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.@<M,,> OPERATORS AND SPECTRAL OPERATORS
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1, D, operators with their spectrum on the complex plane. Throughout
this paper, all notations are the same as[1, 2]and the ‘sequence. {My} satisties. (M. 1),
- (M. 2) and (M. 8)™, i.e., logarithmio oonvexmy non- qua,smnalytmlty and differen-
tiability. By means of {M n}, WO Can: define the assoomted funciuon M (t4, t2) (of. [7])
M (s, ) =sup (gllo,ln,l_m ,—{me) W0, i=1,2),

and the spaoe Dar,y of two varlables" SRR

Buus={ 0 |[p€ 2 Ipl=mp |- Lo ¢< ) / W,

(i'—l 2)

<+°°

for sone integer v>0}

where s= (84, 32), b=1i+khs. It is. ev1dent that for any <p€ Qw,‘)

T, 1(2 .08 . orr 10
_,,.\for some integer » >0, Where o= 2( 751 33 ) ~and la p(s) | < []gv][,,zz My. |-], will

be oalled v-norm. For the definifion and “properties of bounded Dy, operators with
their spectrum on the complex plane, we refer the reader to see [3 4]. Let X be a
Banach space, B(X) be the ring of all linear bounded operators defined on X. If
T EB(X) is a 9<Mk> operator, we haye. T= T1+f1,T2, T3=Uget, To=Ulns, where U is a
speotral ultradlstrlbuhon of 7'. Slnce supp (U) is compact U may be easily extonded
to the whole space &y, . SRR :

By few. computations, as a functlon of (31, 8), ittt satlsﬁes for given u;>0
. (Z 1, 2), there exist A>O and an 1n1:eger v>0 such that ‘
: [gictisrtion | < AeM(u.t,,p.t.) | ,

whete [elhatt|  denotes the y-norm of e””‘s‘“’s” For every (pe.@m,), there exist
: hz>0(l 1, 2) and A'>0 suoch that; : '
|6 (8, )| < A' ~M(hats, Iats)

where ¢ (b, ta) = WJ _J __eritnting (81, S2)ds1dsy
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is the Fourier transform of @ (s, 82). Using the same argument as in [1] theorem 3,
we can eagily prove that one of the spectral ultradistributions of P,, operator T’ can
be expressed as '

U = J—mj—“ 6i(hTrijsz.) ¢\ ( t1, tg) d tl dtz.

Let T be a spectral operator, §, N, E(-) be the sealar part, radical part and the
spectral measure of T respectively. The following theorem gives a sufficient condition
ofa spectral operator to be a Dy, operator.

Theorem 1. Lot TEB(X) be a Spectfml opemtm' sa,tzsfymg

wp o (|Z2mm o))" —ro (n>c0), )
3

5—1 2,k

where B denotes the class of Borel subsets in the complew plane, then T is a D, operator
and one of its spectral uliradisiributions can be ewpressed as

U,- 38 [op@an).
' n=0 1!
Proof Let ¢ € D y,, satisfy
|3"¢1<"¢uv”"Mn ('n’=0: 1, 2, "');

by (1), we have

| 3 B <553

where 4>0 only depends on », | 45| <1. By a simple computation, we get

—J 9B | < @

2|
Put U,~ 3 orpas,
then Uy=1, U,=T and

U,,~ 3 [0 (pham= S0 ﬁwjaw%w

n=0 n!

—-N#jakquﬁ-i _.1-ij'af¢dE~= U,U,
=0 3!

i
24
ol

ie., U: Dy, B(X)is a continuous homomorphism. Therefore T’ is a Dy, operator.
Theorem is proved. '
Corollary 1. If N, H(:) satisfy

. n
then T is a 9(][,9 op@’ra’tm".
Corollary 2. Let N be a quasinilpotent, then if and only if

1

B)) >0 (1->c0),

(—H—i—\?-“- M,.)%—>O (n—>c0), o 3
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S+Nisa 9<Mk> operator for every scalar operator S commuting with N.
‘We shall call N a {My}- quasmﬂpotent if it satisfies (8) (of. [4]). The follomng

proposition gives some properties of a {M}~quasinilpotent. _
Proposition. Let N be a quasinilpotent, the followmg assertions are e_quwalent
(1) N is a {M;}-quasinilpotent. T :
(ii) For every A>>0, there ewisis B,>0 such that®
IR, N ) <B,d" (Gr) (1¢]is sufﬁcienﬂy small).
(iii) For every p,>0 there exists A,>>0 such that |
o "eizN" <A eM(ulzi)
Proo f By [9] prop031t10n 4.5, the equlvalence of @), (m) is ev1dent (of [4])

,It remains t0 prove the equ1valence of (ii), (iii).

(ii)=(ii). By puttmg 7\.———5 in (11), r=29 (I 1) (of [1]) and usmg lemma 4in

- [1], we bave

rl <] eIRE, M1t <Buroere @ -

< B,g'012D e']:”' (Tn(ﬁﬁﬁ) <237'3M(vu|z|'),,

whero 0<,,-<1 V -

(iit)=>(ii). Since [R({; N)| = l[R( | Clez , oFm)i Y|, we oan easily obtain
(ii) by applying the sufficient part of theorém 5 in [1] to the operator e( T Q‘

- 2. D, operators with their spectrum on the real line. In this section, all
functions in Dy, are of one variable, hence if T EB(X) is a D,y oper‘ator,‘then
o (T)CR, the real line. Now we consider the conditions-to guarantee a ‘bounded D,y
.operator T to be a spectral In the sequel the con;uga,te space of X W111 be denoted by
X . ,
If f€E D'y, from [8, 9], there exist countable many regular measures u, (n=>0)

| satisfying ,
| s 0= B o i@ @
and for every h>0, there ex1sts A>O such that R
S B flgl<d,  ®

By a s1m11ar method used in [10], it can be easily proved that:

~ 1° for fE@wp, 1ff =0, then f=const;
2° for f € D'y, if f' is.a measure, then f is a funotion of bounded varmtmn in

every finite interval.

1) In (i), wo have to suppose that {-317;—[-—} is loganthmmally convex. As for M* ( k \ M (ulzl) , WO refer

the reader to see .[1].
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In general, the sequence {u,} (n=0) in (4), (b) is not unique. Now we introduce
the following: 3 : '

Definition. Let no be a positive integer, f € D,y With compwct support (4. e.,
FE ely,y) 48 called no-singular, if for all n=no,: there ewist w in (4), (B) with Supp (,u,,,)
contained in a closed subset F satisfying mes F=0. If no—l, f s called singular.
Suppose that T€B(X) is a D,y operator, U is its speciral ultradistribution, we say
that T is nog—singular (smgulwr), if for every wEX &€ X * o*U.xw is no-singular |
(singular) .

In the sequel, we shall often suppose ‘that fE@ M,;> has compaet support and
when f is no—smgular, pa (n=>mo) will denote what sa,t1sfy the conditions diseribed in
the above definition. Therefore all of these Hn (n>no) are singular Wlth respeot to
Lebesgue measure, but the inverse is false.

‘Lemma 1. If f€Dy, is no-singular, then for every n=>mno, Wa 48 umique,
especially, o 8 also unique when no=1. '

Proof It suffices to prove that when f 0, then y,,, 0 (n>no). In fact f 0 is
equivalent to

2:] ) (n>_0 or (Z( i ("‘1>>’¥"Mo. (6a)

n=1
Since D, is differentiable, it follows that g3 = 21 = 1) w8 P E Dy, . Since all of

supp (u,) (n=>0) are contained in a neighbourhood of supp(f), we may suppose that
supp(gy) is compact. By (6a), ¢1.is a function of bounded variation. Similarly,

v 2( 1) B0 =gy are also fﬂnotmns of bounded Varlatlon for all k>1 By the

n=k

hypo’uhesm, we can easﬂy see that the subset Where gk#:O is of Lebesgue measure Zero, |
henoe as ultradistributions in 9%,), gx=0 (k=>mno), i. €.,

_(___-Dm,: 5:0 ( 1)m+1 ngst 4o =0,

(no+1)1
et Mt L (6b)
| T eeeeeenessnnes =0,
(6b) shows that s, = sz =+ =0. If no=1, by pa=0 (n=>1) and (6a), we have o=0.
Thus the lemma is proved. S
For ¢€ Dary, =2_1%.f° e p(f)dt and §() —f ¢ g(#)di will express the

Fourier and inverse Fourier transform of 3 respeo’olvely When f is an ultradlstrlbu-
tion, f F also have the same meaning.

1y, (1) ‘
Remark I f ultrmdzsmbutwns f= 2 —g——l)—&‘—- and 9= 2 -<—————1n)‘~p—— are

n=0. : ; n=0
szngulm‘, fwhefre ons Va (n>1) satisfy those conda,twns clzscmbed in the pmcedmg definition,
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_then f'rom f J ( E} (é > L (t) = 2 (@ﬂ” v,. (t)> we oan deduce f =g, by the above

'.flem'ma, we hww o= Vg, Iwnce Lo =Dy (n>0), .6., from f g, we got ,Lb,,——~V,.
Lemma 2. For fED; ate has compact support, we have F(s) = ( Fi, “’)

Prroof For every ¢€9<Mk>» q)(t) r ei“‘(p(s)ds ig the limit of the mtegral sum

| 2 e“”qz (s )As Wlth respect to the topology of sm,‘), hence

s m>¢@ﬁk—1nniﬂ<ﬁ Ors
= llmze"ws,)zls) &, .

' Lemma 8. :S'uppose that X s reflewive, T' is a bounded smgulwr Daryy operater; U
is its spectml ultmdzstmbutwn, then there emst opemtorwahwd measures u,,( ) (n=>0)
such that - . :

( ) each of - u,.( ) %8 boww',ed cmd strongly countably addztwe and for efuerry h>0 _
there ewists A_>Oisuch that ‘ '

| la () ]]<Anlh”/M w0y (D
foa" every Bo'rel subset & on the redl line; ‘ '

(i) for every 9 € Dary o o
-3 teowme, . ©®
. in which everry mtegml converges in the sense of strong opemtor topology and the semes
converges in the sense of uniform operator topology '

Proof For mEX o€ X*, |o| <1, |o*| <1, the class of ultradistributions «*U. & "
is bounded in &\g,; and their supports are contamed in cr(T) By [8, 9], there exist |
regular measures ,uJ,,( @, &%) (n> 0) satlsfymg for every h>0, there exists A>0 such
that _ ‘ :

ﬂp,,.( w, %) | <A'n,'h"/M (n>0) _ )
uniformly for all |#|<1, |« ][<1 where ||p,|[ denotes the total variation of . In
- addition, we have ‘ ) |

o Uye= % —,anJsv‘f'? B dua(t; @, 2%),
in which the ‘series’ converges absolutely and uniformly with respect to all ﬂm" <1,
jo*| <1.°By the singularity of T', we may suppose that for every n=>1, supp(ua (+;
™)) is contained in a fixed closed subset £ with Lebesgue measure zero. From lemma
1, wy (+; &, 2°) (n=>0) is unique, hence for every Borel subset 0, w,(3; #, 2%) is a
bounded bilinear functional of =, &* "By the reflexivity of X, there exigts for every
n=>0 a bounded linear operator u, ) defined on X such that
' wru, (8) w= ,w,,(3 @, ) ‘
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From (9), u,(+) satisfies G). Evldently, we may suppose that supp (u..) (n>0) is
contained in a ﬁxed nelghbourhood G of o(T). As for (i), using the followmg '
inequality _

T e
<4 sup | g™ (8) |n1ke]a] H“’*"/MW’ -

we get the result that the series in(8) converges with respect to the uniform operator
topology. Finally, by [12] Theorem IV. 10.8 and Definition IV. 10.7, every integral
in (8) converges in the strong operator topology
- Lemma 4. Under the hypotheses of the preceding lemma, te have
%4 (7) Ui (0) =tlpsm(v+0) (M, n=0),- . .(10)
tn which =, o are real numbers. : -
Proof For every € X, 2* € X*, we have

o Ug«tmtw @ Uem ,,mm 2 (?’7) a; *oy, (T) Uemm, . R (11)

n=0

*U,«mna: 2&@%9—-2]——51;14 (z+o)o= E:] EZ] (’Z) é]z(_r_)k) 2 (v o) w

i (d7)" é (w) "l m(7+a)w— 2 OW) de‘” W»(t)w, 2

n=0 n' m=0

in. which
@ =3 W’) j ¢t +,,.(t) | (@)

depends on o and disa , Borel subset. Puttmg o ﬁxed from (9), for every h>0 there
.exists A>0 such that for all lo] <1, |o*| <1, .

leeael < S l|wun+m<t>wn<A2"" (rrmys (B /M

<(An|h”/M )(2 lo|™(n+m)! h’”/Mm

=0 m"n|2"+”’

< (4n\h"/My) 2 (lo[B)™/Mn,

v Bmce B= 2 “('Loj-l—ll@—<+°° it follows that

|=* fv,,(t)w[lv<ABn|h”/Mw
‘uniformly for all |z|<1, |o"|<L1. Therefore v,(+) (n=0, 1, 2, «+) are bounded
‘strongly countably additive operator-valued measures. Evidently, the utradistribution

.2 (= 1) (a*v, (t) x)™ ig singular. By (11) (12) and the remark after lemma 1, we

have |
‘ ' o*, (7) er, o=, (1),
i. e, .

599" v, o= 5 D thantere, 09
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 For fixed 7:, the two sides of (14) are the mverse FOllI‘lBI‘ transform of E ( 1)".

m—O

(zv n (T) u,,,( )w)(’”) Z ( m1> (zv Wt (* )a;) (m) respeotlvely, where Wym(d) = j’ it

“edtnsm (£) , & is a Borel subset. Still by the remark after lemma 1, we get (10). Lemma
. 4 is thus proved. :
Lemma §. Puttmg E( ) = (s ) N——u1 (R), we hcwc i
(i) E(s) is a speciral measure; -
(ii) for every Borel subset & ‘and every n=0,

' un(é) N"E(S) E(S)N"
«(iii) N 48 a quasinilpotens satisfying
. A

lm(”fzv La) =0 )

n—-r00

Proof (1) From lemma 3 (1), it remains to prove that L
_ ‘ E(B)E(S) E@ne), E(5)+E(8) E(5>E(8) E@GUe),  (16)
‘for all Borel subsets d, s. Puttmg n=m=0 in (10) , we obtain (w)E (0') = E(x+0),

i. e., ‘ v
- J & idE (t)E (O') = J i(v+o)t] |t (t) =J' i'ut.dt J ¢t B (’F))
'Sinoce the inverse Fourier transform is 1-1, it follows that R o
@@= emane. - G
(17) may be written as , S -
j 7t dE (5) B (8) = j wtdE(t),’
still by the property .(1-1) of the inverse Fourier transform, we have B (8) E (s)
= E(3Ns). Finally, by the additivity of B (+),
E@®Use) = E(B)—l—E(s\(Sﬂs)) E(8)+E(e) E(Sﬂs)

(16) holds.
(ii) and (111) Putting =0, m=1 and substltutmg n by n—1 in (10) , we have
2 U (7) =Up—1 (v)N ' : (18)
Similarly, ¥, (z) =N 'L“a,,_i_(fr;) .Let n=0, 1, 2, «--, it follows that -
(%) = B (z) N*=N"E (v).
By the property (1-1) of the inverse Fourier transform again, we get
| w(+) = B(-) N*=N"E(-),
~ especially, N"=u,(R). Therefore by (9), for every ~>0,
| N*] = |un(B) | < Anth"/ M,
., (15) holds.
Summamzmg the above disoussions, we obtain
Theorem 2. Suppose X is reflewive. T € B(X)"isa. smgular Dy opemtor if and '
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only if T is a spectral operator satisfying

( i) For every o€ X and o* € X*, supp (a;*N sF()w) s contafwwd in a ﬁa:ed closed

subset F of Lebesgue measure zero for all n=>1 (F may depend on «, %), where H(+), N -
are the speotml measure and radical part of T respectively;

(i) N satzsjies (15).
Corollary. Suppose X is rreﬁeame. TeB(X) is a singular D,y operator omd

" meso (T) =0 if and only if T is a spectral operator satisfying

[13
[2]

(3]
[41

[5]
[6]
[71]
[8]

[l
[10]

[y

[12]

(i) mes supp(H#(+))=0;
(11) N satisfies (15). .
Theorem 2 is an extention of some results of [6] 1)
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