. If 2 has two invariant 2-dimensional
planés, then (fy;) takes value in an Abelian subalgebra of g. From (5) we have
SonBongo— Runfrs=0. (8)
By differentiation it is séen that all the covariant derlvatlves of the ourvature fensor
satisfy the equations which are analogous to (8), So the holonomy group has two
invariant 2-planes and the case has been considered in 2.If 3 is so, or a 4-dimensional
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subalgebra, then M, is symmeétrie, If 2 is an irreducible representation of sus in R*,
then fi; must be self-dual or anti-self—dual. Without loss of generality we suppose
that fi; is anti-self-dual. From (6) it is easy to obtain (1), So the space is half-sy-
mmetric. Notmg that a symmetric space is aLo a. half-symmetric space, We have

proved theorem 1,

4, The proof of theorem 2

Now let M be- a half-symmetric space with Rjum=0, Differentiating thesa
equations and using the Ricei identity we obtain ' '

RijiaRuiga+ R Rujpa+ R Ryppa+ B uththq =0, : 4 ' )
Dlﬁerentla.tmg again and using (1) we see that ' '-'
' Ry, jkthipq o -Rihkthqu ot Rwthhkp'q it R;_jthh-l_lpq r= 0. : (10)

Since a 4% 4 self-dual skew symmetric matrix commutes with any 4 x 4 anti-self-dual
Skew symmetric matrix, from (10) it follows that
R Ritepg; o+ RigieRitpg:r =0, , 11)
where. R is the self-dual part of Rp, with respect to indices &, I. If Rj;},+0 and
Riipgir 0, then the two sets of matrices (Ri#) and (Rig; r) with %, 1 as row and
column indices commute with each other. Consequently - ’ - ‘
= AiiBu, .
Rijpq;r = Bi; B30, | (12)

where (Bm) is self-dual. Now the Bianchi 1dent11ay is reduced to -
B0+ Bq,O‘,J + B,pcrq =0, - 13)
or equivalently - o o '- '
Buoa=0, - S S 13)

since (B,,,) is Self—dual It is easﬂy seen that det (.Bp(]) #0 if (qu) #0, From (13) it
follows that oq=0, Hence R,,k, =0, WhlGh is contradictory- to the hypothesis, so we
obtain the conclusion that if M is not a Symmetmc space, then we. must have Rip=0,
and hence M mus$ be an Einsfein space.

Let M be non-symmetric. The matrix (Rmz), ‘with (f& y) ane (k, 1) as row and
column indices respectively, repreSents a symmetric linear transformation L on the
space of anti-self-dual skew symmetric 2-tensors. If the eigenvalues are not equal,
then there should be a parallel anti-self-dual tensor field. Consequently, the space is
Kihlerian. Conversely, for a Kihler Einstein space there is an orthonormal frame at
each point, such that the anti-self-dual part of the connection is proportional to the
_coefficients of the fundamental 9—form. Hence , i

Gism = Bijim = Aijduom, B (14)
where (A,,) is anh—Self dual I‘rom Bianchi identity we obtain that the space is half-
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symmetric.

If the eigenvalues of L are equal, then (Rjs)is diagonal, i. e., the anti-self-dual
part of the Weyl tensor Wi, =0, Then the space is a conformally self-dual Einstein
space. Conversely, it is known that the curvature of a conformally half-flat Einstein
space satisfies . |

*{Rsﬂcz + % (gmgn— Judi) }— =0, (16)

where the minus sign is the symbol for ‘the anti-self-dual part with respect fo the
indices ¢, 7, From (15) it is easily seen that the space is half-symmetric. Theorem 2

s proved. |

Remark The Kihler Einstein spaces with R 0 are very interesting in physics™.
In the compact case the existence of such a metries is a consequence of the famous
theorem of Yau'™, Besides the Kihler Einstein space with B=0, the known conformally
half-flat Eihstein spaces are Kihler spaces with constant holomorphio section curvature,
but they are symmetric spaces. It is desirable to find other conformally half-flat
Einstein spaces. It was noticed that they should not be Kéhlerian.
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Appendix

In[8]some results on 2-dimensional Yang-Mills equations, from the point of view
of Morse theory, were announced. We note that the global solutions of ‘the 2-
dimensional Yang—Mllls equations can be obtained directly. '

‘a. First we construct local solutions. Near an arbitrary point ¢ of M a there exists
a local coordinate system (uy, u,) such that the metrie is in the form

ds? =du1+a(u1, ugydui (|u,| <1, A=1, 2), (A
There exists a special gauge such that | » »
61 (u1 s ’Mg) 0 bg (O ’NQ) O - ) (B)

The Ya,nO'—Mllls equations become

Fra— L fa %10
27 % g ’

Sf1a,0— -1—f12 &4‘ [z, f12] =0, ~ (O)

Here the comma is the notation for partial derivatives and So=—Ff12=0bg1, Using B)
we can solve (C) explicitly ‘
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b ==O bz—GU(M), f12—0‘\/ ’ V o (D)
where ¢ is an arbitrary element of the Lie algebra g and B
o o (uy, u2)=—'{ \/d('v Ug) AT, - | o ®
In a general ooordmate system the local solution is expressad as .
b, =ch,, o , ' ¢)

f=—— fwdm’”/\dm“ c\/gdwl/\dm =¢-area element.

Y. From the above result we see that there ex1sts a global solutlon of the Yang—
Mills equations on M, which may be represented as follows. M, is covered by a system
of neighborhoods M,=UU,, in U. we have '

bx—ch,v, a~c\/gdw1/\da; o : (@)
and for non-empty Ua ﬂ U, there are relations. ' L o |
| ¢= (adlas), o S €2
where {4, are transition functions, - - \
Tet M, be connected. It is easily seen that
 eg= (adZ 8)C, A
where o is a certam ¢s and for each B, {p 18- a ﬁxed element of G By the ga,uge
transforma’mon in Uy via g we obtain :
bu=ue, .£=C.~/—.f]—dfv1/\d?72. | - @
If M, is compact, then o satisfies the following quantization condition
(1) ¢ generates a compact subgroup of a,
(2) the 1°* Chern number is an integer, i.e.
. : _ ~ exp(Ac) =unit element e,
or equivalently, - | : k
~e=kcy, ];i 1nteger A 3 L (J)
Here A i9 the area of M, and ¢y is an element of g, Satlsfymg .
- exp (2mey) =e, exp(Zav}\cl) #eif (1< [?\[ <1), o - X®)
~In any case there exists a solution Wthh is reducible to an Abelian gauge field-
:Wlth the gauge group {exp (1,‘0)}[9 101 The element ¢ can be determined by the field
strength at one point. From the element ¢ and a homomorphlsm of the group I (M 2)
_to H= {aE G| (ada)e= ¢} more solutions can be constructed
e Remarks -
(1) If M, is the Sphere S? Wlth the metrlc ds d93+sm20d¢>2 the solutlons -are
standard monopole solutlons‘5J
b¥ =0, by =c(cosf—1) 0<b<wm),

4 ®
b3=0, by=c(cosf+1) (0<O<m), |
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and , exp (4mwe) =e,

(2) If G is Uy, for a principal U; bundls over a compact and oriented M, each
solution of the Yang-Mills equation minimizes the Yang-Mills functional. If G is non-
abelian there are critical values of the "Yang—Mills funotibnal.
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IR~ A~ Yang-Mills 3 (W58 15 R 28 MOS0 B0 DR ML 809 % O, IR
MG AT Yang-Mills 3, AT RMA LT H M HE R BHT, B2 Yang-
Mills 7 78 i 442, ,

AXHEBERE TR/ SR, . o

TR AHEPRHTAT Yang-Mills 37 b4k 5 & 25 HAHE Kahlor sk
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