𝒯〈M,〉 OPERATORS AND SPECTRAL OPERATORS

WANG SHENGWANG

(Nanking University)

1. $\mathcal{D}_{\langle M_k \rangle}$ operators with their spectrum on the complex plane. Throughout this paper, all notations are the same as [1, 2] and the sequence $\{M_k\}$ satisfies (M, 1), (M, 2) and $(M, 3)^{(1)}$, i.e., logarithmic convexity, non-quasianalyticity and differentiability. By means of $\{M_k\}$, we can define the associated function $M(t_1, t_2)$ (cf. [7])

$$M(t_1, t_2) = \sup_{\substack{k_i > 0 \ (i=1,2)}} \left(\sum_{i=1}^2 k_i \ln |t_i| - \ln M_{k_1+k_1} \right) \quad (t_i \neq 0, i=1, 2),$$

and the space $\mathscr{D}_{\langle M_k \rangle}$ of two variables

Son are first reason.

$$\mathcal{D}_{\langle M_k \rangle} = \left\{ \varphi \ \middle| \varphi \in \mathcal{D}; \ \|\varphi\|_{\nu} = \sup_{\substack{s \in \mathbb{R}^2 \\ (s=1,2) \\ (s=1,2)}} \left| \frac{\partial^{k_1 + k_2}}{\partial s_1^{k_1} \partial s_2^{k_2}} \varphi(s) \middle/ \nu^k M_k \right| < +\infty \right\}$$

for some integer $\nu > 0$,

where $s = (s_1, s_2)$, $k = k_1 + k_2$. It is evident that for any $\varphi \in \mathcal{D}_{\langle M_k \rangle}$

$$\sup_{\substack{s \in R^2 \\ k > 0}} \left| \frac{\partial^k \varphi(s)}{\nu^k M_k} \right| < +\infty$$

for some integer $\nu > 0$, where $\partial = \frac{1}{2} \left(\frac{\partial}{\partial s_1} - i \frac{\partial}{\partial s_2} \right)$, and $|\partial^k \varphi(s)| \leq ||\varphi||_{\nu} \nu^k M_k$. $||\cdot||_{\nu}$ will be called ν -norm. For the definition and properties of bounded $\mathcal{D}_{\langle M_k \rangle}$ operators with their spectrum on the complex plane, we refer the reader to see [3, 4]. Let X be a Banach space, B(X) be the ring of all linear bounded operators defined on X. If $T \in B(X)$ is a $\mathcal{D}_{\langle M_k \rangle}$ operator, we have $T = T_1 + iT_2$, $T_1 = U_{\text{Ref}}$, $T_2 = U_{\text{Im}f}$, where U is a spectral ultradistribution of T. Since $\sup(U)$ is compact, U may be easily extended to the whole space $\varepsilon_{\langle M_k \rangle}$.

By few computations, as a function of (s_1, s_2) , $e^{i(t_1s_1+t_2s_2)}$ satisfies: for given $\mu_l>0$ (l=1, 2), there exist A>0 and an integer $\nu>0$ such that

$$||e^{i(t_1s_1+t_2s_3)}||_{\nu} \leq Ae^{M(\mu_1t_1,\mu_2t_2)},$$

where $||e^{i(t_1s_1+t_2s_2)}||_{\nu}$ denotes the ν -norm of $e^{i(t_1s_1+t_2s_2)}$. For every $\varphi \in \mathcal{D}_{\langle M_k \rangle}$, there exist $h_l > 0$ (l=1, 2) and A' > 0 such that

$$|\hat{\varphi}(t_1, t_2)| \leq A' e^{-M(h_1 t_1, h_2 t_2)},$$

where

$$\hat{\varphi}(t_1, t_2) = \frac{1}{(2\pi)^2} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-i(t_1 s_1 + t_2 s_2)} \varphi(s_1, s_2) ds_1 ds_2$$

is the Fourier transform of $\varphi(s_1, s_2)$. Using the same argument as in [1] theorem 3, we can easily prove that one of the spectral ultradistributions of $\mathcal{D}_{(M_k)}$ operator T can be expressed as

$$U_{\varphi} = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{i(t_1 T_1 + t_2 T_2)} \hat{\varphi}(t_1, t_2) dt_1 dt_2.$$

Let T be a spectral operator, S, N, $E(\cdot)$ be the scalar part, radical part and the spectral measure of T respectively. The following theorem gives a sufficient condition of a spectral operator to be a $\mathcal{D}_{\langle M_R \rangle}$ operator.

Theorem 1. Let $T \in B(X)$ be a spectral operator satisfying

$$\sup_{k>0} \sup_{\substack{|\mu_j|<1\\\delta_j\in\mathfrak{D}\\j=1,2,\cdots,k}} \left(\left\| \frac{N^n}{n!} \sum_{j=1}^k \mu_j E(\delta_j) \right\| M_n \right)^{\frac{1}{n}} \to 0 \quad (n\to\infty), \tag{1}$$

where \mathfrak{B} denotes the class of Borel subsets in the complex plane, then T is a $\mathcal{D}_{\langle M_n \rangle}$ operator and one of its spectral ultradistributions can be expressed as

$$U_{\varphi} = \sum_{n=0}^{\infty} \frac{N^n}{n!} \int \partial^n \varphi(s) dE(s)$$
.

Proof Let $\varphi \in \mathcal{D}_{\langle M_k \rangle}$ satisfy

$$|\partial^n \varphi| \leq ||\varphi||_{\nu} \nu^n M_n \quad (n=0, 1, 2, \cdots),$$

by (1), we have

$$\left\|\frac{N^n}{n!}\sum_{j=1}^k \mu_j E(\delta_j)\right\| \leq \frac{A}{(2\nu)^n M_n},$$

where A>0 only depends on ν , $|\mu_j| \leq 1$. By a simple computation, we get

$$\sum_{n=0}^{\infty} \left\| \frac{N^n}{n!} \int \partial^n \varphi dE \right\| \leq 2A \|\varphi\|_{\nu_{\bullet}} \tag{2}$$

Put

$$U_{\varphi} = \sum_{n=0}^{\infty} \frac{N^n}{n!} \int \partial^n \varphi dE$$
,

then $U_1=I$, $U_s=T$ and

$$egin{aligned} oldsymbol{U}_{arphi\psi} &= \sum_{n=0}^{\infty} rac{N^n}{n\,!} \int \partial^n (arphi\psi) dE = \sum_{n=0}^{\infty} N^n \sum_{k=0}^n rac{1}{k\,!\,\,(n-k)\,!} \int \partial^k arphi \partial^{n-k}\psi dE \ &= \sum_{k=0}^{\infty} rac{1}{k\,!} \, N^k \int \partial^k arphi \, dE \cdot \sum_{j=0}^{\infty} rac{1}{j\,!} \, N^j \int \partial^j \psi \, dE = oldsymbol{U}_{arphi} \, oldsymbol{U}_{\psi}, \end{aligned}$$

i.e., $U: \mathcal{D}_{\langle M_k \rangle} \to B(X)$ is a continuous homomorphism. Therefore T is a $\mathcal{D}_{\langle M_k \rangle}$ operator. Theorem is proved.

Corollary 1. If N, $E(\cdot)$ satisfy

$$\left(\frac{M_n}{n!} \vee (N^n E)\right)^{\frac{1}{n}} \to 0 \quad (n \to \infty),$$

then T is a $\mathcal{D}_{\langle M_k \rangle}$ operator.

Corollary 2. Let N be a quasinilpotent, then if and only if

$$\left(\frac{\|N^n\|}{n!}M_n\right)^{\frac{1}{n}} \to 0 \quad (n \to \infty), \tag{3}$$

S+N is a $\mathcal{D}_{\langle M_k\rangle}$ operator for every scalar operator S commuting with N.

We shall call N a $\{M_k\}$ -quasinilpotent if it satisfies (3) (cf. [4]). The following proposition gives some properties of a $\{M_k\}$ -quasinilpotent.

Proposition. Let N be a quasinilpotent, the following assertions are equivalent:

- (i) N is a $\{M_k\}$ -quasinilpotent.
- (ii) For every $\lambda > 0$, there exists $B_{\lambda} > 0$ such that 1)

$$||R(\zeta, N)|| \leq B_{\lambda}e^{M^*\left(\frac{\lambda}{|\zeta|}\right)}$$
 (|\zeta| is sufficiently small).

(iii) For every $\mu > 0$, there exists $A_{\mu} > 0$ such that

$$||e^{izN}|| \leq A_{\mu} e^{M(\mu|z|)}.$$

Proof By [9] proposition 4.5, the equivalence of (i), (iii) is evident (cf. [4]). It remains to prove the equivalence of (ii), (iii).

(ii) \Rightarrow (iii). By putting $\lambda = \frac{\mu}{2}$ in (ii), $r = \delta_{\mu}(|z|)$ (cf. [1]) and using lemma 4 in [1], we have

$$\begin{aligned} \|e^{izN}\| & \leq \frac{1}{2\pi} \int_{|\zeta|=r} |e^{iz\zeta}| \|R(\zeta, N)\| |d\zeta| \leq B_{\lambda} r e^{|z|r} e^{M^{\star} \left(\frac{\lambda}{r}\right)} \\ & \leq B_{\lambda} e^{|z|\delta_{\mu}(|z|)} e^{M^{\star} \left(\frac{\mu}{2\delta_{\mu}(|z|)}\right)} \leq 2B_{\lambda} e^{M(\mu|z|)}, \end{aligned}$$

where 0 < r < 1.

(iii) \Rightarrow (ii). Since $||R(\zeta, N)|| = ||R(|\zeta|e^{\frac{\pi}{2}}), e^{(\frac{\pi}{2}-\arg\zeta)}N)||$, we can easily obtain (ii) by applying the sufficient part of theorem 5 in [1] to the operator $e^{(\frac{\pi}{2}-\arg\zeta)}N$.

2. $\mathscr{D}_{\langle M_k \rangle}$ operators with their spectrum on the real line. In this section, all functions in $\mathscr{D}_{\langle M_k \rangle}$ are of one variable, hence if $T \in B(X)$ is a $\mathscr{D}_{\langle M_k \rangle}$ operator, then $\sigma(T) \subset R$, the real line. Now we consider the conditions to guarantee a bounded $\mathscr{D}_{\langle M_k \rangle}$ operator T to be a spectral. In the sequel, the conjugate space of X will be denoted by X^* .

If $f \in \mathcal{D}'_{(M_n)}$, from [8, 9], there exist countable many regular measures μ_n $(n \ge 0)$ satisfying

$$\langle f, \varphi \rangle = \sum_{n=0}^{\infty} \frac{1}{n!} \int \varphi^{(n)}(t) d\mu_n(t)$$
 (4)

and for every h>0, there exists A>0 such that

$$\sum_{n=0}^{\infty} \frac{h^n}{n!} M_n \int |d\mu_n| \leqslant A. \tag{5}$$

By a similar method used in [10], it can be easily proved that:

1° for $f \in \mathcal{D}'_{\langle M_k \rangle}$, if f' = 0, then f = const;

 2° for $f \in \mathcal{D}'_{(M_k)}$, if f' is a measure, then f is a function of bounded variation in every finite interval.

¹⁾ In (ii), we have to suppose that $\left\{\frac{M_k}{k!}\right\}$ is logarithmically convex. As for $M^*\left(\frac{\lambda}{|\zeta|}\right)$, $M(\mu|z|)$, we refer the reader to see [1].

In general, the sequence $\{\mu_n\}$ $(n \ge 0)$ in (4), (5) is not unique. Now we introduce the following:

Definition. Let n_0 be a positive integer, $f \in \mathcal{D}'_{\langle M_K \rangle}$ with compact support (i. e., $f \in \mathcal{E}'_{\langle M_K \rangle}$) is called n_0 -singular, if for all $n \ge n_0$, there exist μ_n in (4), (5) with Supp (μ_n) contained in a closed subset F satisfying mes F = 0. If $n_0 = 1$, f is called singular. Suppose that $T \in B(X)$ is a $\mathcal{D}_{\langle M_K \rangle}$ operator, U is its spectral ultradistribution, we say that T is n_0 -singular (singular), if for every $x \in X$, $x^* \in X^*$, $x^*U.x$ is n_0 -singular (singular).

In the sequel, we shall often suppose that $f \in \mathcal{D}'_{\langle M_k \rangle}$ has compact support and when f is n_0 —singular, μ_n $(n \geqslant n_0)$ will denote what satisfy the conditions discribed in the above definition. Therefore all of these μ_n $(n \geqslant n_0)$ are singular with respect to Lebesgue measure, but the inverse is false.

Lemma 1. If $f \in \mathcal{D}_{\langle M_n \rangle}$ is n_0 -singular, then for every $n \ge n_0$, μ_n is unique, especially, μ_0 is also unique when $n_0 = 1$.

Proof It suffices to prove that when f=0, then $\mu_n=0$ $(n \ge n_0)$. In fact, f=0 is equivalent to

$$\sum_{n=0}^{\infty} \frac{(-1)^n}{n!} \mu_n^{(n)} = 0 \quad \text{or} \quad \left(\sum_{n=1}^{\infty} \frac{(-1)^n}{n!} \mu_n^{(n-1)}\right)' = -\mu_0.$$
 (6a)

Since $\mathscr{D}_{\langle M_k \rangle}$ is differentiable, it follows that $g_1 = \sum_{n=1}^{\infty} \frac{(-1)^n}{n!} \mu_n^{(n-1)} \in \mathscr{D}'_{\langle M_k \rangle}$. Since all of $\operatorname{supp}(\mu_n)$ $(n \geqslant 0)$ are contained in a neighbourhood of $\operatorname{supp}(f)$, we may suppose that $\operatorname{supp}(g_1)$ is compact. By (6a), g_1 is a function of bounded variation. Similarly, $\sum_{n=k}^{\infty} \frac{(-1)^n}{n!} \mu_n^{(n-k)} = g_k$ are also functions of bounded variation for all k > 1. By the hypothesis, we can easily see that the subset where $g_k \neq 0$ is of Lebesgue measure zero, hence as ultradistributions in $\mathscr{D}'_{\langle M_k \rangle}$, $g_k = 0$ $(k \geqslant n_0)$, i. e.,

$$(-1)^{n_0} \frac{\mu_{n_0}}{n_0!} + (-1)^{n_0+1} \frac{\mu'_{n_0+1}}{(n_0+1)!} + \dots = 0,$$

$$(-1)^{n_0+1} \frac{\mu_{n_0+1}}{(n_0+1)!} + \dots = 0,$$

$$\dots \dots = 0.$$
(6b)

(6b) shows that $\mu_{n_0} = \mu_{n_0+1} = \cdots = 0$. If $n_0 = 1$, by $\mu_n = 0$ $(n \ge 1)$ and (6a), we have $\mu_0 = 0$. Thus the lemma is proved.

For $\varphi \in \mathcal{D}_{(M_k)}$, $\hat{\varphi} = \frac{1}{2\pi} \int_{-\infty}^{+\infty} e^{-its} \varphi(t) dt$ and $\check{\varphi}(s) = \int_{-\infty}^{\infty} e^{its} \varphi(t) dt$ will express the Fourier and inverse Fourier transform of φ respectively. When f is an ultradistribution, \hat{f} , \check{f} also have the same meaning.

Remark If ultradistributions $f = \sum_{n=0}^{\infty} \frac{(-1)^n \mu_n^{(n)}}{n!}$ and $g = \sum_{n=0}^{\infty} \frac{(-1)^n \nu_n^{(n)}}{n!}$ are singular, where μ_n , ν_n $(n \ge 1)$ satisfy those conditions discribed in the preceding definition,

then from $\check{f} = \check{g}$ (i. e., $\sum_{n=0}^{\infty} \frac{(it)^n}{n!} \check{\mu}_n(t) = \sum_{n=0}^{\infty} \frac{(it)^n}{n!} \check{\nu}_n(t)$), we can deduce f = g, by the above lemma, we have $\mu_n = \nu_n$, hence $\check{\mu}_n = \check{\nu}_n$ ($n \ge 0$), i.e., from $\check{f} = \check{g}$, we get $\check{\mu}_n = \check{\nu}_n$.

Lemma 2. For $f \in \mathcal{D}'_{\langle M_k \rangle}$ has compact support, we have $\check{f}(s) = \langle f_t, e^{its} \rangle$.

Proof For every $\varphi \in \mathcal{D}_{\langle M_k \rangle}$, $\varphi(t) = \int_{-\infty}^{\infty} e^{its} \hat{\varphi}(s) ds$ is the limit of the integral sum $\sum_{i=0}^{n} e^{its_i} \hat{\varphi}(s_i) \Delta s_i$ with respect to the topology of $s_{\langle M_k \rangle}$, hence

$$\int_{-\infty}^{\infty} \langle f_t, e^{its} \rangle \hat{\varphi}(s) ds = \lim \sum_{j=1}^{n} \langle f_t, e^{its_j} \rangle \hat{\varphi}(s_j) \Delta s_j$$

$$= \left\langle f_t, \lim \sum_{j=1}^{n} e^{its_j} \hat{\varphi}(s_j) \Delta s_j \right\rangle = \left\langle f, \varphi \right\rangle.$$

Lemma 3. Suppose that X is reflexive, T is a bounded singular $\mathcal{D}_{\langle M_n \rangle}$ operator, **U** is its spectral ultradistribution, then there exist operator-valued measures $u_n(\cdot)$ $(n \ge 0)$ such that

(i) each of $u_n(\cdot)$ is bounded and strongly countably additive and for every $h{>}0$ there exists $A{>}0$ such that

$$||u_n(\delta)|| \leqslant An! h^n / M_n \quad (n \geqslant 0) \tag{7}$$

for every Borel subset δ on the real line;

(ii) for every $\varphi \in \mathcal{D}_{\langle M_k \rangle}$

$$U_{\varphi} = \sum_{n=0}^{\infty} \frac{1}{n!} \int \varphi^{(n)}(t) du_n(t), \qquad (8)$$

in which every integral converges in the sense of strong operator topology and the series converges in the sense of uniform operator topology.

Proof For $x \in X$, $x^* \in X^*$, $||x|| \le 1$, $||x^*|| \le 1$, the class of ultradistributions x^*U . x is bounded in $\varepsilon'_{(M_n)}$ and their supports are contained in $\sigma(T)$. By [8, 9], there exist regular measures $\mu_n(\cdot; x, x^*)$ $(n \ge 0)$ satisfying: for every h > 0, there exists A > 0 such that

$$\|\mu_{\mathbf{n}}(\cdot; x, x^*)\| \leqslant An! h^n / M_{\mathbf{n}} \quad (n \geqslant 0)$$

$$\tag{9}$$

uniformly for all $||x|| \le 1$, $||x^*|| \le 1$, where $||\mu||$ denotes the total variation of μ . In addition, we have

$$x^* U_{\varphi} x = \sum_{n=0}^{\infty} \frac{1}{n!} \int \varphi^{(n)}(t) d\mu_n(t; x, x^*),$$

in which the series converges absolutely and uniformly with respect to all $||x|| \le 1$, $||x^*|| \le 1$. By the singularity of T, we may suppose that for every $n \ge 1$, supp $(\mu_n(\cdot; x, x^*))$ is contained in a fixed closed subset F with Lebesgue measure zero. From lemma 1, $\mu_n(\cdot; x, x^*)$ $(n \ge 0)$ is unique, hence for every Borel subset δ , $\mu_n(\delta; x, x^*)$ is a bounded bilinear functional of x, x^* . By the reflexivity of X, there exists for every $n \ge 0$ a bounded linear operator $u_n(\delta)$ defined on X such that

$$x^*u_n(\delta)x = \mu_n(\delta; x, x^*).$$

From (9), $u_n(\cdot)$ satisfies (i). Evidently, we may suppose that $\operatorname{supp}(u_n)$ $(n \ge 0)$ is contained in a fixed neighbourhood G of $\sigma(T)$. As for (ii), using the following inequality

$$\left| x^* \int \varphi^{(n)}(t) \ du_n(t) x \right| = \left| \int \varphi^{(n)}(t) \ d\mu_n(t; x, x^*) \right| \\
\leqslant A \sup_{t \in G} \left| \varphi^{(n)}(t) \right| n! h^n ||x|| ||x^*|| / M_w,$$

we get the result that the series in (8) converges with respect to the uniform operator topology. Finally, by [12] Theorem IV. 10.8 and Definition IV. 10.7, every integral in (8) converges in the strong operator topology.

Lemma 4. Under the hypotheses of the preceding lemma, we have
$$\check{u}_n(\tau)\check{u}_m(\sigma) = \check{u}_{n+m}(\tau+\sigma) \quad (m, n \ge 0),$$
 (10)

in which \u03c4, \u03c4 are real numbers.

Proof For every $x \in X$, $x^* \in X^*$, we have

$$x^* U_{e^{i(\tau+\sigma)}} x = x^* U_{e^{i\tau}} U_{e^{i\sigma}} x = \sum_{n=0}^{\infty} \frac{(i\tau)^n}{n!} x^* \check{u}_n(\tau) U_{e^{i\sigma}} x; \tag{11}$$

$$x^{*}U_{e^{i(\tau+\sigma)t}}x = \sum_{k=0}^{\infty} \frac{[i(\tau+\sigma)]^{k}}{k!} x^{*}\check{u}_{k}(\tau+\sigma)x = \sum_{k=0}^{\infty} \sum_{n=0}^{k} \frac{(i\tau)^{n}}{n!} \frac{(i\sigma)^{k-n}}{(k-n)!} x^{*}\check{u}_{k}(\tau+\sigma)x$$

$$= \sum_{n=0}^{\infty} \frac{(i\tau)^{n}}{n!} \sum_{m=0}^{\infty} \frac{(i\sigma)^{m}}{m!} x^{*}\check{u}_{n+m}(\tau+\sigma)x = \sum_{n=0}^{\infty} \frac{(i\tau)^{n}}{n!} \int e^{i\tau t} dx^{*}v_{n}(t)x, \qquad (12)$$

in which

i. e.,

$$\mathbf{v_n}(\delta) = \sum_{m=0}^{\infty} \frac{(i\sigma)^m}{m!} \int_{\delta} e^{i\sigma t} du_{n+m}(t)$$
 (13)

depends on σ and δ is a Borel subset. Putting σ fixed, from (9), for every h>0 there exists A>0 such that for all $||x|| \leq 1$, $||x^*|| \leq 1$,

$$\|x^*v_n(t)x\| \leq \sum_{m=0}^{\infty} \frac{|\sigma|^m}{m!} \|x^*u_{n+m}(t)x\| \leq A \sum_{m=0}^{\infty} \frac{|\sigma|^m}{m!} (n+m)! \left(\frac{h}{2}\right)^{m+n} / M_{n+m}$$

$$\leq (An!h^n/M_n) \left(\sum_{m=0}^{\infty} \frac{|\sigma|^m (n+m)!}{m!n! 2^{n+m}} h^m / M_m\right)$$

$$\leq (An!h^n/M_n) \sum_{m=0}^{\infty} (|\sigma|h)^m / M_m.$$

Since $B = \sum_{m=0}^{\infty} \frac{(|\sigma|h)^m}{M_m} < +\infty$, it follows that

$$\|x^*v_n(t)x\|_{\mathbf{V}} \leq ABn!h^n/M_{\mathbf{W}}$$

uniformly for all $||x|| \le 1$, $||x^*|| \le 1$. Therefore $v_n(\cdot)$ $(n=0, 1, 2, \cdots)$ are bounded strongly countably additive operator-valued measures. Evidently, the utradistribution $\sum_{n=0}^{\infty} \frac{(-1)^n}{n!} (x^*v_n(t)x)^{(n)} \text{ is singular. By (11), (12) and the remark after lemma 1, we have}$

$$x^* \check{u}_n(\tau) U_{e^{i\sigma}}, \quad x = x^* \check{v}_n(\tau) x,$$

$$\sum_{m=1}^{\infty} \frac{(i\sigma)^m}{m!} x^* \check{u}_n(\tau) \check{u}_m(\sigma) x = \sum_{m=0}^{\infty} \frac{(i\sigma)^m}{m!} x^* \check{u}_{n+m}(\tau + \sigma) x. \tag{14}$$

For fixed τ , the two sides of (14) are the inverse Fourier transform of $\sum_{m=0}^{\infty} \frac{(-1)^m}{m!} \cdot (x^* \check{u}_n(\tau) u_m(\cdot) x)^{(m)}$, $\sum_{m=0}^{\infty} \frac{(-1)^m}{m!} (x^* w_{n+m}(\cdot) x)^{(m)}$ respectively, where $w_{n+m}(\delta) = \int_{\delta} e^{i\tau t} \cdot du_{n+m}(t)$, δ is a Borel subset. Still by the remark after lemma 1, we get (10). Lemma 4 is thus proved.

Lemma 5. Putting $E(\cdot) = u_0(\cdot)$, $N = u_1(R)$, we have

- (i) $E(\cdot)$ is a spectral measure;
- (ii) for every Borel subset δ and every $n \ge 0$,

$$u_n(\delta) = N^n E(\delta) = E(\delta) N^n;$$

(iii) N is a quasinilpotent satisfying

$$\lim_{n\to\infty} \left(\frac{\|N^n\|}{n!} M_n\right)^{\frac{1}{n}} = 0. \tag{15}$$

Proof (i) From lemma 3 (i), it remains to prove that

$$E(\delta)E(\varepsilon) = E(\delta \cap \varepsilon), \quad E(\delta) + E(\varepsilon) - E(\delta)E(\varepsilon) = E(\delta \cup \varepsilon), \quad (16)$$

for all Borel subsets δ , s. Putting n=m=0 in (10), we obtain $\check{E}(\tau)\check{E}(\sigma)=\check{E}(\tau+\sigma)$, i. e.,

$$\int e^{i\tau t}dE\left(t\right)\check{E}\left(\sigma\right)=\int e^{i(\tau+\sigma)t}dE\left(t\right)=\int e^{i\tau t}d_{t}\left(\int_{-\infty}^{t}e^{i\sigma t}dE\left(\tau\right)\right).$$

Since the inverse Fourier transform is 1-1, it follows that

$$E(\delta)\check{E}(\sigma) = \int_{\delta} e^{i\sigma t} dE(t). \tag{17}$$

(17) may be written as

$$\int e^{i\sigma t} dE(\delta) E(t) = \int_{\delta} e^{i\sigma t} dE(t),$$

still by the property (1-1) of the inverse Fourier transform, we have $E(\delta)E(\varepsilon) = E(\delta \cap \varepsilon)$. Finally, by the additivity of $E(\bullet)$,

$$E(\delta \cup \varepsilon) = E(\delta) + E(\varepsilon \setminus (\delta \cap \varepsilon)) = E(\delta) + E(\varepsilon) - E(\delta \cap \varepsilon).$$

(16) holds.

(ii) and (iii) Putting
$$\sigma = 0$$
, $m = 1$ and substituting n by $n - 1$ in (10), we have
$$\check{u}_n(\tau) = \check{u}_{n-1}(\tau) N.$$
 (18)

Similarly, $\check{u}_n(\tau) = N\check{u}_{n-1}(\tau)$. Let $n = 0, 1, 2, \dots$, it follows that

$$\check{u}_{n}(\tau) = \check{E}(\tau) N^{n} = N^{n} \check{E}(\tau).$$

By the property (1-1) of the inverse Fourier transform again, we get

$$u_n(\bullet) = E(\bullet)N^n = N^nE(\bullet),$$

especially, $N^n = u_n(R)$. Therefore by (9), for every h > 0,

$$||N^n|| = ||u_n(R)|| \le An! h^n/M_n,$$

i. e., (15) holds.

Summarizing the above discussions, we obtain

Theorem 2. Suppose X is reflexive. $T \in B(X)$ is a singular $\mathcal{D}_{(X_n)}$ operator if and

only if T is a spectral operator satisfying

- (i) For every $x \in X$ and $x^* \in X^*$, supp $(x^*N^*E(\cdot)x)$ is contained in a fixed closed subset F of Lebesgue measure zero for all $n \ge 1$ (F may depend on x, x^*), where $E(\cdot)$, N are the spectral measure and radical part of T respectively;
 - (ii) N satisfies (15).

Corollary. Suppose X is reflexive. $T \in B(X)$ is a singular $\mathcal{D}_{\langle M_k \rangle}$ operator and $\operatorname{mes} \sigma(T) = 0$ if and only if T is a spectral operator satisfying

- (i) mes supp $(E(\bullet)) = 0$;
- (ii) N satisfies (15).

Theorem 2 is an extention of some results of $[5]^{1}$.

References

- [1] 王声望, $\mathcal{D}_{(M_k)}$ 型算子及其预解式 I, 中国科学数学专辑 (I), (1979), 255—266.
- [2] 王声望, 9(M) 型算子及其预解式 II(未发表)。
- [3] 伍镜波,非拟解析广义算量算子,复旦大学学报,10 (1965),49-61。
- [4] Cioranescu, I., Operator-Valued ultradistributions in the spectral theory, Math. Annalen, 223 (1976), 1—12.
- [5] Kantorovitz, S., Classification of operators by means of their operational calculus, Bull. Amer. Math. Soc., 70 (1964), 316—320.
- [6] Roumieu, C., Ultradistributions définies sur R^n et sur certaines classes de variétés différentiables, J. d'anal. Math., 10 (1962—1963), 153—192.
- [7] Kantorovitz, S., A Jordan decomposition for operators in Banach space, *Trans. Amer. Math. Soc.*, 120 (1965), 526—550.
- [8] Roumieu, C., Sur quelques extensions de la notion de distribution, Ann. Sci. Ec. Norm. Sup. Paris, 77 (1960), 41—121.
- [9] Komatsu, H., Ultradistributions I, J. Fac. Sci. Univ. Tokyo, Sec. IA, 20 (1973), 25-105.
- [10] Schwartz, L., Théorie des distributions I, Hermann, Paris, 1950.
- [11] Chou Chin-Cheng, La transformation de Fourier Complexe et l'équation de convolution, Lect. Notes in Math., 325 (1973), 1—137.
- [12] Dunford, N. and Schwartz, J. T., Linear operators, part I, New York, 1964.

¹⁾ But the author has not seen the full proof of [5].

❷⟨ル」〉型算子与谱算子

王 声 望 (南京大学)

摘 要

1. 谱位于平面上的有界 $\mathcal{Q}_{(M_k)}$ 型算子 记号与 [1,2] 相同,不再一一赘述. 设序列 $\{M_k\}$ 满足 (M.1),(M.2),(M.3) 即对数凸性、非拟解析性、可微性 (M_k) 我们可以定义二元相关函数 $M(t_1,t_2)$ (详见 [7]) 以及二元 $\mathcal{Q}_{(M_k)}$ 空间

二分相关函数
$$M(s_1, t_2)$$
 (并为已上出) $P(s_1, t_2)$ (是) $P(s_1, t_2)$ (P(s_1, t_2)) (P(s_1, t_2) (P(s_

其中 $s=(s_1, s_2)$ 、 $k=k_1+k_2$. 关于谱位于复平面上的有界 $\mathcal{O}_{\langle M_k \rangle}$ 型算子的定义及性质可参看 [3, 4]. 设 X 为 Banach 空间,B(X) 为 X 上有界线性算子的全体组成的环。 当 $T \in B(X)$ 为 $\mathcal{O}_{\langle M_k \rangle}$ 型算子时,有 $T = T_1 + iT_2$; $T_1 = U_{\text{Re}\,t}$ 、 $T_2 = U_{\text{Im}\,t}$,此处 U 为 T 的谱超 广义函数,t 为复变量。由于 $\sup(U)$ 为紧集,故可将 U 延拓到 $s_{\langle M_k \rangle}$ 上且保持连续性。

经过简单的计算,若 $T \in B(X)$ 为谱位于平面上的一个 $\mathcal{D}_{\langle M_* \rangle}$ 型算子,则 T 的一个谱超广义函数 $^{(1)}$ U 可表成

$$\boldsymbol{U}_{\varphi} = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{i(t_1T_1 + t_2T_2)} \, \hat{\varphi}(t_1, t_2) \, dt_1 \, dt_2.$$

设 $T \in B(X)$ 为谱算子,S、N、 $E(\bullet)$ 分别为T的标量部分、根部、谱测度. 下面的定理给出了谱算子成为 $\mathcal{D}_{\langle M_{\bullet} \rangle}$ 型算子的一个充分条件

定理1 设T为谱算子适合下面的条件

$$\sup_{k>0} \sup_{\substack{|\mu_j| \leq 1\\ \delta_j \in \mathfrak{B}\\ j=1,2,\cdots k}} \left(\left\| \frac{N^n}{n!} \sum_{j=1}^k \mu_j E(\delta_j) \right\| M_n \right)^{\frac{1}{n}} \to 0 \quad (n \to \infty),$$

其中 $\mathfrak B$ 为平面上的 Borel 集类、则 T 为 $\mathcal D_{(M_{\bullet})}$ 型算子且它的一个谱广义函数可表为

$$U_{\varphi} = \sum_{n=0}^{\infty} \frac{N^n}{n!} \int \hat{\sigma}^n \varphi(s) dE(s).$$

推论1 设 $E(\cdot)$, N满足

$$\left(\frac{M_n}{n!} \vee (N^n E)\right)^{\frac{1}{n}} \to 0 \quad (n \to \infty),$$

则 T 为 $\mathcal{D}_{\langle M_k \rangle}$ 型算子.

推论 2 设 N 为广义幂零算子,则对于任何与 N 可换的标量算子 S , S+N 为 $\mathcal{D}_{(M_N)}$ 型算子的充分必要条件是

$$\left(\frac{\|N^n\|}{n!}M_n\right)^{\frac{1}{n}}\to 0 \quad (n\to\infty).$$

⁽¹⁾ 本文中的谱超广义函数即为[1]中的谱广义函数。

在[4]中称满足上式的算子为 $\{M_k\}$ 广义幂零算子. 显然 $\{M_k\}$ 广义幂零算子必为通常的广义幂零算子. 下面的命题给出了 $\{M_k\}$ 广义幂零算子的一些性质。

命题 设 N 为广义幂零算子,则下列事实等价:

- (i) N 为 {M_k} 广义幂零算子;
- (ii) 对于任给的 $\lambda > 0$, 存在 $B_{\lambda} > 0$ 使⁽¹⁾

$$||R(\zeta, N)|| \leq B_{\lambda} e^{M^* \left(\frac{\lambda}{|\zeta|}\right)} \quad (|\zeta| 充分小);$$

(iii) 对于任给的 $\mu > 0$, 存在 $A_{\mu} > 0$ 使

$$\|e^{izN}\| \leqslant A_{\mu}e^{M(\mu|z|)}$$

2. 谱位于实轴上的有界 $\mathcal{D}_{(M_*)}$ 型算子 本节讨论有界 $\mathcal{D}_{(M_*)}$ 型算子 T 成为谱算子的条件,这里假定 $\mathcal{D}_{(M_*)}$ 中的函数是一元的,于是 T 的谱位于实轴上. X^* 表示 X 的共轭空间.

设 $f \in \mathcal{D}'_{(M_h)}$,由[8,9],存在测度 $\mu_n(n \ge 0)$ 使得对任何h > 0,存在A > 0适合

$$\sum_{n=0}^{\infty} \frac{h^n}{n!} M_n \int |d\mu_n| \leqslant A$$

H.

$$\langle f, \varphi \rangle = \sum_{n=0}^{\infty} \frac{1}{n!} \int \varphi^{(n)}(t) d\mu_n(t).$$

一般说,上述 $\mu_n(n \ge 0)$ 不是唯一的,为此我们引入

定义 设 n_0 为正整数, 如果对一切 $n \ge n_0$, 存在测度 μ_n , 它们的支集均包含在某一 L 零测度闭集内,则称 f 是 n_0 奇异的, 若 $n_0=1$, 则称 f 是 奇异的. 设 $T \in B(X)$ 为 $\mathcal{D}_{(M_n)}$ 型 算子, U 为其谱超广义函数,如果对于任何 $x \in X$ 、 $x^* \in X^*$, $x^* U$. $x \notin n_0$ 奇异的 (奇异的),则称 T 是 n_0 奇异的 (奇异的) $\mathcal{D}_{(M_n)}$ 型算子.

经过若干准备,可以证明下面的

定理 2 设 X 为自反的 Banach 空间,则 $T \in B(X)$ 为奇异 $\mathcal{O}_{(M_{K})}$ 型算子的充分必要条件是 T 为满足下列条件的谱算子:

- (i) 对每个 $x \in X$ 及 $x^* \in X$, supp $(x^*N^*E(\bullet)x)$ 包含在一个与 $n \ge 1$ 无关的 L 零 测度闭集 F 内(F 可以依赖于 x, x^*), 此处 $E(\bullet)$, N 分别是 T 的谱测度与根部;
 - (ii) 算子 N 是 $\{M_k\}$ 广义幂零算子.

推论 设X为自反的 Banach 空间, $T \in B(X)$ 为奇异 $\mathcal{Q}_{(M)}$ 型算子且 $\sigma(T)$ 的测度 为零的充分必要条件是 T 为满足下列条件的谱算子.

- (i) $E(\cdot)$ 的支集为 L 零测度集;
- (ii) 算子 N 是 $\{M_k\}$ 广义幂零算子。

⁽¹⁾ 在(ii) 中需假定 $\left\{\frac{M_k}{k!}\right\}$ 是对数凸的。