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Introduction

Let M =2 Fu be a vector space over lelSlOIl ring F, and P a subring of F in
Whlch P is Galois, i.e., there exists a group G of automorphmms of T such that I (@) =
P, Let G, be the group of inner automorphisms belonglng t0 G, We denote the inner
automorphism &— rer~ by I, 7 € F. In this case we ‘shall consider the algebra of the
group G, B'= > @r;, where @ is the center of F. Let P'=Cp(E")be the centralizer

I r; €Gy
of E' in F and L(F, M) the complete rmg of F—lmear ‘transformations of veetor space
M over F, T,(F, M) the set of all elements of L(F M) with rank<8,. Then we.
have the following results:

(D [F: P’], =n< oo if and only if T, (P' M) = Z(—Dfr,LT (F, EIR) where r;€E ',
rj, denotes the scalar left mulmpheatmn of ry. .

(II) [P':P]y=t<oco if and only if T,(P; EITE) Z@ST (P, M), where S

denotes an F-semi-linear automorphism of M =2 Fu;, whose asswmbed isomorphism
is l/JjEG | o
(III) if there exist 7', (P, M), T7,(P, M) and T, (F M) satisfying the relations
in (I) and (II), then the Telations will hold for any suitable 7,(P, M), T (P, ED?)
and T, (F, M), in particular for L(P, M), L(P', M) and L(F, M). |
AV) if [F:P]L<oo, then Cp(Op(B))=E', [F:P]y=dim, B and [P": Pl=
' [G/G,4), where dim. H' denotes the dimension of E' over @, [G/G¢] the index of Gy
in &, In partioular, when G is a Galois group, then Cp(P" =0 (P) =H',
(V) if G is another group of automorphisms of F such that I(G)= =1 @ =P,
then [G/Go] = [G/Go], dim. E'=dim. ', where B is the algebra of the group a.
- As a special case, if the subring P i the center @ of F, then we obtam
immediately the following well known theorem from the above (I); L(®@, M) =L(F,
933) ®oFz if and only if [F:P] <00,
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From our above thecrem we can obtain the finite Galois theory of division rings.

1

At first we introduce some terms and symbols. Write L (7, M) for the ring of all
F-linear transformations of left vector space M over division ring and denote the rank
of element w of L(F, M) by p(w). In this case we set T,(F, ) ={wELF, M) |
p(w) <8}, Let Or(P)be the centralizer of P in F, and B a set of ‘automorphisms of
(M, -+), then the set of all automorphisms of (M, +), which can be commutative
with all elements of B, is called the centralizer of B, Now let G be a group of
automorphisms of # and i an element of G, then it is easy to determine an F-semi-
linear automorphism § of M= Fu, by ¢, which is associated with §, In fact, let @
be any unit of L(F, M), then we denote S the correspondence igo fiui_’gi f(uw), it
is clear that § is an F-semi-linear automorphism of M with its associated isomorphism
. If we wish to indicate explicitly, we denote S'= (8, ¢)

Now we consider the following set @ -

O={81S= (S, ¥), pc6} 1)

and choose the S in the following way: if ¢ is an inner automorphism belonging to Q,

i.e., ¢=I r=77% €@, then we set =17z, the left scalar multiplication of element r, if
p=1€G, then set §= (S, 1), the identity of L(Z, M), It is clear that @ is a set of F-
semi-linear automorphisms of M with identity. Put @*= {§-1| 8 €06}, and denote [@]
‘the multiplicative group generatedby @ and 61 ' o .
Definition 1 Let M=3 Fu, G be o group of automorphisms of division ring F,
G be the group of inmer automorphisms belongfény to G, Then we call the multiplicative
group [O] the group of F-semi-linear automorphisms associated with G and as usudl call

B= > Or; the algebra of G, where @ 18 the center of F .

I, ,€Qq

F;'Qm now on “module” and “vector space” will always mean a right module and a
left infinite vector sp;@_ce respectively. _ ‘ .

Now we explain what is the meaning of the rank of a matrix (@) oxm OVET a
division riﬁg F, Woe say that a matrix (@y;)axm 0ver a division ring F has full rank if
and only if (@y)uxm can be transformed into such (@) uxm by usual elementary
operations, where ai; =1, aj;=0, i>j, jv—=i, ey My E=1, e, m, n<m,

. Then we can formulate the following lemma: L

Lemma 1l Let M=3 Fu, be a vector space over division ring F, g1, -, y, be n
F-limearly 'anependent elements of M, Suppose that the following system of linear
‘6quations |

jga,-,-w,:y;, b=1, e, m, ai; EF
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has.solution im 9)? then m=n and (@) axm has full /rcmk we may assume for emmple
(ai,) axn has full fmnk %, g; 1, «+, m, Then the system of meearr equations 2 @i X ; Y,,
=1, , n has sobution in M fo¢ any elements Yy o Y of M and its solution can be
- ewpressed as X E b,;Y,, b= 1, o, m, b,,EF_ |
proof See [1].

Now we can prove the followmg main theorem:

Theorem 1 Let M= Fu;bea vector space over @ division ring F G a group of
automorph@sms of F, Gy the inner automorphisms belonging to G, Let E' be the algebra
of @, [O] the group of F-semi~linear automorphisms associated with G, Let P'=
OF(E), P=I(G)= {fEFIf*" f, for all YEG}, Denote L(F, M), L(P’ M) and
L(P, M) the ring of dall F-, P'- ‘and P—-linear transformations of M respectively,
T,(F, SR) T,(P', M) andT (P M) the rings of dil elements with ranks<$%,, Then |
we have the following results: '

@ [F: P’] r=n<oo if and only if

T,(P', EIR) E@fr,LT (F m), fr,EE’ R (2)
Moreover, if [F:P]y=n<oo cmd T, (P',- M) =§1erT,,(F, ED%) for n elements» T,
ooy fr',’,‘(-)f E', then |
| S, <F m) = 2 @l (F m)

an [P': P]L—t<00“'le amd only ef |
T,(P, M) = 2 ®ST, <P' ™), Si€ (6] | o 3)

Moreomerr, if [P Pl= —¢< o0 cmd T, (P M) = 2‘, ST, (P’ my fm' dements Sh,
., S} of [@], then 2, S T,(P, M) = 2 @SﬁcT (P, M),

(I1I) ’bf the relations (2) and (8) are true, then .
' T,(P, M) =" 2 @Sk’f'gLT (7, Em) | @

o tig=1,-

(IV) ’bf there exists an orrd@nal m(/mberr v such that T, (P m, T, (P' M) and
T,(F; M)satisfy the relations in (Dand (II), then the relations still hold for any
7,(P, W), T,(P', M) and T,(F, M), in pafr't@culwr, for L(P, SIR), L(P', M) and
L(F, M), , :

Proof First we prove (I).It is clear that E.T,(F, EUE) {Z ¢z | ein € B'r, co,ET

(F M) }is a ring, where E,={d, | €E'Y}, and M evldently an irreducible AT, (F
- M)-module. It is easy to see that P'=0Op(F') is the ocentralizer of BT, (F, M), Let

[F:P']i=n<oo, then F = 2 P’ f‘“’, f@cF, Now we Wan,t to prove that
. &=1 '

2
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T,(P, W) = 3@l (F, W), r,E P,
i= _
In fact, M= Fu; =D P'o®, o®=fony, €I,
1 a,i

Let g1, -+, yn be any F-linearly independenfr elements. Since E'.T,(F, M) is a dense
subring of L(P’', M) and o, :--, o are P'-linearly independent elements, there
exists an element o € BT, (F, M) such that vPe=y,, a=1, «++, m, Since o-=§‘irrncr’j,
7€l oy €T, (F, M), we have ‘ '

ya=m§°‘)a=g 15 f @ (we}), a=1, «-, n, (6)

Put @oy=1r;f@, z;=ugc’, then (5) has the form

anm: ./a, o= 1 *°% n- (6>

Slnoe the equation (6) has solution and Y1, ** Y ar® F-linearly independent,
it follows by lemma 1 that (@) axw has full rank. Without loss of generality we vmay
assume that (@) uxa has full rank, 4, j=1, -+, n,

Now we want to show that every element o* in T, (P, M) can be written as o* =

2 73107, where 7, are the same elements as in the above form 0—2 10 and oj€T,

F, M),
Put v{®6*=Y,(3), a=1, -+, n, and consider the following system of equations

Z.; “ani (Ii’) = Ya (”’) ,I By = ’rif(“){
a=1, «, m, $€T, ,
Then by lemma 1 there exist solutions Xy(4), -, X,(4) of (7) for any 4€I", Since

{w}r is an F-base of M and p(O'*) <¥,, there exists an element ¢ €T, (F, M) for any
fixed 4 such that

M

ucr,=X,-(7}), iel.

Pub a=ﬁ:mal,, then it follows that %—2 s X (5) = v®c*, This shows that

G -062 rily (F, M), It is easy to see that T,(P', M) = zfr,LT,,(F m, rner,
Further, if 2 rpw=0, €T, (F, ED%), then we have

0=(f (“)ui)gl‘; ;= Z} 0 X;(6), X;(5) = Uiy,
Since (a,;) nn has full rank, we have X;(¢) =uw;=0, §€ P, it follows that w;=0,
j =1, «-, n,. This shows that T,(P', ;) = 2 @fr;LT 7, M,
On the contrary, if 7,(P', M) = 2 ®r, T, (F, S.Ué), ri€ E', then we shall show
[F:P']<n, In fact, if we put F=§I Prf@, where {f}, is a base of #, then we have
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M= S P'of®, vof?=fu, If [F:P]>n were trie and o, «, 02, oY were P'-

ierl’
. acel

hnear]y independent, then for any n+1 F—hnear]y independent elements ’1/1, ) Ynpa
of M we could ﬁnd an element ¢ €T, (P', M)such that y,=v{%0, a=1, -, n+1, by

assumption 0’=E riw;, €T, (F,_ M), hence we have
é=1 C

240” f ('w,w,) 2 QqiTiy ®) |
a=1, n+1, : '
~ where =1} f@, z;=wuw; Since the system of equations of (8) has solution z; and i,
crs, Up41 ATO F—hnea,rly mdependent we have a contradiction Wl’oh n>n—} 1, This shows

that [F:P' ] =n'<n,
We shall now show n'=h In fact, put F= i Pf@ M=3 Fu,= 2 P’ @

oEI’

@ = f@y,, it is clear that there exist eloments H; EL(F EIR) such that u;Hy=0; w and
elements e, € L(P', M) such that
.fv("‘)em—vﬁ‘” if 4=4', a=ad/,
e, =0, if @#'& or aFa',
It is easy to see that EL(F, M) and e,L(P', M) are minimal mght 1dea1s of

T,(F, M) and T (P' EIR) reSpectwely Thus we have _ .
B, (P!, M) = 2 T, (P!, ). O

Now we shall prove that e,T',(P', M) =eiT), (F, M). In fack, we denote by o'
any element of T, (P, ), then it is clear that for any fixed pair ¢ and & we can
always find an element w€&T,(F, W) such that V(P =00’ . Thus we have

P =0§Pe,0" for any g eI, B=1, =, n', T4 follows therefore that €;,0" = 6w, €l
(P, M) =, T, (F, M).

- Next we shall show that e T, (F, M)is an irreducible 7', (7, M)—module. If el
(F, M) #0, w€T,(F, M), then it follows from the property of the minimal right
ideal BT, (F, M) in T, (F, M) tha,t ;T (F, M) =644 icuT (F, JR)—@MT (F, ™M),

It follows from (9) that

ET, (P, M) = 2 @e:T (r Mm) . (10)
This shows that T,(P', M) has helght 1 and mdex n' = [F P, over T, (F ED‘) I
On the other hand, we know that 7, (P!, M) ——jgl @a‘,LTv (F, M), r;€EH, Smoe
Byl (F, 9 0 (3 Beral (F, ) =0, | |

we have

B, W) =3 @Faulh(F, ). (1)
b i .
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This shows that the index n' of T’ (P, M) over T(F, M) is nob smaller than n,
To show the final assertion of (I), we put [F: P']L-n M= Z‘,Fu = ZP'Q)S’",

=1
ier’

VP = S®u;; then for arbitrary n F—hnearly independent elements Y1, **+y Yy of M,
there oxists an element oc&T, (P, M) such that y,=v®c, But 7T, (P, M) = Eq',LT
(#, M)is given, hence o= Zw,z,w,, o €T, (F, M), It follows g, = Ewa,w,, Uy =15 @,
Uwj=wj, @a=1, «-, n, By lemma I, (@) nxn has full rank. As in the proof of the
precedmg assertion we can show, 1f2 1w} =0, w; €T, (F WE), then it must be o=
0, this shows er,LT (F M) = 2@¢,LT,,(F m).

Thus the proof of part (D of them’"em is now complete,

(II) First we suppose that [P':P] ,;=t<§o_ It folidWs P'= g Pfa, hence M=
Z Plw;= 2 Pof®, o =fla, Tt is clear that {v{*} is .a. P—baSe of M, By assumption

.er'

of the theorem E'= 2 Dr; is the algebra of G, It is easy to prove E'""=FE' where

I, ,€Gy
YEG, In fact, if I, jEGO, then I, *=y~1I,EG, hence I &G, this follows that
v EE' E"<E', In the same way we can obtain B 'CE'. It follows therefore that
E'"=E' On the other hand by the definition P’ =Cy (') we see that for every Yy €@,
there exists P'*=P', Now we consider the group [6] of F-semilinear automorphisms
-~ associated with @, Let S € [0] and S= (S, ). According to the preceding formulation
wo see that S is a P’—seml—lmear automorphism of M, Now we make a correspondence
0':0' > 8087 for o' in L(P!, M), it is easy to show that o' is a ring automorphism
of L(P', M), Henoce S’ =w'""S, SL(P!, M) =L(P', M)S, Choose any element S, of
[@] and assume that the associated isomorphism ¢ with § and the iy with S, are
identical in P’, then there exists a unit ! of L(P', M) such that S1=8;. In fact, lot
{w;} be a base of M over P, it is clear that {w;S} and {w;8,} are also P'-bases of M,
hence there exists an element 7 in L(P, M) such that w;Sl=w;Sy, It follows from the
identity of ¥ w1th Yy in P’ that (2 Frw)Sl= (3} flaw) Sy for any f'€ P, Thus Sf=

4<co

Si, SL(P', M) =S, L(P", M), Acoordmg to the above statement we soe
' [OIL(P', B) ={ 28| 8;€[6], w; EL(P', M)} is a ring, and by its structure
L j<oo . S

we know that [@].L (P, W)= 2 S;L(P', M), Thus [O]T, (P, M) =2 ST,(P,

n). | |

‘ On the other hand, we see that Py=I(G); is the centralizer of [€]T, P, M,

Hence the ring > §/T,(P', M) is a dense subring of L(P, M), Let yy, -, y; be ¢
8;€0

. . . t ’ .
P'-linearly independent. elements of 97— 21P0£7’=§P’wj, then there exists an
. a= ’ :
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element g€ Z S,T, (P’ EIR’) Suoh that fv(""o- fya, a=1, . But cr»-—VS,a,, 6,ET
(P, 93?) ) We have therefore o ' |

pomrio=3) frSie) = Ram@, i€F, (1)

where a,; =14, fa cP, (fz,) —w;(8;0)), a=1, +-, 6, Since the sys‘oem of equahons
- (12) has solution and gy, -, Y ave P'-linearly 1ndependent by the lemma 1 we have
m>=t and (aa,) sxm With full rank. Now we may assume. that (aa,)txt has full rank, o,
j=1, «, t. Let o*€T,(P, EDE), Y (fb) =o®g*, a=1, +, 1, then we eonsuier the
followmg system of equations o |

E%X@>Y@x%ruz¢d~;a“' @

By lemma 1 we see that (13)has a solution X (4. For 8; €O we see tha,t‘{fwi S} isa
P'base of M, hence for any 5 there exists an element o€ L(P', M) such ‘that wS 0
=X;(%), 4€I", Since 0 (c”) <§,, the rank of the vector space S P'X;(%) is smaller

, ier S

than §,, therefore di€T, (P' m).” Put 5=t2 S'.-o,-,' we have
v®o = 2 I ‘”f('w,S Gy = Z . (fb) —fu,"‘)a* geI";
This shows that o —~0€‘ZST (P' 93?) It follows T (P %?) ZST (P, m)
' USmg the same method as in (I) we can prove that T, (P EUE) 2 @S T, (P'; M.
Next we assume that T, (P, M) = 2 @87, (P, SR) S € [@].By the same method

as'in (I) we can show that [P':Pl.=%,

The final assertion in part (II) can be proved by repeatmg the ‘method in @.
Thus the proof of part (II) is now complete

Now we are going to prove part (III) | _

(III) Since F= 2 P'f@ P'= 2 Pg'®, we have ED? 2 Fu, - 2% P

$€.
a1, ey BT, b

(g'(ﬁ)f‘“)u) Pub v{#®=g'@f@y, Tt is clear that of"V, -, ™ are P-linearly
mdependent elements. Denote #:,1, ***; Ysa 2 system of F-linearly independent
elements, then there ex1sts an element o €T, (P, M) such that

Ys,a= 0000, B=1, -+, fa=1, | |
By (I) and (IT) we see that o= 2 ;S‘;gfr,me, _wkjET (F Em) hence we have
. i

@/3. 2 <9 "wf (@ i) Sur iz = 2 g’“”“”ff ¥l (uiS ¥ :ka:)

- Put aff¥=y¢ “”‘””":f(“)"”"w X=u Sirszwe;, then the above equatlons can be formulated

as follows
yaB—EG%?“)Xm(@) B=1, =+, & a=1, «-, n, a}ET - (14)

‘ By repemtlon of our argument of part. (I) we can prove that' (a%f,’ DY taxin has full rank. .
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If ;‘, Surszowr =0, where oy €T, (F, M), then we have
: »3 D
DO Xy(@) =0, i€ T, (15)

From the property of full rank of (a{%®) s it follows that X (3) =0 =2u;Syrizon;,
ver, Therefore Surjzwr; =0, this shows that 2 Swr T, (F, M) = 2 @S T, (F, M),
Suppose that 2, S wricT, (F M =T, (P S)JE), Where S € [@], r; € H', then we
j-l
can similarly prove thatT (P, M) = 2 (—B w5l (F, EDE) Thus the proof of part

1
(IIT) is complete. -

It remains to prove that the part (IV) is true. As to the proof of the assertion of
(IV), it follows directly from the course of the proof of the assertion of part (I).

Thus the proof of the theorem is complete.

Our theorem includes the following well known results.

Corollary 1 Let M =3 Fu, be a vector space over a division ring F, @ the center

of F, Then [F:®],=n<co if and only if L(D, M) = F,®.L(F, M) =§:®¢ij(F,932), |

where Iy, denote the left scalar multiplication of F, ry, € Fy,

Proof Let G be the group of all inner automorphisms of ¥, Then we have I(G)
=®,  According to the aésﬁmption we have P'=P=®,6 Therefore our assertion follows
at once from theorem 1. |

From the proof of theorem 1 we can immediately obtain the following results.

Corollary 2 Let M =3 Fu, be a vector space over F, K asubring of F, Cy(E) =
P, Suppose that [F:P],=n<oco, then the right dimension of T,(P, M)over T,(F, M)
is n and the (right) height of T, P, M) over T, (F, M) is1, the (right) indew is n,

Corollary 8 Let F be a division ring, G be a group of aytomorphisms of F, E'
the algebra of G, O'F (E') P' then any element s of G induces an zmtomorphwm of P
and B,

2

Lemma 2 Let 872=ZHFu;, G be a group of automorphisms of F, H' the algebra of
G, P'=Cp(E"), P=I(G), Then L(P, M) = g @S L(P', M), Suppose that § ds

any P'-semi~linear transformation of M and S in L(P, M), then there ewists an dlement
Swof 81, <o+, Sy such that 8 =8Syriew, Y=L, whers Y and by, are the associated isomor-
phisms of P' with 8 and Sy, respectively and w € L(P', M), rEC0m (P),

i
Proof By assumption of our lemma and theorem 1 we see that §= Z;Skcok, wp €L
. P2

(P, M), Put f'EP, u€M and uS+0, then we have
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Fws= 3™ <uskwk> -2 <us'kwk> o Tae
| ‘Put V= wS’kw,, and suppose that ful, s+, Uy are P'—hnearly mdependent elements and
Vyys= 2, g +’)fu Where g' T P, §=1, . Now we pub the vy mto (16), we
have ' - ’ S R o

'2 f"‘"@u= 2 (fer+ 2 Flovugit DY) g, = 2_ 1+ 2 gD
- Since 24, -, v are P' —-hnea,rly 1ndependen13 elements 113 follows that

f’ll'k_*_ 2 f’%’ﬂgf(t'+.") _f"# (1+ 2 gf(t’+1')) ]‘; 1

Suppose that1+ 29’“'“”-0 for all 1<k<C?, then we-. havp 2 ruk—:' _,' it follows ‘that
wS =0, this is a contradiction to wS %0, Hence we can assume 14 2 gF*D 0, and

set ATl =1+ 2 g&*»_ Then we have
flv= flmh_*_ E flww g’("”)h hE P'

Y=Yyhp+ 2 Hﬁ't'” .QIU'H)hR, hREP R. - ' - (17)

tt’

It is clear that l/.«iP "+ Z Yy iPrisa Ga101s (P )—module Tt follows that 1,11 llllhR
- 2 ¢,,+ g'“’”’hn——O from (17), henoe it is well known that {r= ¢t, L Where ll& xs one

of s, Pyreee, mpt and wEP'. Let r GP then 113 follows rr*I —fr from rr*“’—-rr —fr
Hence uw€Cp (P). ‘ C

On the other hand, suppose that {u;}r is a P'-base of Mm, then {u;S\ur} is also a
P'~hase. Hence there exists an element wC L(P', W) such that uSurw=uS, §EI",
Thus we have 3 (fiu;) (Syurw) =3 (fju;) S, hence Sysw==9, S »

- Lemma 3 Let M= Fu;, D the center of F Denote f an element of Fr. Suppose

that w= }] fiox, then there exist eloments @ € D such that w= 2 @i, and: suppose: that
=2- fio, then theq"e emst €D such that F' —-Z;' fios, 'whe're w, w¢EL(F EIR),

fi € Fy, _

Proof First we prove the first assertion. We remark that it is equwalenb t0 prove
that if the elements w1, ¢ *, @p Of L(F §IYE) are ]mearly mdependen‘b over Fy, then these
elements are also linearly mdepedent over @, Thus'we suppose that we have a non-

-trivial relation: 2} ¢iax =0, connecting w;, *:*, @s, “We may suppose that our relation is

a shortest one in the sense that the number of non—zero coefficients is least. Of course,
we may suppose that gi %0, If w,=0, it is olear‘ that the ws, -+, , are G-dependent.
- Hence we may. assume that w; #0 and put b= gl"lg‘, then our relation has the form w;+4-
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howat+++=0, We ma;y suppose that 230, If f' is any element in Fy, then we have
v 0=f'w;+ f'howo+ - —wif'+ﬁ§w2f'+"'
Hence - | (f'hy—Ha f") g+ =0,
Since the given relation is shortest, f'A,—hbf'=0 holds for all f'€ F;, Thus
2€®, In asimilar manner we see that all i are in @, Hence we have g} =g\p,

¢ €D, Therefore, we have a non-ﬁrivial @'-relatiqn connecting the wy, ie, Z‘] piw; =0,
@:i#0, : . |

Next we prove the second assertion. Suppose that f’ #‘ﬁ}:] fio, Wé shall pi'ove 5y
induction that f' ='§3 :f{q)i, pED, If = 1, then it follows obviously from f'=f\w,

aaEL(F,' M) that f'=fips, p: € P, Suppose that the assertion for m=% is true , We
“shall show that the assertion for m=F%--1 is also true. Consider the following relation

k+1
= Eﬂw¢, o, € L(F, mn), fi€EFy, (18)
Of course, we may assume that all f‘ coﬁéO Then we haVe
w1+ fhwa+ - +f T fkrrona —ff = (19)

From the first assertion of our lemma we know there exist ¢;EQ5 such that wy—@.wy—
s —@rawp1—P1=0, Now we put this relation into the form (19), hence we have

k+1 '
2 (figi+ i) wi=f"+fips. - (20)
If f'+ f’1¢1_=0, it is clear that our assertion is true. Hence we may assume that f'-+

fip1#0, By induction we know that there exist elements @€ ®, 4=2, -, h+1 such
that

k+1
o= 2 Pt ).

Hence f'=figit e+ Frrgis, 0" €D,

Theorem 2 Lot M =3 Fu; be a vector space over a division ring F, G a group of
automorphisms of F, Gy the group of inner automorphisms belonging to G, E' the algebra
of G, 4.6, B = > Or, where Q5 is the center of F, Let P'=Cy(E'), P=I(G).

€6,

Suppose that [F:P],<co, then we obtain the following results,
(i) Cr(Cr(E"))=E'; Op(P)=E'Cp (P)=Cy(P")Cp(P),
(i) - [P': P, = [G/Gy], where [Q/Gy] denotes the index of G, in G-
| [F:P],=dim. B =the dimension of B' over &,

(iif) of G is Galois, then Cp(P) =Cp(P"), and if SEL(P, M) = jl ®S,L(P!, M)
k= .

for any P'—semz'—lfinewr'wutomoa*phfism S, then there exwists an element Sy of Sy, -+, S
such that SL(P', M) =8, L(P', M), :
Proof (i) We prove the first assertion of (i). Let r €0y (P'), then it follows
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from theorem 1 that er—E TirWj5 w,EL(F m), fr,EE’ By' lomma 8 thers exist
elements gD;E@ such that er—E q',L(p,EE Hence Cr (P") CZE’CO (P’) |
Now we. prove the second assertlon of (i). Let fECH(P), then fLE L(P M) ="
‘ 2, @SkL(P' 93?) By lemma 2 we have fr=~Suue', @ EL(P’ m, Ir= =l

weECp (P) , Wwhere l,b;, is the Jsomorphlsm associated with Sy, Ib follows that I;
'Iﬂ—l = E€Q, Hence Sfw™ 1€E' fEE W, Thus GF(P) CE'OP'(P) OF(P')OP'(P>
The converse mequahty is clear.

Now we prove the first assertmn of (11) By theorem 1 we know that L(P, M) =

2 @S L(P', M), 8= (Sk, Yn); Yu€ G, If there exist two elements S and S; of Sy, .

, Sy such that their associated Lsomorphlsms Yy, and y; are in the same cosets modulo
Go, i. e., tpk—v,b,e G- G/ Gro, then it follows t,lx;,l,b, €Go, S8 EL(P, E)Jt) ThlS 1mp11es

that 8L (P’ SR) = L(P' m), th1s is contrary to the fact that Z SkL (P' ™M) = 2

@S, L(P', M), Hence we have shown that any two isomorphisms Yy, and s; associated
with Sy and S; respectively, are in different cosets modulo G, if Sy and S; are different
elements of Sy, «--, Sy, It is now clear that t<X[G/Go], Conversely, if P EG/Gy, then
there exists a P'~semi-linear automorphism §= (S, ¢). By lemma 2 we can obtain
8= SkMLw y=ypl,. Bub{z'yE€Q, it follows I, € G, Henoe =1, This shows that
[6/Go] <t.

Now we prove the second assertion of (i), Let ¢1L, or) my DO elemén‘os of Ep,
then from lemma 3 it follows that ;. L(F, ) N (E re L (F, M)) =0 if and only if

Typ, ***, TmL 8TO @—lmearly mdependent Thus we can obtam by lemma 1 that[F:P'],
—dim. B, '

(iii) If G is a Galois group, we want to show Cr(P) = =Cp (P’) In fact, since @ is
Galois, it follows that the algebra E' of G is E'=Cp(P). From the assertion of (1) it |
follows E'=Cp(P"), therefore, O (P") =Cr(P).

Finally we prove the second assertlon By lemma 2 it is. clear that S =8yure’
o' €L(P', M), pn€Cp(P).. Since @ is Galois, it follows from Cr(P) =Cr (P') =K'
that u, € L(P', M), Thus SL(P', M) =S L (P, M), '

Now the proof is complete.

The followmg well known results follow from our theorem 2.

Corollary 4 Let G be a group of automorphisms of division ring F, P=I(G),
: .asswme that [F:P]p<oo, then G has finite reduced order. In this case [F':P]y=reduced

order of G, ' '

" Proof From theorem 1 and lemma 3 it follows tha,t the first assertlon is true.. By
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theorem 2 it is clear that [F: P] = [F P’] L[P’ P] = (dim. E) ([q/ Go])
| Corollary 5 Let G be an N—group of deswn ring F and [F I (G)]<oo, tken
G s Galois. -

Proof Let I (G)' P, and:G be the Galois gréup of Pin F, It is clear that GC@,
Denote G, G, the groups of inner autemorphisms belonging to ¢ and G respectively,
and B, ' F" the algebras of G and G respectlvely By theorem 1 and the assartlon (111)
of theorem 2, [G/ Goj [0 /Go]. :

- Since dim. B'<dim. E’ it follows from the corollary 4 of theorem 2 that [G/ Gl

<[G/Gy]. Hence [G/ Go] [G/Go]. Thusdim. B’ =dim. ' andE'=F'. Since G is an
N-group, 113 follows that Go=Gh. From GG it follows that G= G,

As in the proof of the preceding corollary we can obtain the following theorem:

Theorem 8 (Invarlant theorem) Let F be a division ring, G and G* be the groups
of. cmtomorph@sms of F, Go zmd G be the gmz@s of inmer automorphisms belongmg to G
and G* respectwely, lot B' and B'™ be the dgebras of G and G respectively. Supposs tlmt v
[F:I(@)] <o, I(G) = I(G*), then[G/Gol = [G*/G]; dim. B =dim. B,

- Lemma & Let F be a division ring, P a division subring of F, let P be Galois in
F, and [F:P]i<o0, Denote G the Galois group of P in F, K a division subring of F
and PC K Let [@] be the group of" F—semf&—lmecm* automorphism assocmted w@th G,

Assume that [F':K]=m, then L(K 0 — Z@S L(F M) = BL(F, any whare ; EB |

= [@]L(K ‘ITE), ,,(K m) = BT (F Wﬁ) IfH {tﬁIS (5’ 4;) € B}, then H s the
Galo@s group of K 'm F . , , . ‘
Proof? Since [F K ] L=m, We have F= 2 K; f‘“’ sgre 2 Fui 2 Ko™, where

l
GEI'

P = f‘“’u By thorem 1 we know that L(P, Wt) 2 @Syl (F, M), 8,€ [@],
Ti5 E E,. Let o E L(K, ED?) and o= 2 . Si’)",-jLCg);j, where S‘fr.;,-z,w;, 5& 0, : p'llt n= 2 Mg,
d .. : §=1, eoes c LR ]

§=1, s _ L : .
then we can prove by induction of n that there exist positive integers mj<m; and
1y € B' such that o= 2 Sirszo :.a;nd'S;f/‘Q,-LEL(K ,- M) N [6] =B, where j’=1';

i—-l ..

“_’,_7’7‘_7‘1}4 , and 1!, «--, m; are dlﬁ'erent numbers of 1, ---, m, In fact, if n=1, then the
assertion is obviously clear. Now we suppose that the assertion is true for n=t, we
want t0 show thatit is also true for n=¢41, Since o € I(K, M), it follows(kz)o =k (zo)
for k€ K, s€M, Hence we have %(rﬁk"".—kﬁj) (@Siwi) =0, If ryk?=hry is true for

G=1, el =1, -, mand all kEK, _then it follows ab once that Siry, € L(K, M),
Thezefore,f-the- assertion is true, Conversely, if ,{chere_exist_a"pain %1, j1 and an element

1) In the first part of our lemma I adopt the proof of my pOSt—graduate student Mr Huang 0hangl1ng
(BE . .
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ko € K such that r,;58* 1—kori,;, 70, then we have : . .
S fxwﬁfx 2 Sz@iJBiJL) L . L (21)

(4 )% (81, 1)

where 6,5— (a‘,lj,loo‘l—koon,,,) i(r;jk"" laon,) Since S,w,jEL(P 932) it follows from (21)
that 2 (00— pdsj) (fl?S;CO,,,) 0 for all pEP If 81960'1? (P), then 6,,LEL(P' ‘,D?)

& NFEL ) -

' by theorem 2 (111) From L(P EIR) 2®S‘L(P’ ) and by (21) it follows that

St wi g, = S‘Sgwm&,,p Oonsequently, by lemma 3 wh,,‘ 2 w;, B 2 gp,co;,,, cp‘€d5 o

Thén we pu’o 1t into o= 2 S,¢¢,Lw,,, and since G 1s Galms group of Pin F and 'rM
- ;_1 :m¢ o .

+<p5fr41,1€E hence we have (fri,j—l-gv,fr,,,,)z, [@] Thus our assermon is true by the .
assumptlon of mduotlon Hence we may suppose that there exigt a pair 9, 32 and an

element. e in P such that 8;,,,1)2 pg&,,,#O then. we can. obtam 81m11arly as a,bove

- S = Sco . :
Ot 5)*201)10 il S - (22)

~ Now by repeatmg the course of the precedmg proof We can show that either the
assertion is true or there exist a pa1r %3, J3 and an element ps in P such’ that we have
similarly a form as (22), and so on. Fmally we tay assume that we have the following
form: . |

S,,qw,q,q S,a,m,q,M CL, . i

and therefore (Cp —pl) (@S wiy5,) =0y for all p€ P, If there exists an element Dgs1
such that {py41 —pasal#0, then oS @i, =0, hence w,y, =0, this is a contradiction to
“wigig =0, Therefore {eCr(P) and we can show that the assertion is true as above.
Hence our assertion is true. Thus L(K, ED?) CBL (F M), It is therefore clear that.
L(K, M) =BL(F, W), where B=[OINL(K, M), By assumption of H we obtain
K =I(H), and clearly H is a group. Let @ be the Galois group of K in P, it is clear

o thaﬁ Hc@. Denote E' and E' the algebras of @ and @ respectively, it is clear thab

E'>F'. Tt is obvious that &, € L(K, M) for any element &' € B'. On the other hand,
it follows from the structure of @ that every element ¢ € E' must belong to €, It
follows that for element &' € &, we have e, € B=[0@] L(K, 9)2) .Hence Ie¢' € H, This
shows that H is an N-subgroup. By corollary 5 of theorem 2 we know that H is
Galois. '

Next, since K is Galms in F, then by theorem 1, L(K, EHE) 2 @S’L (F ED%), '

where m= [F:K];. By the preoadlng proof we know that H is the Galois group and
L(K, ;) =3 @SWLF, M), Sx€ B, Thus we have m<l from theorem 2 (iii), But
by theoreml m>=1, ‘Therefore I=m=[F:K]y,. o

Fmally we shall show that 7', (K; M) =BT, (F, M), In faot it is clear that BT
(F, M) CT,(K, M), Now we want to show that the converse inclusion is obvious.
~ As before we can prove that there exists an element ¢* € L(K, M) for arbitrary m F-
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linéarly independent elements gy, «--, ¥m such that v{P¢*=y,, a=1, ---, m, But o=
g Sjw;, w;€ L(F, M), it is clear that there exists a matrix (@u)mxm With full rank,
where \a,,,,- =f@% and S;= (Sj, ¥;). Denote o an 6lement of 7,(K, ™) and put »{Po =
Y.(i). We consider the system of linear equations é 0 X ;) =Y, (), 4€T, a= 1,- ,

m, Since (@q;) mxm has full rank, hence the above syéte_m has a solution. Hence from
p(o) <8, it follows that there exist elements w)E€T,(F, M) for every j§ such that

WSy oj=2X;(%), i€T, Put E=éS,-w’,, then »{®o=0o{%¢, Since o, cEL(K, M), it
follows that oc=0=3 8T, (F, M) ZBT,(F, M). This completes our proof.
Therefore, the following well known finite Galois theory of division rings
immedia.tely follows from our corollary b of theorem 2 and lamma 4.
Theorem 4 Lst P be Galois in F such that [F:P], 4s finite and let G be the
Galois growp. Let H be any N~group of G and E any division subring of F containing
P, Then the correspondences H—>I (H) and E—>4 (E) are inverses of each other.
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